
 SOFTWARE FOUNDATIONS���
 IN COQ

Lecture 1

Steve Zdancewic OPLSS June, 2014

SOFTWARE FOUNDATIONS

Images in the following slides taken from Wikipedia.

The Story Begins…
•  Gottlob Frege: a German mathematician

who started in geometry but became
interested in logic and foundations of
arithmetic.

•  1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled
on that of Arithmetic)
–  First rigorous treatment of functions and

quantified variables
–  ⊢ A, ¬A, ∀x.F(x)
–  First notation able to express arbitrarily

complicated logical statements

Gottlob Frege ���
1848-1925

OPLSS Software Foundations Zdancewic June 2014

Formalization of Arithmetic
•  1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
•  1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
•  1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)

•  Frege’s Goals:
–  isolate logical principles of inference
–  derive laws of arithmetic from first principles
–  set mathematics on a solid foundation of logic

The plot thickens…

Just as Volume 2 was going to print in 1902, ���
Frege received a letter…

OPLSS Software Foundations Zdancewic June 2014

Bertrand Russell
•  Russell’s paradox:

•  Russell’s paradox destroyed Frege’s logical
foundations…

Bertrand Russell ���
 1872 - 1970

1. Set comprehension notation:
 { x | P(x) } “The set of x such that P(x)”

2. Let X be the set { Y | Y ∉ Y }.

3. Ask the logical question: ���
 Does X ∈ X hold?

4. Paradox! If X ∈ X then X ∉ X.
 If X ∉ X then X ∈ X.	

OPLSS Software Foundations Zdancewic June 2014

Addendum to Frege’s 1903 Book

 “Hardly anything more unfortunate can befall
a scientific writer than to have one of the foundations
of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this
volume was nearing its completion.” – Frege, 1903

OPLSS Software Foundations Zdancewic June 2014

Aftermath of Frege and Russell
•  Frege came up with a fix, but it made his logic

trivial…

•  1908: Russell fixed the inconsistency of Frege’s
logic by developing a theory of types.

•  1910, 1912, 1913, (revised 1927):���
Principia Mathematica (Whitehead & Russell)
–  Goal: axioms and rules from which all

mathematical truths could be derived.
–  It was a bit unwieldy…

Whitehead Russell

"From this proposition it will follow, ���
when arithmetical addition has been defined, ���
that 1+1=2."
—Volume I, 1st edition, page 379

OPLSS Software Foundations Zdancewic June 2014

Logic in the 1930s and 1940s
•  1931: Kurt Gödel’s first and second

incompleteness theorems.
–  Demonstrated that any consistent formal theory

capable of expressing Peano arithmetic cannot be
complete.

•  1936: Genzen proves consistency of arithmetic.
•  1936: Church introduces the λ-calculus.
•  1936: Turing introduces Turing machines

–  Is there a decision procedure for arithmetic?
–  Answer: no it’s undecidable
–  The famous “halting problem”

•  only in 1938 did Turing get his Ph.D.

•  1940: Church introduces the simple theory of
types Alonzo Church ���

 1903 - 1995
Alan Turing ���

 1912 - 1954

Kurt Gödel
1906 - 1978

Gerhard Gentzen
1909 - 1945

OPLSS Software Foundations Zdancewic June 2014

Fast Forward…
•  1958 (Haskell Curry) and 1969 (William Howard) observe a

remarkable correspondence:

•  1967 – 1980’s: N.G. de Bruijn runs Automath project
–  uses the Curry-Howard correspondence for ���

computer-verified mathematics

•  1971: Jean-Yves Girard introduces System F	

•  1972: Girard introduces Fω
•  1972: Per Marin-Löf introduces intuitionistic type theory
•  1974: John Reynolds independently discovers System F

types ~ propositions

programs ~ proofs

computation ~ simplification

N.G. de Bruijn���
 1918 - 2012

Basis for modern���
type systems:
OCaml, Haskell,���
Scala, Java, C#, …

OPLSS Software Foundations Zdancewic June 2014

… to the Present
•  1984: Coquand and Huet first begin

implementing a new theorem prover “Coq”
•  1985: Coquand introduces the calculus of

constructions
–  combines features from intuitionistic type

theory and Fω

•  1989: Coquand and Paulin extend CoC to
the calculus of inductive constructions
–  adds “inductive types” as a primitive

•  1992: Coq ported to Xavier Leroy’s Caml

•  1990’s: up to Coq version 6.2
•  2000-2010: Coq version 8.3
•  2012: Coq version 8.4 ← SF

Thiery Coquand
1961 –

Gérard Huet
1947 –

http://coq.inria.fr/refman/Reference-Manual002.html

Too many contributors���
to mention here…

OPLSS Software Foundations Zdancewic June 2014

SOFTWARE FOUNDATIONS

So much for foundations… what about software?

Building Reliable Software
•  Suppose you work at (or run) a software company.

•  Suppose, like Frege, you’ve sunk 30+ person-years into developing the
“next big thing”:
–  Boeing Dreamliner2 flight controller
–  Autonomous vehicle control software for Google or Nissan
–  Gene therapy DNA tailoring algorithms
–  Super-efficient green-energy power grid control software

•  Suppose, like Frege, your company has invested a lot of material
resources that are also at stake.

•  How do you avoid getting a letter like the one from Russell?

Or, worse yet, not getting the letter���
to disastrous consequences?

OPLSS Software Foundations Zdancewic June 2014

Approaches to Reliability
•  Social

–  Code reviews
–  Extreme/Pair programming

•  Methodological
–  Design patterns
–  Test-driven development
–  Version control
–  Bug tracking

•  Technological
–  “lint” tools
–  Fuzzers

•  Mathematical
–  Sound type systems
–  “Formal” verification

More “formal”: eliminate ���
with certainty as many problems ���
as possible.

Less “formal”: Techniques may
miss problems in programs

This isn’t a tradeoff… all of ���
these methods should be used.

Even the most “formal” can still���
have holes:
•  did you prove the right thing?
•  do your assumptions match reality?

OPLSS Software Foundations Zdancewic June 2014

Five Interwoven Threads
1.  basic tools from logic for making and justifying precise claims about

programs

2.  the use of proof assistants to construct rigorous, machine checkable,
logical arguments

3.  the idea of functional programming, both as a method of
programming and as a bridge between programming and logic

4.  techniques for formal verification of properties of specific programs

5.  the use of type systems for establishing well-behavedness guarantees
for all programs in a given language

OPLSS Software Foundations Zdancewic June 2014

Can it Scale?
•  Use of theorem proving to verify “real” software is still considered to be the

bleeding edge of PL research.

•  CompCert – fully verified C compiler ���
 Leroy, INRIA

•  Ynot – verified DBMS, web services���
 Morrisett, Harvard

•  Verified Software Toolchain ���
 Appel, Princeton

•  Bedrock ���
 Chlipala, MIT

•  CertiKOS – certified OS kernel���
 Shao & Ford, Yale

•  Vellvm – formalized LLVM IR���
 Zdancewic, Penn

OPLSS Software Foundations Zdancewic June 2014

Vellvm Framework

Transform�
C	
 Source	

Code�

Other	

Op4miza4ons �

LLVM	

IR�

LLVM	

IR�

Target�

LLVM	

OCaml	
 Bindings	

Printer	
 Parser	

Coq	

Syntax	

Opera4onal	

Seman4cs	

Memory	

Model	

Type	
 System	

and	
 SSA	

Proof	
 Techniques	
 &	
 Metatheory	

Extract	

OPLSS Software Foundations Zdancewic June 2014

Vellvm Framework

C	
 Source	

Code�

Other	

Op4miza4ons �

LLVM	

IR�

LLVM	

IR�

Target�

LLVM	

OCaml	
 Bindings	

Printer	
 Parser	

Coq	

Syntax	

Opera4onal	

Seman4cs	

Memory	

Model	

Type	
 System	

and	
 SSA	

Proof	
 Techniques	
 &	
 Metatheory	

Extract	

Verified	

Transform�

OPLSS Software Foundations Zdancewic June 2014

Does it work?

LLVM

Random test-case
generation�

{8 other C compilers}�

79 bugs:
25 critical�

202 bugs
325 bugs in
total

Source
Programs

Finding and Understanding Bugs in C Compilers [Yang et al. PLDI 2011]

OPLSS Software Foundations Zdancewic June 2014

Verified Compiler: CompCert [Leroy et al.]���
<10 bugs found in unverified front-end component

Regehr’s Group Concludes

The striking thing about our CompCert results is that
the middle-end bugs we found in all other compilers
are absent. As of early 2011, the under-development
version of CompCert is the only compiler we have
tested for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted about six
CPU-years to the task. The apparent unbreakability of
CompCert supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

(emphasis mine)

OPLSS Software Foundations Zdancewic June 2014

What’s in the Software Foundations Text?
•  Foundations

–  Functional programming
–  Constructive logic
–  Logical foundations
–  Proof techniques for inductive definitions

•  Semantics
–  Operational semantics
–  Modeling imperative “While” programs
–  Hoare logic for reasoning about program correctness

•  Type Systems
–  Simply typed λ-calculus
–  Type safety
–  Subtyping
–  Dependently-typed programming

•  Coq interactive theorem prover
–  turns doing proofs & logic into programming fun!

OPLSS Software Foundations Zdancewic June 2014

COQ

OPLSS Software Foundations Zdancewic June 2014

Resources
•  Course textbook: Software Foundations

–  Electronic edition

•  Additional books:
–  Types and Programming Languages���

(Pierce, 2002 MIT Press)
–  Interactive Theorem Proving and Program

Development���
(Bertot and Castéran, 2004 Springer)

–  Certified Programming with Dependent
Types���
(Chlipala, electronic edition)

OPLSS Software Foundations Zdancewic June 2014

Coq at OPLSS
•  We’ll use Coq version 8.4

•  See the web pages at: coq.inria.fr

•  Two different user interfaces
–  CoqIDE – a standalone GUI / editor
–  ProofGeneral – an Emacs-based editing environment

•  I will assume that you have Coq up and running…

OPLSS Software Foundations Zdancewic June 2014

Coq’s Full System

OPLSS Software Foundations Zdancewic June 2014

Subset Used in Software Foundations

To start. By the end.

OPLSS Software Foundations Zdancewic June 2014

