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One more thing we need: in pure linear logic the only thing we pass
is channels; we encode data by having processes that represent
data. But for practical programming, we'd like to be able to pass
data: arbitrary data in some sense. So what is a logical construct that
corresponds to being able to pass arbitrary data?
The right way to do this is quantification. 3 con¥ptval mon2dt
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As usual, we'll explicate the behavior of quantifiers using their lef,
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Intuitively, forall "inputs a value of type t", and exists "outputs
a value of type t."

There is a general pattern to left and right rules in sequent calculus,
where both rules move towards the identity proof. In natural deduction,
the elimination rule moves in the other direction; thus elimination and

left rule are "inverses" in some sense.
This would be clearer with

an example.
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At this point, we can right processes which compute functional values, but
we cannot write functions with compute processes. So the idea is to use

a monad to let us embed processes into the functional language. In fact,
we will need a contextual monad which indicates which processes it uses.
Let us state the language for processes, recast in monadic language:

Pu= cé—a (ioh
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also known as bind
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This is classical monads, except that the variables inside the monad have
some extra binding structure.

Now for some examples:

hatstreem = dn - nat. natstieem
= nat A\ natstesm
= MA, nat Aol

nsts: ngt — Sk na‘tst(eaw\}
Cé& nats n =

%Sené\ cn 7 send the current number over the stream
¢« ha’ts(v\-ﬂ) 5| make a recursive call
Q& ¢! '} forward c' on c

these two lines are common, so they can
be abbreviated to:

c & natsCna))



Our goal is to generate a stream of prime numbers, using the Sieve of Eratosthenes.

(x5 é’—@é— X2 )< nats

We have a process per prime number we've outputted so far, and it checks
numbers streaming to see if they are divisible (dropping them if they are).
If a number makes it through, it's prime, so we generate a new process for it.

First, we need to build a filter transducer:

'F'u\’ce,r \ (na’c = bool) — Sl natstresm V\B’tS‘lTeam.§

Q: Is the send and recursive call

C&— -\:\H'e ( P S d = concurrent?

. A: No, it's a synchronous language.
n < Yecv
S( . RN A ? Q: Can | pull out the filter p recursive call?
if (? n) A: No, there is a dependence. Interesting!
—t\,\qf\ sené\ c Ny Q: Where does the if come from?

o A: It is in the term language. This is
abbreviation!  C <= filter P& ok a standard monadic programming trick.

else C< flkr PQ“O;\ }

Note that if you try to actually implement this in Coq, you won't be able to do this.
The problem is that filter is not productive. Now, in the case of a true prime sieve,
it will be productive, since there are infinitely many primes, but that's not obvious!
There's a paper on how to do this.

Now let's do the sieve. The sieve takes a stream, knowing that the first element
is a prime number (by some invariant), and then starts building processes.

Sieve . § natsteom - natstesm?

C&—sleve &— 0\ =

$k é~ recy A)  we know k is prime
Send ¢ K)
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Finally, we generate the primes stream:

pf'lmu L %i—- nat S"rcam}
C&— primey =

¢ X & nats 25
C & Sleve &— %
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Q: Could you do sieve using cut
instead of monads?

A: Well, cut doesn't let you get the
result of a function. We've just gotten
rid of cut with monadic composition,
since there is not really any reason
to have it any more.

Our next example is a binary number counter.
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this is a bit confusing, cé& bit 1%
because it's in reverse

| wval ::> Send OC')
C& €
[ deslloc = close ¢
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Note that this is concurrent; you can send
multiple increments, and they will all
be in flight simultaneously!

lower

if we omit the wait
it's not linearly typed!
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Q: Why isn't it tensor?

A: I'm outputting a value, not a new
channel, and there is no dependence
(so we didn't use an existential).

val: (nata 1) ®bin

This version sends a channel, and doesn't
block! Which is potentially interesting.

Q: Why can't we just write nat here?
A: Well, nat is a tau, so it's not the right type.

higher o
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higher
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Homework: implement stacks.

stack = &§ push : nat D stack,
pop - @SL empty: Stack,
Some: nat A Staeky
0\(’.8“0(‘,: j_ ~S

Remark: when you say 1, it really does mean that
EVERYTHING is deallocated, because there must
not be anything in the context. So if we made

a mistake in implementing dealloc, type error!

new : § - stack’

One last note: what is the meaning of persistent assumptions and persistent
channels in this context? (l.e. bang-A) Interestingly, it doesn't seem to come up
very often in this kind of program.

We have an implementation of this, but it's not quite stable enough.

Note that Concurrent ML is almost expressive enough to write all these
programs, but it is completely undisciplined. Session typing with these systems
guarantees absence of deadlock, etc; and with restrictions on recursion,

also guarantee termination.
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Recall that for ordinary channels, their type changes as the program evaluates.
But for a shared channel, you can't allow the type to change because other
references may get mixed up and type preservation would not hold. Linearity
prevents this from happening, but for things that can be used multiple times,
you need some restrictions. So instead, you spawn a copy of the service in
question, and use that!
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Q: So, is the reason this doesn't show up frequently because we can simulate

it using the monadic syntax?

A: Well, sometimes you want the use of the shared channel to show up in the type.
Consider a file storage system:

s file o(file A 1) w: file>! (fie A1)

X & copy WU; K& copy U

Send % =5 Send 0 £

G & reev % W & (eev s,

)( Q’Copy (N

If it's correctly implemented, g and g' should 9  vecy 7 as tmny
be equal. With dependent types, you can e C°P\/ e ?j Ziv
actually express that these should be equal; y, | y
this was a paper last year. 3 < Yecv Y
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This is a dependent specification; notice that without the "input a file, output a file
there are a lot of implementations, but with the equality now we know what
it should be.
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Note that in a distributed setting, you will need to do some runtime typechecking
to ensure that all proof obligations are satisfied, if you don't trust

the nodes that you are interacting with. So the proofs will have some

runtime content! (On a single machine, nothing can go wrong).



