
Reasoning about effectful
programs: the state of the art

Perspectives

• Abstract structure of effectful programs

• Concrete models for languages with effects

• Logics and reasoning principles

• Proofs of particular programs

• Mechanization

• Automation and tool-building

• Language design and programming patterns

Arrows, premonoidal and Freyd categories

• Power, Robinson, Hughes, Atkey

• Rather than requiring a monad, just ask for identity
on objects product-preserving functor from
monoidal base category (values) to premonoidal
category of computations

• Roughly corresponds to arrow abstraction in Haskell
– Used for, for example, functional reactive programming

• Nice syntax due to Patterson, Wadler et al

Parameterized monads

• Atkey
• T:Aop£ A£ Set Set
• ´aX:X T(a,a,X)
• ¹abcXY:T(a,b,X)£ (X T(b,c,Y)) T(a,c,Y)
• Subject to laws…
• Examples

– Monads T(A,B,X)=MX
– State transformers T(S1,S2,X)=S1 S2£ X

• Monoidal structure on parameters allows separated states too

– Composable continuations T(R1,R2,X)=(X R1) R2

• Further applications to, for example, permissions and
session types

Algebraic effects
• Plotkin, Power, Hyland, Pretnar, Staton,…

• Focus on operations and equations

• Generate monads from them

• Composite monads from combinations of algebraic
theories (sum and tensor (commutation))

• Add generic handlers (destructors) for effects to
account for e.g. catching exceptions

• Pretnar and Bauer building a language on these
ideas (eff)

Biorthogonality and TT-lifting
• Krivine, Pitts, Katsumata
• Given configurations (p,e) and observation Oµ P£ E

– If Pµ Progs, P> µ Envs = {e|8 p2 P, (p,e)2 O}
– If Eµ Envs, E> µ Progs = {p | 8 e2 E, (p,e)2 O
– (.)>> is a closure operator on 2Progs that “contextualizes”

properties

• Gives general approach to lifting logical relations to
monadic types (via continuation monad transformer)

• Saw this twice already (logical relation for imperative
language, QPER closure in relation for effect system)

• Also used in relations for HO store, compiler
correctness, realizability

Enriched effect calculus
• Simson, Egger, Mogelberg
• Generalizes Levy’s CBPV and the relationship

between the monadic calculus and linear logic to
the non-commutative case

• Results on linearly used continuations,
parametricity, type isomorphisms etc.

• Promising metalanguage for work on effects

Separation logic
• Reynolds, O’Hearn, Bornat, Ishtiaq, Yang, Parkinson,

and cast of thousands
• Extends Hoare logic to allow local reasoning about

programs that manipulate data structures in the heap
– Separating conjunction
– Frame rule

• Revitalised theory of program verification, huge
influence on theory and practice

• Tools: Smallfoot, jStar, SpaceInvader, SLAyer,…
– Memory safety proofs for large bits of industrial code

• Extends beautifully to concurrency
– Resources, permissions
– Rely-guarantee reasoning

Higher-order extensions of separation logic

• Higher order functions, flat store (Birkedal,
Torp-Smith, Yang)
– Higher-order frame rules, FM-cpos, relational

parametricity and TT-lifting

• Higher order functions and higher-order store
(Schwinghammer, Birkedal, Reus, Yang)
– Foundationally challenging because of, e.g.

recursion through the store

– Nested triples, Kripke semantics, worlds defined
recursively using ultrametric spaces

Refining the state monad with
dependent types

• Nanevski, Morrisett, Birkedal,…

• Hoare Type Theory {P}x:A{Q} where P,Q are
predicates on the state, x binds return value in
postcondition

• Embedded in Coq, full dependent types

• Can include separation logic assertions

• Generates VCS, powerful automation

• Cool examples: tricky imperative datastructures,
web services, database management system

Relational Hoare Logic
• B, Yang. Extend Hoare logic to reason about multiple

runs of programs
• Allows proofs of contextual program transformations

enabled by compiler analyses
• Expresses various dependency analyses: information

flow, program slicing
• CertiCrypt (Zanella, Barthe,…) probabilistic variant in Coq

used to verify digital signature schemes by program
transformation

• Relational HTT (Nanevski, Banerjee, Garg) expresses and
verifies information flow and access control policies for
programs with higher-order functions, dynamically
allocated references

Monadic reflection
• Filinski

• Layering of one effect on top of another via monad
trasnformers amounts to translation of language with
complex effect into one with simpler effect

• Monadic reflection allows one to move between
effects as behaviour and effects as data

• Delimited control is a universal effect

• And can be implemented via call/cc and a reference
cell - fun apptwice f = (f 1; f 2; "done");

val apptwice : (int->unit)->string

- val tapptwice = translate ((int-->unit)-->string) apptwice;
val tapptwice : (int->unit t)->string t

Taming circularity

• Traditional domain theory (Scott,…)

• Step-indexing (Appel, McAllester, Ahmed)

• Ultrametric spaces and the topos of trees
Sets!

op
 (Birkedal et al)

– Modalities for well-founded recursion

Models of languages with higher-
typed store (and other hard features)
• Domain-theoretic (Bohr, Birkedal)
• Step-indexed Kripke logical relations over

operational semantics (Ahmed, Dreyer, Rossberg,
Neis, Birkedal)
– Possible worlds become state transition systems
– Associated modal logics
– Fine analysis of the effect on reasoning of flat/ho

references, control operators
– Biorthogonals and much more besides
– Fully abstract and practically applicable to tricky

examples of imperative ADTs

Game semantics

• Abramsky, Ghica, Honda, McCusker, Tzevelekos

• Types as games, terms as strategies

• Has provided fully abstract models for many
different kinds of programming languages

• Applied to nu-calc, pi-calc, references Recently
extended with nominal structure to provide fully
abstract models of ML-like languages

• Game-like ideas apparent in structure of possible
worlds in recent logical relations models

Compiler Correctness
• Compcert (Leroy)

• FPCC (Appel,…)
– Translate high-level types into foundational logic

– Memory safety

• Compositional compiler correctness (B, Hur,
Tabareau, Dreyer)
– Semantic type soundness

– Full functional correctness

– Biorthogonals, separation, logical relations, step
indices,…

– Hur & Dreyer can even verify self-modifying code

Themes

• Monads, algebras, monoidal structure

• Biorthogonals

• Separation

• Logical relations and parameters

• Recursion and approximation

• Invariants and beyond

• Types versus logics

• Mechanization

