
Parametricity and Relational Reasoning

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

Oregon PL Summer School
June 2014

Parametricity and local relational reasoning

Relational reasoning:
Proving properties relating behavior of multiple programs,
most importantly equivalence and refinement

Essential for verifying program transformations/compilers
+ general verification when there is no clear “logical” spec

Local (or modular) relational reasoning:
Relational reasoning on modules, preserved by linking

Canonical example: “contextual” equivalence/refinement

Parametricity:
A powerful local relational reasoning principle that comes
“for free” from the abstractions in high-level languages
(types, polymorphism, local state, closures, etc.)

Focus of these lectures

1 Parametricity: who needs it?

2 Formalizing parametricity using
operational semantics-based logical relations

The basic setup: System F
+ recursive types (step-indexing)
+ continuations (>>-closure aka biorthogonality)
+ first-order state (Kripke logical relations)

3 A brief tour of recent literature
Log. rel. for concurrency, bisimulation techniques,
relational separation logics, compiler certification

My Strategy for Doing This in 4 Lectures

I explain how to define and use logical relations,
NOT how to prove them sound!

Focus of these lectures

1 Parametricity: who needs it?

2 Formalizing parametricity using
operational semantics-based logical relations

The basic setup: System F
+ recursive types (step-indexing)
+ continuations (>>-closure aka biorthogonality)
+ first-order state (Kripke logical relations)

3 A brief tour of recent literature
Log. rel. for concurrency, bisimulation techniques,
relational separation logics, compiler certification

My Strategy for Doing This in 4 Lectures

I explain how to define and use logical relations,
NOT how to prove them sound!

Parametricity: who needs it?

What are type systems good for?

What are type systems good for?

(1) Detecting a certain class of runtime errors
e.g., cannot apply an integer as if it were a function

“Well-typed programs don’t get stuck”

This is what syntactic type safety is all about.

Progress: If e : A, then e ; e ′ or e is a value.
Preservation: If e : A and e ; e ′, then e ′ : A.

What are type systems good for?

(2) Data abstraction: modules, ADTs, classes, etc.
Enforcing invariants on a module’s private data structures

Representation independence: should be able to change
private data representation without affecting clients

Together, these properties are often called
abstraction safety.

Key take-away points

1 Type safety does not imply abstraction safety!

2 Parametricity = Type safety + Abstraction safety

3 Parametricity is a relational property.

A simple motivating example

A simple motivating example: Enumeration types

Interface:

COLOR = ∃α. { red : α,
blue : α,
print : α→ String }

Intended behavior:

print red ; "red"

print blue ; "blue"

A simple motivating example: Enumeration types

One implementation, with α = Int:

ColorInt = pack Int, {
red = 0,
blue = 1,
print = λx . match x with

| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

} as COLOR

Goal #1: Enforcing Invariants

Prove that argument to print must be 0 or 1,
and thus it will never return "FAIL".

A simple motivating example: Enumeration types

One implementation, with α = Int:

ColorInt = pack Int, {
red = 0,
blue = 1,
print = λx . match x with

| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

} as COLOR

Goal #1: Enforcing Invariants

Prove that argument to print must be 0 or 1,
and thus it will never return "FAIL".

A simple motivating example: Enumeration types

One implementation, with α = Int:

ColorInt = pack Int, {
red = 0,
blue = 1,
print = λx . match x with

| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

} as COLOR

Goal #1: Enforcing Invariants

Prove that argument to print must be 0 or 1,
and thus it will never return "FAIL".

A simple motivating example: Enumeration types

Another implementation, with α = Bool:

ColorBool = pack Bool, {
red = true,
blue = false,
print = λx . match x with

| true ⇒ "red"

| false ⇒ "blue"

} as COLOR

Goal #2: Representation Independence

Prove that the two implementations of Color
are contextually equivalent.

A simple motivating example: Enumeration types

Another implementation, with α = Bool:

ColorBool = pack Bool, {
red = true,
blue = false,
print = λx . match x with

| true ⇒ "red"

| false ⇒ "blue"

} as COLOR

Goal #2: Representation Independence

Prove that the two implementations of Color
are contextually equivalent.

Representation independence subsumes invariants

If we can prove

ColorInt ≡ctx ColorBool : COLOR,

then since ColorBool’s print function never returns "FAIL",
that means ColorInt’s print function never returns "FAIL".

More generally, Goal #2 subsumes Goal #1.

The trouble with type safety

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : ∀α. α→ Bool

with the semantics:

eqZero v ;

{
true if v = 0

false otherwise

Observation:

eqZero IS type-safe but NOT abstraction-safe!

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : ∀α. α→ Bool

with the semantics:

eqZero v ;

{
true if v = 0

false otherwise

Observation:

eqZero IS type-safe

but NOT abstraction-safe!

A dangerous language extension: Testing for zero!

Suppose our language had the following operator:

eqZero : ∀α. α→ Bool

with the semantics:

eqZero v ;

{
true if v = 0

false otherwise

Observation:

eqZero IS type-safe but NOT abstraction-safe!

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ??????? as [α,{red,blue,print}] in
eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorInt as [α,{red,blue,print}] in
eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorInt as [α,{red,blue,print}] in
eqZero 0

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorInt as [α,{red,blue,print}] in
true

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] in
eqZero red

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] in
eqZero true

Bottom Line

Type safety does not guarantee abstraction safety.

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] in
false

Bottom Line

Type safety does not guarantee abstraction safety.

eqZero breaks representation independence!

Consider a client that simply applies eqZero to red:

unpack ColorBool as [α,{red,blue,print}] inBottom Line

Type safety does not guarantee abstraction safety.

Logical relations to the rescue!

Logical relations and representation independence

We say e1 and e2 are logically related at ∃α.A
(written e1 ≈ e2 : ∃α.A) if:

There exists a “simulation relation” R between their
private representations of α that is preserved by their
operations (of type A)

Intuition: (v1, v2) ∈ R means that v1 and v2 are two
different representations of the same “abstract value”

Theorem (Representation Independence)

If ` e1 ≈ e2 : A, then ` e1 ≡ctx e2 : A.

Logical relations and representation independence

We say e1 and e2 are logically related at ∃α.A
(written e1 ≈ e2 : ∃α.A) if:

There exists a “simulation relation” R between their
private representations of α that is preserved by their
operations (of type A)

Intuition: (v1, v2) ∈ R means that v1 and v2 are two
different representations of the same “abstract value”

Theorem (Representation Independence)

If ` e1 ≈ e2 : A, then ` e1 ≡ctx e2 : A.

Proof that ColorInt and ColorBool are logically related

Returning to our motivating example, let’s show:

` ColorInt ≈ ColorBool : COLOR

Proof that ColorInt and ColorBool are logically related

`

pack Int, {
red = 0,
blue = 1,
print = λx
} as COLOR

≈

pack Bool, {
red = true,
blue = false,
print = λx
} as COLOR

:
∃α. { red : α,

blue : α,
print : α→ String }

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

{
red = 0,

blue = 1,

print = λx

}

≈

{
red = true,

blue = false,

print = λx

}

:

{ red : α,

blue : α,

print : α→ String }

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

α 7→R `

λx . match x with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

λx . match x with
| true ⇒ "red"

| false ⇒ "blue"

: α→ String

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Suppose α 7→R ` v1 ≈ v2 : α.

α 7→R `

match v1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match v2 with
| true ⇒ "red"

| false ⇒ "blue"

: String

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Suppose (v1, v2) ∈ R .

α 7→R `

match v1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match v2 with
| true ⇒ "red"

| false ⇒ "blue"

: String

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Case: v1 = 0 and v2 = true.

α 7→R `

match 0 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match true with
| true ⇒ "red"

| false ⇒ "blue"

: String

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Case: v1 = 1 and v2 = false.

α 7→R `

match 1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match false with
| true ⇒ "red"

| false ⇒ "blue"

: String

QED!
OK, that was pretty trivial, let’s not get too excited. . .

Proof that ColorInt and ColorBool are logically related

Pick R = {(0,true),(1,false)}
as our simulation relation for α.

Case: v1 = 1 and v2 = false.

α 7→R `

match 1 with
| 0 ⇒ "red"

| 1 ⇒ "blue"

| ⇒ "FAIL"

≈

match false with
| true ⇒ "red"

| false ⇒ "blue"

: String

QED!
OK, that was pretty trivial, let’s not get too excited. . .

The flip side: Client-side abstraction

In order for representation independence to work,
clients must behave “parametrically”.

We must rule out non-parametric functions like eqZero.

Theorem (Abstraction)

If ` e : A, then ` e ≈ e : A.

This theorem looks weirdly trivial, but it is not!
The logical relation only relates “well-behaved” terms,
i.e., terms that are parametric and don’t get stuck.

Type safety falls out as an easy corollary.

The flip side: Client-side abstraction

In order for representation independence to work,
clients must behave “parametrically”.

We must rule out non-parametric functions like eqZero.

Theorem (Abstraction)

If ` e : A, then ` e ≈ e : A.

This theorem looks weirdly trivial, but it is not!
The logical relation only relates “well-behaved” terms,
i.e., terms that are parametric and don’t get stuck.

Type safety falls out as an easy corollary.

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose ` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Proof that eqZero is not well-typed

Pick R = Val× Val
as our simulation relation for α.

Suppose

` f : ∀α. α→ Bool

` f ≈ f : ∀α. α→ Bool

α 7→R ` f ≈ f : α→ Bool

∀v1, v2. α 7→R ` f(v1) ≈ f(v2) : Bool

So f is a constant function, and cannot be eqZero!

This is an example of a

free theorem (Wadler, 1989).

Summary

Theorem (Representation Independence)

If ` e1 ≈ e2 : A, then ` e1 ≡ctx e2 : A.

Theorem (Abstraction)

If ` e : A, then ` e ≈ e : A.

Classic papers on parametricity

Reynolds (1983):
Types, abstraction and parametric polymorphism

Introduces parametricity and the abstraction theorem:
one of the most important papers in PL history

Mitchell (1986):
Representation independence and data abstraction

Applies parametricity in order to prove representation
independence for existential types

Wadler (1989):
Theorems for free!

Applies parametricity in order to prove many interesting
“free theorems” about universal types

