for negative connectives

- Interpreted as right adjoint functions
 - \(*I \) := \(b \)
 - \(*E \) := \(e \)
 - \(*\Rightarrow \) := \(\beta \)
 - \(*\Leftarrow \) := identity expansion

Bob Harper, Day 4

Proof-relevant equality

\[\text{EQ} : \text{Nat} \rightarrow \text{Nat} \rightarrow \text{U} \]

- spec: \(\text{EQ} \) \(m \rightarrow n \equiv \lambda (n) \) \(\text{diff} \)
- informal: \(\text{EQ} \) \(m \rightarrow n \equiv 0 \) \(\text{nil} \) \(\text{inhabited} \)
- EQ is inhabited when \(m \) is \(n \).

Question: Given \(f : \text{Nat} \rightarrow \text{Nat} \) is it the case that for \(M, N : \text{Nat} \)

- \(f \) is mathematical function
- \(\text{EQ} \) \((M, N) \rightarrow \text{EQ} (f M, f N) \)?

- **Yes** \(x, y : \text{Nat} \rightarrow \text{U} \)

\[\text{EQ} (x, y) \rightarrow \text{EQ} (f x, f y) \]

Proof: double induction on \(x, y \).
Adjunctions

Antiparallel functors F and G form an adjunction ("$F \rightleftharpoons G$") if for any $A : C, B : D$ there is a natural bijection of hom sets:

$$\text{bijection } \Phi \left(\frac{C(A \rightarrow G(B))}{D(F(A) \rightarrow B)} \right).$$

- naturality
 $$\begin{array}{ccc}
 C : A & \xrightarrow{a} & A & \xrightarrow{f \circ b} & G(B) & \xrightarrow{G(b)} & G(B') \\
 D : F(A') & \xrightarrow{F(a)} & F(A) & \xrightarrow{f} & B & \xrightarrow{b} & B'
 \end{array}$$

$F : C \rightarrow D$ and $G : D \rightarrow C$ form $F \rightleftharpoons G$ if

Universal property of unit:

\[\exists \eta : \text{id}(C) \rightarrow F : G \]

\[\forall f : C(A \rightarrow G(B)) \]

\[\exists ! g : D(F(A) \rightarrow B) \]

\[g(\eta_A \cdot G(g)) = f \]

Universal property of counit:

\[\exists \varepsilon : G \cdot F \rightarrow \text{id}(D) \]

\[\forall g : D(F(A) \rightarrow B) \]

\[\exists ! f : C(A \rightarrow G(B)) \]

\[F(f) \cdot \varepsilon(B) = g \]

Local soundness from this property:
Case $x = \text{zero} = y$:

\[
\text{if } x \neq y \text{ then refl (f zero)}.
\]

\[
\text{EQ}_\text{Nat}(\text{zero}, \text{zero}) = T \iff \text{aka unit aka } 1
\]

Case $x = \text{zero}, y = \text{suc}(-)$:

\[
\text{EQ}_\text{Nat}(\text{zero, succ } -) = 0 \iff \text{aka void aka } \bot
\]

\[
\text{if } x < 0 \text{ then abort (s) } \iff \text{abort is the only term that is } \bot
\]

Case $x = \text{suc}(-), y = \text{zero}$:

\[
\text{EQ}_\text{Nat}(\text{suc }, \text{zero}) = 0
\]

\[
\text{if } x > 0 \text{ then abort (s) }
\]

\[
x \text{ = suc } (x'), y \text{ = suc } (y')\iff \text{EQ}_\text{Nat}(\text{suc } (x'), \text{ suc } (y')) = \text{EQ}_\text{Nat}(x, y)
\]

IH:

TS:

Suppose $f : N \rightarrow N$

\[
p : \text{EQ}_\text{Nat}(x, y) = \text{EQ}_\text{Nat}(x', y')
\]

\[
\text{Take } f \text{ in } \text{IH} \text{ to be } f \circ \text{suc}
\]

\[
\Rightarrow \text{IH } (f \circ \text{suc})(p) : \text{EQ}_\text{Nat}((f \circ \text{suc})(x'), (f \circ \text{suc})(y'))
\]

\[
\text{TS} : \text{EQ}_\text{Nat}(f x, f y)
\]

\[
\text{This depends on the code whether your code really gives you type equality.}
\]

\[
\text{EQ}_A = \exists x, y. f
\]

\[
\text{EQ}_B = \exists x, y. g
\]

\[
\text{EQ}_{A \times B} = \text{EQ}_A \times \text{EQ}_B = \exists x, y. \text{EQ}_A (f x, f y) \times \text{EQ}_B (g x, g y)
\]

\[
\text{functions are eq if they yield eq values for eq arg } 0
\]

\[
\text{For } x, y \text{ from } A \text{ that are equal}
\]

\[
\text{EQ}_{\text{Nat}:A \rightarrow B} = \text{EQ}_A \rightarrow \text{EQ}_B
\]

\[
\text{Question: } A : U, x : A \text{ if } \text{eq}_A (x)
\]

Is this type inhabitable for $A : U$?

Consider $A = \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat}$
IS: $F : (Nat \rightarrow Nat) \rightarrow Nat \vdash EQ_F(F, F)$

Expand def of $EQ_F(A, B)$:

\[\forall f, g : Nat \rightarrow Nat \quad EQ_{Nat}(f, g) \rightarrow EQ_{Nat}(f \circ f, g \circ g) \]

\[\forall f, g, x, y : Nat \quad EQ_{Nat}(f, g) \rightarrow EQ_{Nat}(f(x, y), g(x, y)) \]

This term is not reducible, since the functions are variables, you don't know anything about them.

Church's Law:

(Scientific law?)

Every programming language you can write λ-is eventually like the λ-calculus or Turing machines (at least for natural numbers).

Q: Example for "unreasonable" element

\[A : \]

\[\exists x : \text{Gold number?} \]

"Turing machine code"
Alternative points of view:

1. Functions are extensional
 \[F : (N \to N) \to N. \]
 \[F : N \to N, \text{ EQ}_{N \to N}(f, [F(f)]) \]
 (Church's Law does not hold!)

 consistent with classical math

2. Functions are not extensional
 \[F : N \to N, \text{ EQ}_{N \to N}(f, [F(f)]) \]
 (Church's Law holds!)

 inconsistent with classical math

Problem with Setoids: You have to provide equality for \(M \).

You could do that wrong.

What is equality?

"That which everything respects"

Leibniz Principle: two things are equal if you cannot tell them apart no matter what you do to them.

IDENTIFICATION TYPE

Equality is no longer a property of two elements, but two elements are connected by an identity relation.

\[\Gamma \vdash A : \text{Type} \]
\[\Gamma \vdash M : A \quad \Gamma \vdash N : A \]
\[\Gamma \vdash \text{Id}_A(M, N) : \text{Type} \]

Type theory does not know that EQ is equality, i.e. EQ exists outside of type theory, you have to simulate it.

\[\Gamma \vdash \text{Id}_A(M, N) : \text{Type} \]

Formation rule?

(Induction rule for the type \(\text{Id} \))

Notation: \[M \equiv_A N \text{ type?} \]

Terms

\[\text{refl}_A(x) \]

Witness of identification from \(a \) to \(b \):

\[a : \text{Id}_A(a, b) \]
If this rule was the only introduction rule, refl_A is the least reflexive relation.

Elimination

$$
\Gamma, x : A \vdash \text{refl}_A(x) \quad \text{proof of equality}
$$

If C is a reflexive relation and α the least reflexive relation (which it is if I from above is the only intro rule), then I can just map out of C:

Rule says: "If we can construct a proof α using refl_A, we can use Γ for the identity proof."

$$
\Gamma, x : A, y : A, z : \text{Id}_A(x, y) \vdash \lambda [x, y, z]. C(x, y, z). \quad \text{(conclusion of (E))}
$$

Special case "transport"

$$
x : A \vdash C_x : M
$$

$$
\Gamma, \alpha : \text{Id}_A(M, N) \vdash \lambda x. [x. C(x) : [M/x] C \Rightarrow [N/x] C].
$$

"logically equal" but logical equivalence is relatively weak.