Reasoning about effectful
programs: the state of the art

Perspectives

Abstract structure of effectful programs
Concrete models for languages with effects
Logics and reasoning principles

Proofs of particular programs
Mechanization

Automation and tool-building

Language desigh and programming patterns

Arrows, premonoidal and Freyd categories

Power, Robinson, Hughes, Atkey

Rather than requiring a monad, just ask for identity
on objects product-preserving functor from
monoidal base category (values) to premonoidal
category of computations

Roughly corresponds to arrow abstraction in Haskell

— Used for, for example, functional reactive programming
Nice syntax due to Patterson, Wadler et al

~

/

\
K\
0 ref <1‘_+_::

Parameterized monads

Atkey
T:A°Px AX Set— Set

n,x:X— T(a,a,X)

Lapexy:1(3,0,X) X (X— T(b,c,Y))— T(a,c,Y)
Subject to laws...

Examples

— Monads T(A,B,X)=MX

— State transformers T(S1,S,,X)=5;— S, X X
* Monoidal structure on parameters allows separated states too

— Composable continuations T(R1,R,,X)=(X— R;)— R,

Further applications to, for example, permissions and
session types

Algebraic effects

Plotkin, Power, Hyland, Pretnar, Staton,...
Focus on operations and equations
Generate monads from them

Composite monads from combinations of algebraic
theories (sum and tensor (commutation))

Add generic handlers (destructors) for effects to
account for e.g. catching exceptions

Pretnar and Bauer building a language on these
ideas (eff)

a:AFletv<=laina=v = () :1
a:AbFletv<=lainletw<lain (v,w) = letv<lain (v,v) : VxV
atAvw:VhEa=via:=w = a:=w :1
atAv:Vikai=viletw<lainw = a=v;v :V
a,b:AFletv<=lainlet w < !bin (v,w)

~ letw<binletv<lain(v,w) :VxV
(a,b):A®Avw:VFa=vib:=w = b:=w;a:=v :1

(a,b):ARAvVv:VFa=v;b = letw<=bina:=v;w :V

Biorthogonality and TT-lifting

Krivine, Pitts, Katsumata

Given configurations (p,e) and observation OC Px E

— If PC Progs, PT C Envs = {e|V pe P, (p,e)€ O}

— IfECEnvs, ET CProgs={p | Ve€E, (p,e)eO

— (.)T T is a closure operator on 2P8s that “contextualizes”
properties

Gives general approach to lifting logical relations to

monadic types (via continuation monad transformer)

Saw this twice already (logical relation for imperative
language, QPER closure in relation for effect system)

Also used in relations for HO store, compiler
correctness, realizability

Enriched effect calculus

Simson, Egger, Mogelberg

Generalizes Levy’s CBPV and the relationship
between the monadic calculus and linear logic to
the non-commutative case

Results on linearly used continuations,
narametricity, type isomorphisms etc.

Promising metalanguage for work on effects

Value types:

AB,...:=a|la|l|AxB|A—B|IA
A—B|!A=B|0|A®B

Computation types:

AB,...:=a|1|AxB|A—=B|'A
[IA©B [0 A4B .

Separation logic

Reynolds, O’Hearn, Bornat, Ishtiaqg, Yang, Parkinson,
and cast of thousands

Extends Hoare logic to allow local reasoning about
programs that manipulate data structures in the heap

— Separating conjunction
— Frame rule

Revitalised theory of program verification, huge
influence on theory and practice

Tools: Smallfoot, jStar, Spacelnvader, SLAyer,...
— Memory safety proofs for large bits of industrial code

Extends beautifully to concurrency
— Resources, permissions
— Rely-guarantee reasoning

Higher-order extensions of separation logic

* Higher order functions, flat store (Birkedal,
Torp-Smith, Yang)
— Higher-order frame rules, FM-cpos, relational
parametricity and TT-lifting
* Higher order functions and higher-order store
(Schwinghammer, Birkedal, Reus, Yang)

— Foundationally challenging because of, e.g.
recursion through the store

— Nested triples, Kripke semantics, worlds defined
recursively using ultrametric spaces

Refining the state monad with
dependent types

Nanevski, Morrisett, Birkedal,...

Hoare Type Theory {P}x:A{Q} where P,Q are
oredicates on the state, x binds return value in

nostcondition

Embedded in Coq, full dependent types
Can include separation logic assertions
Generates VCS, powerful automation

Cool examples: tricky imperative datastructures,
web services, database management system

Relational Hoare Logic

B, Yang. Extend Hoare logic to reason about multiple
runs of programs

Allows proofs of contextual program transformations
enabled by compiler analyses

Expresses various dependency analyses: information
flow, program slicing

CertiCrypt (Zanella, Barthe,...) probabilistic variant in Coq
used to verify digital signature schemes by program
transformation

Relational HTT (Nanevski, Banerjee, Garg) expresses and
verifies information flow and access control policies for
programs with higher-order functions, dynamically
allocated references

Monadic reflection
Filinski
Layering of one effect on top of another via monad

trasnformers amounts to translation of language with
complex effect into one with simpler effect

Monadic reflection allows one to move between
effects as behaviour and effects as data

'V :Ta und I'FFE:«
F'FulV):« I'F[E]:Ta

Delimited control is a universal effect

And can be implemented via call/cc and a reference

CE” - fun apptwice f = (f 1; £ 2; "done");
val apptwice : (int->unit)->string

- val tapptwice = translate ((int-->unit)-->string) apptwice;
val tapptwice : (int->unit t)->string t

Taming circularity

e Traditional domain theory (Scott,...)
e Step-indexing (Appel, McAllester, Ahmed)

* Ultrametric spaces and the topos of trees
Sets« " (Birkedal et al)

— Modalities for well-founded recursion

Models of languages with higher-
typed store (and other hard features)

 Domain-theoretic (Bohr, Birkedal)

* Step-indexed Kripke logical relations over
operational semantics (Ahmed, Dreyer, Rossberg,
Neis, Birkedal)

— Possible worlds become state transition systems
— Associated modal logics

— Fine analysis of the effect on reasoning of flat/ho
references, control operators

— Biorthogonals and much more besides

— Fully abstract and practically applicable to tricky
examples of imperative ADTs

Game semantics

Abramsky, Ghica, Honda, McCusker, Tzevelekos
Types as games, terms as strategies

Has provided fully abstract models for many
different kinds of programming languages

Applied to nu-calc, pi-calc, references Recently
extended with nominal structure to provide fully
abstract models of ML-like languages

Game-like ideas apparent in structure of possible
worlds in recent logical relations models

Compiler Correctness

e Compcert (Leroy)

 FPCC (Appel,...)
— Translate high-level types into foundational logic
— Memory safety

 Compositional compiler correctness (B, Hur,
Tabareau, Dreyer)
— Semantic type soundness
— Full functional correctness

— Biorthogonals, separation, logical relations, step
indices,...

— Hur & Dreyer can even verify self-modifying code

Fixpoint semantics_of_types (t:ExpType) (Ra:stateRel) ptr ptr’ struct t

match t with
| Int P = 1ift (P ptr A (ptr = ptr’))
| Bool P = 1ift (P (n2b ptr) A (n2b ptr = n2b ptr’))
| a *x b = Ex value, Ex value2, Ex value’, Ex value2’,
(ptr,ptr’—value,value’) X
(ptr+1,ptr’+i—value2,value2’) x [b] Ra value value’ x [a] Ra value2 value2’)

| a — b = Ex Rprivate,
(ptr,ptr’ — Later (Perp (Pre_arrow Rprivate ptr ptr’ Ra ([a]) ([b]))) X Rprivate)

end
where "’[> t ’]’" := (semantics_of_types t).

Definition Post_arrow b (Ra Rc: stateRel) Rc_cloud (n n’ stack_ptr stack_ptr’: nat):=

Ex ptr_result, Ex ptr_result’,
(stack_ptr,stack_ptr’ — ptr_result,ptr_result’) ® (stack_ptr+l,stack_ptr’+i—-) ®

((b Ra ptr_result ptr_result’) X Rc_cloud) ® Ra ® Rc & (spreg— stack_ptr,stack_ptr’) &

(envreg— n,n’) ® unused_space.

Definition Pre_arrow R_private ptr_function ptr_function’ Ra a b:=
Ex Rc, Ex Rc_cloud, Ex n, Ex n’, Ex ptr_arg, Ex ptr_arg’, Ex stack_ptr, Ex stack_ptr’,

(stack_ptr,stack_ptr’— ptr_arg,ptr_arg’) &
(stack_ptr+l,stack_ptr’+1— ptr_function,ptr_function’)

® (R_private X a Ra ptr_arg ptr_arg’ X Rc_cloud) ®
((n+4,n’+4 — Later (Perp (Post_arrow b Ra Rc Rc_cloud n n’ stack_ptr stack_ptr’))) X Rc) ®

Ra ® (spreg— stack_ptr+l,stack_ptr’+1l) ® (envreg— n,n’) & unused_space.

Themes

Monads, algebras, monoidal structure
Biorthogonals

Separation

L ogical relations and parameters
Recursion and approximation
nvariants and beyond

Types versus logics

Mechanization

