
Agda exercises
OPLSS

Peter Dybjer

Eugene, Oregon
June 2015

1 Booleans
1. Define implication of Booleans in Agda using pattern matching!

2. (a) Prove the law of the excluded middle for booleans:

em : (b : Bool) -> So (b || (not b))

where || is boolean disjunction.

(b) Prove one of de Morgan’s laws for booleans :

dm : (a b : Bool)
-> So (not (a && b) <==> (not a) || (not b))

3. SASL (an early lazy functional programming language) had a general tautology
function. It is a higher order function which takes a boolean function (a predi-
cate) of arbitrary arity as argument and checks whether it is a tautology, that is,
whether it is true everywhere. With dependent types we can give it the following
type

taut : (n : N) -> Pred n -> Bool

where Pred n is the type of n-place predicates:

Pred zero = Bool
Pred (succ n) = Bool -> Pred n

Your task is to program taut so that taut n f = true iff f is a tautology.

1

2 Natural numbers

4. (a) Define cut-off subtraction −̇ in Agda, where m −̇n = 0 if m ≤ n!

(b) Define the power function in Agda using pattern matching!

(c) The recursion operator is a higher order function which takes a base case
and a step case and returns a function defined by primitive recursion with
that base case and step case. Its definition in Agda is

natrec : {A : Set} -> A -> (Nat -> A -> A) -> Nat -> A
natrec base step zero = base
natrec base step (succ n) = step n (rec base step n)

Define the power function in terms of natrec!

5. (a) Define equality of natural numbers

== : Nat -> Nat -> Bool

by pattern matching in both arguments.

(b) Define the same function in terms of natrec! Note that this is harder, be-
cause natrec only does recursion in one argument at a time.

(c) Write the Ackermann function in Agda! You can find its definition in
wikipedia. There are actually several variants, but it suffices if you im-
plement one of them. Compute the result of the Ackermann function for
some arguments! Which is the largest number you can output?

3 Predicate logic

6. Implement proofs of the following propositions in Agda

(a) ¬¬¬P → ¬P
(b) ¬(P ∨Q) ↔ ¬P&¬Q.

(c) ¬(∃x ∈ D)P (x) ↔ (∀x ∈ D)¬P (x)

You should of course use the propositions as types interpretation of Curry and
Howard! See for example chapter 4 in ”Dependent types at work!!

7. Neither the law of excluded middle nor the law of double negation hold in intu-
itionistic logic.

(a) However, excluded middle implies double negation:

(A ∨ ¬A) → (¬¬A → A)

for all propositions A! Prove this in Agda (or on paper)!

(b) What happens if you try to prove the converse in intuitionistic logic (or
Agda):

(¬¬A → A) → (A ∨ ¬A)?

Discuss!

(c) Prove in Agda (or on paper) that if the law of double negation ¬¬X → X
holds for all propositions X , then the law of excluded middle X∨¬X holds
for all propositions X . (Note the difference to the formulation in (a)!)

(d) Also prove in Agda that if the law of excluded middle holds for all propo-
sitions X , then the law of double negation ¬¬X → X holds for all propo-
sitions X . (Hint: this follows easily from (a).)

4 Logical Framework

8. Define some combinators using just the logical framework! (See e g wikipedia
article.) Define dependently typed versions of them!

9. Define Church-Booleans. Which boolean operations can you define in a pred-
icative framework?

10. Complete the definition of HOL (Church’s simple theory of types)! (See e g the
article on Church Type Theory in Stanford Encyclopedia of Philosophy (SEP).)

11. Encode more axioms of ZF! Prove some simple properties!

5 Lists, vectors, and trees

12. (a) Define the append function which concatenates two lists in Agda!

(b) Define the append function on vectors, so that the type expresses that the
dimension of the output vector is the sum of the dimensions of the input
vectors. (Hint: beware that the type-checking algorithm normalizes (com-
putes) the type, and is in this case therefore sensitive to the definition of
addition. It matters whether addition is defined by recursion on the first or
on the second argument.)

13. (a) Define the polymorphic reverse function in Agda! This can be done by
quantifying over a : Set! This is a form of explicit polymorphism; since
you explicitly need to quantify over all “sets” (“small types”).

(b) Define another polymorphic reverse function where a : Set is an im-
plicit argument! With implicit arguments you can write functions in Agda
with types looking much like the way you would write them in Haskell.

(c) In the lecture we defined the inductive family Vec A n of vectors of
length n is defined. Define the reverse function on vectors, so that its type
expresses that the length of the output vector is the same as the length of
the input vectors. You can choose whether to define Vec A n either as a
recursive family or as an inductive family as explained in “Dependent types
at work” .

14. In section 3.2 in “Dependent Types at Work” the type Fin n of finite sets with
n elements is define. Do the two exercises at the end of that section

(a) Write a new lookup function _!!_ so that it has the following type:

!! : {A : Set}{n : Nat}
-> Vec A (succ n) -> Fin (succ n) -> A

This will eliminate the empty vector case, but which other cases are needed?

(b) Give an alternative definition of Fin n as a recursive family, that is, define
it by induction on n using pattern matching!

15. An AVL-tree is a balanced ordered binary tree, where a binary tree is balanced
provided the height difference between the left and right subtrees of any node is
at most 1. Your task is to define the type of AVL-trees in Agda.

16. (a) Let Term of Boolean expressions (terms) be generated by the following
grammar

b ::= x | tt | ff | if b b b

where x is one of denumerably many variables encoded by numbers. Im-
plement Boolean expressions as a data type in Agda.

(b) When we define the denotational semantics of Boolean expressions with
variables, we do it relative to an environment, that is, a function which
associates a value (a Boolean) to each variable:

Env : Set
Env = Nat -> Bool

Hence the type of the interpretation function (the denotational semantics)
is instead

[[_]] : Term -> Env -> Bool

Define this function in Agda!

(c) Define a type NandTerm : Set in Agda of Boolean expressions built
up only by nand and variables!

(d) Define the interpretation function (the denotational semantics) for Boolean
expressions built up from nand and variables.

[[_]]’ : NandTerm -> Env -> Bool

(e) Define a translation

tonand : Term -> NandTerm

which preserves the denotational semantics

(f) Prove in Agda that the the denotational semantics is preserved, that is, that

[[tonand t]]’ env = [[t]] env

for all t : Term and all env : Env.

(g) Write the reverse translation

toif : NandTerm -> Term

and prove that this too preserves the denotational semantics.

17. Prove that the append function which concatenates two lists is associative.

18. Write an Agda program which terminates for all inputs but which is not accepted
by Agda’s termination checker!

19. (a) Implement the set of non-negative binary numbers in Agda or Haskell! You
may implement them any way you like, but one possibility is to introduce a
data type BinaryNumber with three constructors, using that each binary
number is either zero, twice a binary number, or one more than twice a
binary number.

(b) Write a function bin2un in Agda or Haskell which converts a binary num-
ber to a unary number!

(c) Write a function un2bin in Agda or Haskell which converts a unary num-
ber to a binary number! Hint: first write the successor function for binary
numbers.

(d) Finally, prove that

bin2un (un2bin n) = n

in Agda. Why is not un2bin (bin2un bs) = bs?

6 Generalized inductive definitions

20. Each element of the type of Brouwer ordinals can be assigned a meaning as a von
Neumann ordinal in classical set theory. Explain how! Define Brouwer ordinals
corresponding to ω+1, ω+2, . . . ω2, ω2+1, . . . , ω2, . . . , ω3, . . . , ωω, ωωω

, . . . ϵ0.

21. Implement natural numbers and Brouwer ordinals as suitable instances of the
W-type! Can you derive the introduction and elimination-rules? Why or why
not?

7 Identity and quotients

22. Prove that So (m == n) iff m = nwhere = is the inductively defined identity
type given in the lecture.

23. (a) Define the set of integers Int in Agda and a function

== : Int -> Int -> Bool

which tests for equality of integers. There are several ways of implement-
ing the integers and it is up to you to choose one you like.

(b) Define a function nat2int translating a natural number to an integer.

(c) Define addition of integers addInt!

(d) Prove that the addition of integers corresponds to addition of natural num-
bers is, that

addInt (nat2int m) (nat2int n) == nat2int (m + n)

24. (a) What is a real numbers constructively? Look in the literature (e g on the
web), choose a definition of the set Real of real numbers, and implement
it in Agda!

(b) Define a function

eqReal : Real -> Real -> Set

which defines when two of your constructive reals are equal.

(c) Can you define a function

decideEqReal : Real -> Real -> Bool

which decides whether two of your constructive reals are equal? Why or
why not?

8 Meaning explanations

25. Complete the semantics of System T in the file Semantics.SystemT!

(a) First turn the postulates for substitution and instantation into proper defini-
tions!

(b) Define an inductive family of derivable judgments for System T! There
should be one constructor for each inference rule.

(c) Prove that these rules are valid in the model defined in the file Semantics.SystemT.

9 Records

26. Prove in Agda that any set with propositional identity is a setoid, by instantiating
the record Setoid.

(a) Write more axioms for the record of finite subsets? Can you find a ”com-
plete” set of axioms for the operations in question?

(b) Add more operators for finite subsets, and axiomatize them? Cf Java Col-
lections interface.

27. (a) Define an Agda record FinMap for finite maps, similar to the finite sets
we defined in the lecture. Define some important operations on finite maps,
and also add some axioms for these operations!

(b) Implement your record by some simple data structure!

