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Abstract

Main Goal: One goal of these two lectures is to explain how important ideas and problems
from computer science and mathematics can be expressed well in constructive type theory and
how proof assistants for type theory help us solve them. Another goal is to note examples of
abstract mathematical ideas currently not expressed well enough in type theory. The two lec-
tures will address the following three specific questions related to this goal.

Three Questions: One, what are the most important foundational ideas in computer science
and mathematics that are expressed well in constructive type theory, and what concepts are
more difficult to express? Two, how can proof assistants for type theory have a large impact
on research and education, specifically in computer science, mathematics, and beyond? Three,
what key ideas from type theory are students missing if they know only one of the modern type
theories? The lectures are intended to complement the hands-on Nuprl tutorials by Dr. Mark
Bickford that will introduce new topics as well as address these questions. The lectures refer
to recent educational material posted on the PRL project web page, www.nuprl.org, especially
the on-line article Logical Investigations, July 2014 on the front page of the web cite.

Background: Decades of experience using proof assistants for constructive type theories, such
as Agda, Coq, and Nuprl, have brought type theory ever deeper into computer science research
and education. New type theories implemented by proof assistants are being developed. More-
over, mathematicians are showing interest in enriching these theories to make them a more
suitable foundation for mathematics. The scope of type theory includes providing a formal
semantics for programming languages and expanding their capabilities. It includes specifying,
defining, and building the next generation of compilers, operating systems, software defined
networks, distributed systems and other critical software systems. It applies to specifying com-
putational problems well and finding algorithms and systems that provably solve them. The
scope includes establishing computational complexity bounds on problems and solutions. Type
theory is also valuable in providing a precise semantics for natural languages and in understand-
ing the limits and hazards of deep learning, and more generally in exploring epistemology in the
Age of Artificial Intelligence.

Elements of constructive type theories are now taught to computer science undergraduates
because of their relevance to the goals just mentioned. Moreover, proof assistants for these
theories liberate students to confidently explore open problems. It is likely that teaching these
new tools for thought will spread into the secondary school system in due course. It might have
already happened in the most advanced secondary schools.
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Topics: The first lecture will explain why the same core ideas appear in all of the major imple-
mented constructive type theories. These ideas have also been widely studied by the semantics
community.1 There is one major difference in the order of presentation of the core ideas, even
between Coq and Nuprl, despite their strong core commonality and their nearly thirty years of
co-evolution. That difference is fundamental and goes back to Curry versus Church as well as
Gödel and Herbrand versus Kleene. We now understand that it is much more fundamental than
it seemed in the 20th century, as will be explained in the first lecture. The second lecture will
explore ideas that are not present in Coq, yet heavily used in Nuprl.

New Results: Both lectures will touch briefly on foundational issues such as the relationship
between set theory and type theory and the ability of each kind of theory to express abstractions
from mathematics – past, present, and future. We will mention results from recursive function
theory that illuminate the value of universal versus subrecursive type theories. We will also
present briefly a new evidence semantics for classical logic using constructive type theory as an
illustration of a fundamental problem and ways to attack it using type theory.

Constructive type theory and higher-order logics have played a noteworthy role in mathematics
as well, both in mechanically confirming the solution of important problems such as the Four
Color Theorem and Odd Order Theorem (Feit-Thompson Theorem) and in settling the Kepler
Conjecture. More examples, large and small, will come from continuing use of proof assistants
in mathematics. Also the clean embedding of constructive set theory into these type theories
makes another strong connection to mathematics. The Field’s Medalist Vladimir Voevodsky
has been using proof assistants for type theory in his mathematics. The role he advocates is
important both in the publication and validation process and in enriching the foundational base
for mathematics. Other mathematicians have also agreed with Nicolas G. de Bruijn who called
for the use of proof assistants to check and confirm the results of mathematics. These math-
ematicians believe that too many important results are now beyond the ability of referees to
confirm them in a timely and cost effective way.

Voevodsky has initiated a research program to understand how to classify the various impor-
tant varieties of modern type theories (using his C-systems). His track record suggests that
this line of research will be important in mathematics as well as in computer science. However,
the preferred foundation among mathematicians remains set theory. We will briefly discuss the
relationship between type theory and set theory as seen from CTT and also consider the long
and productive tradition of referencing Platonic reality to understand mathematical truth. This
tradition may not be as strong in computer science because proof assistants do not yet and may
never enjoy access to this reality. It is not clear that they ever will acquire it first hand, but we
might teach them to consider it in explaining their results to us.

1 Lecture Outlines and Key Topics

Type theories implemented by the Agda, Coq and Nuprl proof assistants co-evolved over the past
30 years. We can learn a great deal from that evolution. We can even try to predict the “shape of
theories to come.” It is already predictable is that both CIC and CTT will continue to evolve and
new type theories will appear implemented by new proof assistants. We already see this from Idris
[24] and F* [146], and their role in education and research will continue to expand.

1We distinguish between Theory A, Algorithms and theory and Theory B, Formal Models and Semantics, following
the classification in the titles of the two volumes of the Handbook of Theoretical Computer Science [159, 160].
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There is also a strong tie between type theory and Higher-Order Logic (HOL) which is a version
of Church’s Simple Theory of Types (STT40) [33, 60]. It is the oldest of the implemented type
theories [76, 127, 84]. Both CIC and CTT are constructive theories, HOL is a classical theory, but
its core has a constructive semantics in IZF set theory [37].2

1.1 Common starting point

Below are brief outlines of the two lectures mentioned in the title. We have an excellent opportunity
at this summer school to approach type theory with considerable common knowledge about a
particular such theory, the Calculus of Inductive Constructions (CIC15) implemented by the Coq
proof assistant. Our goal is to build on this common knowledge to discuss a broad view of type
theory and examine some elements of Constructive Type Theory (CTT15), whose semantics is
formalized in Coq’s CIC15. CTT15 is implemented by the Nuprl distributed proof assistant. It
evolved gradually over thirty one years from the CTT implemented in 1984, CTT84.

Let us consider four key features of CIC15 and refresh our common understanding about them
and relate them to how CTT15 formalizes them.

• The CIC15 theory contains a programming language implemented by the proof assistant, call
it CoqPL. Its functional programs are typed, they are total on their types, type checking is
decidable (as in programming languages). Equality of programs is decidable. Such a logic is
called intensional. Typically programming languages implement partial functions. Therefore
type checking for programming carries less information than it does for CoqPL.

• The CIC types include a common core of the dependent logical types presented in a parsi-
monious way. Namely there are the function space types and then all other logical types
are defined inductively. These types provide higher order logic. This theory is very close to
Gödel’s system T [70] implemented by Takasu in 1978 [149]. The proof of termination is based
on a fundamental method due to Tait [147] and extended by Girard in 1971 [68, 69]. The
fundamental idea behind this definition of the logical operators is called by several names,
propositions-as-types principle, the Curry-Howard isomorphism [51, 92, 55, 144] are common
in computer science along with the related notion of proofs as programs. The idea has a
long history in logic [144] and goes by other names as well. It is closely related to Kleene’s
concept of recursive realizability [100], and to what is known in logic as the Brouwer-Heyting-
Kolmogorov (BHK) semantics for constructive logic [151, 152, 153] which was extended by
Veldman [162] and is sometimes called BHKV semantics [35]. This is a deep idea that is being
steadily enriched as it gradually works its way into both computer science, mathematics, and
philosophy.

• The Agda, Coq, and Nuprl proof assistants can extract (functional) programs of depen-
dent type x : A → B(x) from constructive proofs of propositions of the form ∀x : A.∃y :
B(x).R(x, y). This notion goes back to the ideas of Kleene on recursive realizability [100] based
on his understanding of Brouwer’s notion of a mental construction. I presented Kleene’s idea

2In 1985 HOL implemented a theory close Church’s Simple Type Theory, say STT85. In 1984 Nuprl implemented
a theory we call Constructive Type Theory, say CTT84 [44], based on the semantics of partial equivalence relations
[6, 7, 83]. In 1988 Coq implemented a Calculus of Constructions [47]. Later, this theory changed substantially to
become the Calculus of Inductive Constructions [18].
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in the context of programming languages, suggesting in 1971 [38] that we could implement
constructive logics as programming languages. This led to the slogan proofs-as-program or
programs-as-proofs which Joe Bates and I realized in the early 1980’s [16].

• Whether two objects of a type are equal depends on the type. Equality in function types,
such as A → B, is based on syntactic (intensional) equality of the expressions denoting the
type.

We believe that the propositions-as-types idea will change the way we specify programs and
the way we teach programming, even in the first year and eventually even in secondary schools.
It should also change the way we teach logic. That might take longer. The recommended reading
for this lecture is the short article Näıve Computational Type Theory [41]. Also the Scholarpedia
article Computational Type Theory treats some of the same issues. It has enjoyed many visits.

My charge from the organizers is to bring some historical perspective to the subject and to
discuss a few key ideas that I think are promising for the future development of programming
languages and type theory. So these lectures will have a blend of specific results and connections
to what I see as the big picture for the area.
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Lecture One: Basic Concepts in Constructive Type Theory (CTT)

1. The core logical types
- dependent function, dependent product 3

- options (or) A + B
- atomic types: equality s =T t, Void
- universes Ui

- CTT vs CIC on the core - extensional vs intensional type theory

2. History and understanding the core
- From Brouwer’s intuitionism to Kleene’s realizability
- From Bishop’s sets to partial equivalence relations
- Brouwer/Heyting/Kolmogorov (BHK) semantics
- Propositions-as-types aka Curry-Howard Isomorphism

3. Beyond the core
- quotient types A//x, y : E
- set types {x : A| B(x)}
- intersection types and uniformity,

⋂
x:AB(x)

- subtyping v
- dependent intersection and dependent records
- uniform validity and constructive completeness of iFOL
- ¬¬(P ∨ ¬P ) (Brouwer’s proof), CTT proof
- Kolmogorov’s insight, ¬¬P ⇒ P

4. Propositions and Types (two way street)
- long evolution, many lessons
- written material (see www.nuprl.org) OPLSS15
- subtyping, intersection, uniformity
- uniform validity

5. Understanding classical logic
- Kolmogorov continued ¬¬P ⇒ P
- set type and virtual evidence {Unit|P}
- Classical Intro rule ¬¬P ⇒ {P}
- virtual evidence and classical logic

6. Computational aspects of CTT (from Dr. Bickford’s lectures)
- Terms and the type Base
- computation rules
- equality, extensional equality of functions

3There is a tradition in the Coq and Agda line, going back at least to Martin-Löf, to call the dependent product
a sigma type, Σ. We have preferred to note Decartes and his Cartesian product.
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Lecture Two: Foundational matters

1. Partial types
- CTT84 was designed for computer science
- types Ā
- expressing the halting problem on N̄

2. Subrecursive languages
- CIC vs CTT as a programming language
- subrecursive languages, primitive recursion
- puzzle about subrecursive languages

3. Blum Size Theorem
- why subrecursive programs are longer than partial recursive ones
- sketching a proof of Blum’s theorem

4. Partial types and Universality
- Turing completeness
- Kleene’s partial recursive functions
- Base: a basis for recursive function theory
- Rice’s theorem as an example
- Semantics for Hoare Logic

5. Abstraction in CTT versus ZFC
- why mathematicians like sets
- Tarski-Grothendieck set theory (Mizar)
- expressing sets in CTT
- other mathematical primitives: points, line, geometry

6. Conclusion and Discussion
- revisiting our three questions
- prospects for the next decade

2 Lecture One

We will take advantage of the fact that Agda, Coq, and Nuprl all express the core logical types
in essentially the same way, as types in a rich programming language. Coq and Agda start with
a typed programming language, while Nuprl starts with an untyped programming language in the
manner of Lisp and uses that to define the type system.

The constructive semantics for logical types can also be given using Brouwer’s notion of mental
constructions. That path follows the history of the idea. Already by 1907 Brouwer began to think
of proofs as a mental constructions, so some accounts of the semantics of the core logical types

5



speak about proofs. This is a conceptually more difficult path now that programming languages
are so widely known and used. Formal logical systems are a less common and more complex idea.
They require that we explain proofs and explicit proof rules first and then computation.

The terminology we prefer when discussing the Nuprl implementation of these ideas is that we
explain the semantics of propositional logic in terms of ways of effectively transforming evidence
for how we know a proposition, say A, into evidence for knowing other propositions.

A topic that is less widely discussed is that in the constructive account of logic in terms of types,
it is important to know that we are talking about a sensible proposition or a sensible notion of
evidence for a proposition. Frege [65] made us aware of this obligation. In Agda and Coq, knowing
that a proposition is sensible is done by the type checker. Nuprl takes quite a different approach
to ensuring that an expression is sensible. Our design idea is that we simultaneously establish
that a proposition or type makes sense during our efforts to construct evidence for it. In Coq and
Agda, this is a syntactic first step, handled by a type checker. We note that in mathematics, it is
sometimes necessary to invoke proofs even to know that a symbolic expression is meaningful.

In the early days of designing Nuprl, we were strongly influenced by Bishop [20, 21] and construc-
tive mathematical practice. It seemed to us that various mathematical notations and propositions
were too complex to be checked by a type checker. So we followed Martin-Löf’s early idea [113] that
it was necessary to prove that a expression was a legitimate type expression. He subsequently aban-
doned this idea in the current theory implemented by Agda and Coq [114]. Nuprl introduced the
added feature that it is possible to prove that a proposition is sensible simultaneously with providing
evidence for knowing it. We left open the option of proving sensibility first.

2.1 The core logical types and the nature of evidence

The material presented in this subsection is also covered in an expository article written with
Anne Trostle and posted on the PRL web cite (www.nuprl.org) front page. It can be accessed at:
http://www.nuprl.org/MathLibrary/LogicalInvestigations/index.html

We discuss the function type first, A ⇒ B where A and B are types. This is the type of
computable functions from A to B, and the canonical elements are taken to be lambda terms
λ(x.b(x)), using abstract syntax in the style of McCarthy [116] to write the lambda terms. Based
on the standard computation rules for the lambda calculus, it is easy to see that these functions are
computable. This point was stressed by Church who proposed his famous Thesis that all effectively
computable functions can be expressed as lambda terms. That is certainly a far better notation
than Turing machines for presenting a high-level programming language. It took many years for
this simple point to be widely appreciated. John McCarthy saw it very early [115, 117].4

The function type and implication illustrate well the basic ideas connecting constructive type
theory to logic. We elaborate by looking at the standard first-order propositions. This section is
covered on the PRL group web page in a July 2014 posting by Anne Trostle and me entitled Logical
Investigations, mentioned earlier.

4Gödel believed that the Turing machine was perhaps the only absolute concept in all of logic and that it was the
superior formalism for expressing computable functions. In 1937 Turing showed how to compile λ terms into Turing
Machines [156].
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Implication as a function type The function type explains the constructive interpretation of
implication. This interpretation does not refer to truth or Boolean expressions. It is based on
Brouwer’s understanding of implication as a computational method of converting any mental con-
struction a by which we know A, into a mental construction b(a) by which we know B. The lambda
term λ(x.b(x)) expresses this method computationally, and it serves as a mental construction by
which we know A implies B.

It is also necessary to know that A⇒ B is constructively meaningful. This depends on knowing
that both A and B are constructively meaningful propositions. Implication is sensible as a type
because we can grasp the idea of a mental operation that transforms objects of type A into objects
of type B. To grasp this idea we need to understand the notion of a function as an operation or
mental construction. For Nuprl, this idea comes first and is part of the computation system or
programming language of the type theory. We know this concept operationally. It is developed
using the basic concepts of the untyped lambda calculus or equivalently the combinators. This
calculus is a way of making precise the idea of a mental construction. It is perhaps not essential
for humans that we write down these constructions symbolically because we can be taught how to
perform them mentally. But to get help from machines in performing them, we must encode them
symbolically.

The typical Nuprl proof rule for implication ties all these notions together. It uses the style
of refinement logic advocated by Joseph Bates in his PhD thesis [15] and supported by the LCF
tactic mechanism [77]. Here is the way that rule is presented in this style.

For each rule we provide a name that is the outermost operator of a proof expression with
slots to be filled in as the refinement style proof is developed. The proofs are organized as a tree
generated in two passes. The first pass is top down, driven by the user creating terms with slots
to be filled in on the algorithmic bottom up pass once the downward pass is complete. Here is a
simple proof of the intuitionistic tautology A⇒ (B ⇒ A).

H,A,B : Prop1 ` A⇒ (B ⇒ A) by λ(x.slot1(x))

H,A,B : Prop1, x : A ` (B ⇒ A) by slot1(x)

In the next step, slot1(x) is replaced at the leaf of the tree by λ(y.slot2(x, y)) to give:

H,A,B : Prop1 ` A⇒ (B ⇒ A) by λ(x.slot1(x))

H,A,B : Prop1, x : A ` (B ⇒ A) by λ(y.slot2(x, y)) for slot1(x)

H,A,B : Prop1, x : A, y : B ` A by slot2(x, y)

When the proof is complete, we see the slots filled in at each inference step as in:

H,A,B : Prop1 ` A⇒ (B ⇒ A) by λ(x.λ(y.x))

H,A,B : Prop1, x : A ` (B ⇒ A) by λ(y.x)

H,A,B : Prop1, x : A, y : B ` A by x

In this example we don’t discuss the reasoning about A and B as propositions. Instead we use
the simple abbreviation Prop1 to denote the universe U1. The Nuprl type theory follows Martin-
Lóf’s idea of using large types called universes to formulate a predicative and cumulative hierarchy
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of large types, U1,U2, ...,Ui, .... This is a simplified version of Russell’s notion of a hierarchy of
types. Agda follows the same idea whereas Coq also introduces a notion of impredicative type,
denoted Prop.

We will not discuss this topic here except to note that our use of Prop1 above is not the same
as the use of Prop in Coq. Typically constructive theories avoid impredicative objects. In Coq,
the impredicative universe is a means of expressing certain non-constructive notions.

Typically sequent style proof rules are presented in pairs. First comes the rule for introducing
the constructor of evidence, called introduction rules or right hand side rules. Then comes the rule
for showing how to use the evidence when it is assumed among the hypotheses. These are called
elimination rules or de-construction rules or left hand side rules.

The rule for using an implication, say f : A ⇒ B is to find a value of type A, thought of as
evidence for the proposition A, and then apply f to it to get an element f(a) for B. The style
of this elimination rule is delicate because we need a name for the evidence in B, but all of the
names in the list of hypotheses are simply variables, and this name is naturally of the form f(a).
Indeed, we can’t find this name f(a) until we have completed the proof of A, and that might be a
substantial part of the proof, a part we are not yet sure about. On the other hand, we would like
to explore how to use the fact that we think we can get evidence for B. So the natural form of the
rule is to that assume evidence v for B is available, say v : B. Later, when we have proved A, we
can substitute f(a) for v in the evidence assembled for the original goal. So the format of this rule
in a refinement logic is this.

H,A,B : Prop1, f : A⇒ B,H ′ ` G by apseq(f ; ...; v.g(v))
H,A,B : Prop1, f : A⇒ B, v : B,H ′ ` G by g(ap(f ; ...))
H,A,B : Prop1, f : A⇒ B,H ′ ` A by a

In this form, the variable v is not used in the extract and is present only to indicate where
the application of the function named by f is to be applied. The operator ap(f ; a) is simply the
application of the function f to a normally written as f(a). The operator apseq(f ; ...; v.g(v)) is
only used when a is yet to be determined.

Conjunction as a Cartesian product type For Brouwer, to know a conjunction of proposi-
tions, A&B, is to experience mental constructions a for A and b for B. We assemble them into an
ordered pair pair{a; b}. This pair is a single general construction that is necessary and sufficient
evidence for knowing A&B.

A refinement proof rule codifies this evidence as part of a goal directed method for seeking it
and for simultaneously confirming that the conjunction is a sensible proposition. This evidence can
be structured using a proof rule in the refinement style.
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And Construction

H,A,B : Prop1 ` A&B by pair(slota; slotb)
H,A,B : Prop1 ` A by slota
H,A,B : Prop1 ` B by slotb

We use the terms slota, slotb to indicate parts of the proof to be filled in as the subgoals are
proved. They are just place holders for the proof construction.

In Coq and Agda, the same general ideas are presented in a slightly different manner, and the
Cartesian product is considered to be a special case of a dependent sum, called a Σ type. Confirming
that the conjunction is well-formed, i.e. assembled from propositions or types, is done by the type
checker.

With every construction rule of the logic, there is a corresponding rule for showing how to use
the construction when it is available among the hypotheses. Here is the deconstruction rule for &.

And Decomposition

H,A,B : Prop1, x : A&B,H ′ ` G by spread(x; l, r.slotg(l, r)) new l, r

H,A,B : Prop1, l : A, r : B,H ′ ` G by slotg(l, r)

The spread operator is the Nuprl expression for decomposing a pair into its left and right
components. The term slotg(l, r) simply indicates that the evidence for the goal G can use an
expression that references evidence for A and B obtained by decomposing the hypothesis x : A&B.

Disjunction as disjoint union If we know that A and B are constructively sensible propositions,
then one way to know their disjunction, A or B is to have been able to construct or be given evidence
a for A and to know that it is evidence for A by tagging it as inl(a), indicating that it is evidence
for the left disjunct. The tag inl signals that this evidence is for the A disjunct. The only other
way to know this disjunct is to construct or be given evidence b for the right disjunct B, tagged as
inr(b).

Brouwer noted that in many cases mathematicians are willing to accept weaker evidence for
disjunctions by claiming that for any sensible proposition A, it will either eventually be the case
that A is seen to be true or A will be seen to be false. To say it’s false is to say that its negation,
¬A is true or that if A is ever shown to be true, then we will know False. This general belief is
called the law of excluded middle, a principle accepted in Aristotle’s writings on logic. Brouwer
argued that this is a misguided belief which leads people to think that they know propositions for
which there is no evidence whatsoever, such as the belief that every well understood mathematical
proposition can be decided one way or another. At any given time, there are many well understood
propositions for which no one has found evidence one way or another. Any long standing open
problem such as Goldbach’s conjecture is a good example.

Here is the introduction rule for disjunction. It does not allow us to prove A ∨ ¬A.
Or Construction

H,A,B : Prop1 ` A ∨B by inl(slotl)
H,A,B : Prop1 ` A by slotl
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H,A,B : Prop1 ` A ∨B by inr(slotr)
H,A,B : Prop1 ` B by slotr

Or Decomposition

H,A,B : Prop1, y : A ∨B,H ′ ` G by decide(y; l.leftslot(l); r.rightslot(r))

H,A,B : Prop1, l : A,H ′ ` G by leftslot(l)

H,A,B : Prop1, r : B,H ′ ` G by rightslot(r)

3 Historical Context

We can look at the rich history of constructive type theory at many scales. The fine scale takes
us through the amazing story of the foundations of mathematics played out in the early 20th
century. The dramatis personae include Kant, Frege, Russell, Whitehead, Poincare, Brouwer,
Hilbert, Gödel, Church, Turing, Kleene, Kolmogorov, Markov as main actors and many of their
students as significant players including Heyting, Kreisel, Scott, Friedman, and the key players in
building Agda, Coq, and Nuprl, going back to the 1980’s.

3.1 Large scale background

At a large scale the story is simple. Starting in 1907 L.E.J. Brouwer propounded an approach to
mathematics based on mental constructions rather than a Platonic reality. For Brouwer, proofs
were mental constructions of a particular sort (or type). Kleene saw that based on Church’s Thesis
he could make Brouwer’s ideas precise in terms of partial recursive functions on the most primitive
mathematical objects, natural numbers. He proposed what is called a realizability interpretation of
intuitionistic arithmetic (e.g. Heyting Arithmetic, HA)[100].

Computer scientists noticed that this was a good way to code correct programs, derive them from
proofs that computational problems are solvable, so called proofs as programs [38, 80, 16]. Bishop
[20, 21] found an elegant way to use key ideas from Brouwer’s approach to develop constructive
analysis without Church’s Thesis and without Brouwer’s Bar Induction and Continuity axioms.
Martin-Löf found a way to organize the ideas into a type theory [112, 113] adequate for constructive
analysis. The PRL group at Cornell designed a constructive type theory, CTT84, in this Martin-Löf
style but based on a partial equivalence relation semantics and extended with recursive types and
partial functions a la Kleene. They made the case that the several additions made the type theory
adequate for computer science as well as mathematics.

The PRL group designed and built a proof assistant to implement it, Nuprl [44].5 Those
students in turn have greatly advanced research in type theory. Soon after the Coq type theory
and proof assistant were designed [94, 47, 49] augmenting Girard’s type theory [69]. The style

5Most of the key students and researchers in the PRL group went on to distinguished academic careers and
produced outstanding second and third generation students who continue to work in the area.
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and method of working in these theories was explored in the book Programming in Martin-Löf ’s
Type Theory [128]. By 2004 the Coq prover [18] was based on intensional Martin-Löf type theory
[114]. This system recently won the ACM software systems award . One of the key developers was
Chetan Murthy from the PRL group, well known for his outstanding work on a constructive proof
of Higman’s Lemma [124, 125] using Friedman’s A-translation [66].

3.2 Fine scale background - logic and mathematics

Type theory was first developed by Bertrand Russell [139, 138] to provide a foundational the-
ory adequate for mathematics. It is the basis for Russell and Whitehead’s monumental Principia
Mathematica [164]. Constructive type theories are more recent, and they are important to the foun-
dations of both classical and constructive mathematics. They have also become broadly relevant
in computer science because they have been implemented by proof assistants and widely applied
to specify programming tasks and demonstrate that programs satisfy these specifications. More-
over, proof assistants provide programming languages with extremely rich dependent type systems.
There are too many good examples to cite. One of the most widely mentioned is the verification
of the back end of a C compiler, Formal certification of a compiler back-end or: programming a
compiler with a proof assistant, by Xavier Leroy [106]. This work continues, formalizing more of the
compiler, and it has been presented in detail at OPLSS in the past. In addition, proof assistants
have been used to build correct by construction protocols [140] and other software artifacts large
and small. Thus constructive type theories serve as an integrated approach to formal methods in
the manner of programming logics [1, 13].

These implementations provide rich specification languages for programming tasks. However,
because they are designed to be a foundation for mathematics, they typically provide more com-
prehensive foundational theories and a very wide scope for applications in mathematics and engi-
neering, e.g. in robotics and cyber-physical systems. Thus they are also more broadly relevant, as
in providing a basis for natural language semantics [134] and in addressing problems in the phi-
losophy of knowledge [79, 148]. All of these many roles can be integrated, and thus it seems very
plausible that constructive type theories can play a foundational role in both computer science and
mathematics.

While it might seem too simplistic to propose this dual foundational role for constructive type
theories, there is something deep in this conception, and these two lectures will try to convey it.
Simply put, the idea is that mathematics demands great generality and abstractness as well as
computation in all its diversity. Generality and abstractness may account for the success of set
theory as the “official foundation” for modern mathematics [104, 23]. Constructive type theory
also provides concreteness and precision for computation. It is undeniable that this is also a core
part of mathematics and has been for over 2,400 years.

In the past, very distinguished mathematicians such as Nicolaas G. de Bruijn [52, 53, 54],
and currently Vladimir Voevodsky [163, 131] sought to bring more abstract ideas into the core
of type theory and to provide the abstraction and generality that the discipline requires without
sacrificing the computational meaning of type theory. These lectures will make the case that this
union is feasible, necessary, and important. One consequence will be a richer theory that serves
computer science even more effectively and will be broad enough to count as a foundation for both
mathematics and computer science. A key reason that this is a likely and useful outcome is that
computer science is both one of the most mathematical of the sciences and one of the most broadly
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applicable. Indeed it has some of the qualities of a meta-science as we will see just below from the
history of type theory and its role in the birth of computer science.

3.3 Fine scale background - computer science

Computer science is a distinct scientific discipline with diverse intellectual roots and a broad research
agenda. Its first roots emerged from 20th century mathematical logic as it was developed by Frege
[65, 97, 57], Russell [139, 138, 164], Hilbert [86, 87], Brouwer [25, 26, 161, 157], Gödel [72, 61], Church
[30, 32, 31, 33, 34], Turing [156, 121], and Kleene [100, 99, 98] among others. The initial impetus
for the research that led to computer science came from the need to cope with a “foundational
crisis” in mathematics originating in the 19th century.6 Foundational issues in mathematics were
already investigated by the ancient Greeks [12, 59]. They created the axiomatic method based on
the notion of “self-evident” truths. Those ideas arose first in logic, perhaps the oldest academic
discipline [12]. The early approach to logic drew on Plato’s notion of truth in an ideal world and
his theory of forms, after 350 BCE.

Platonic reality as a basis for mathematical truth has been pondered for over two thousand
three hundred years and still motivates work in logic and the foundations of mathematics [150].
However, the traditional methods were inadequate to the task of resolving the 19th century foun-
dational questions in mathematics. Bold new ideas were required, and they led over the course of
sixty years to a new foundation for mathematics and to the intellectual foundations of computer
science – perhaps the first meta-science. We will look at these ideas retrospectively as they apply
to constructive type theory and to the task of these lectures. We will also consider the interesting
possibility that type theory enriched by both computer science and mathematics could become a
plausible new foundation for mathematics. It is already the case that proof assistants for math-
ematics have changed the way mathematicians understand their field. At the 1999 Visions in
Mathematics conference in Tel Aviv, the Fields Medalist W.T. Gowers said “Briefly, my contention
is that during the next century computers will become sufficiently good at proving theorems that
the practice of pure mathematical research will be completely revolutionized ....” [78].

Now in the 21st century, computer science has been deeply enriched by contributions from
physics, engineering, linguistics, psychology, economics, sociology, biology, and other disciplines. It
now stands as one of the newest and most dynamic sciences because of its intimate partnership
with machines in creating new modes of social interaction, new industries, a computational branch
of nearly every science and academic subject [42] and a pathway to an extremely deep and auto-
catalytic connection between human intelligence and machine intelligence [120]. We look briefly
at some of the most important ideas in the early history of how computer science was enriched by
mathematical logic. The goal is to situate elements of type theory in an historical context and to
give high level intuitions and motivations for some of the central concepts of modern type theory
and for the role of logic and type theory in the broad reach of computer science.

3.4 Unifying view

Elements of all of these influences are visible in modern type theories if one knows where to look,
as we shall see. Moreover, all three major approaches to foundational questions in mathematics

6Church in 1936 and Turing in the same year, independently solved a version of Hilbert’s second problem, the
Entscheidungsproblem, or Decision Problem.
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created versions of the same fundamental ideas expressed in different languages. We reference them
through the thoughts of leading figures for each approach. Bertrand Russell believed that typed
logic [139, 138] was the bedrock foundation for mathematics in which axioms were to be stated.
He proposed the notion of a type to express the range of significance of a proposition. The range
of significance is related to Frege’s notion of the sense of a proposition [65].

David Hilbert thought that a completely formal axiomatic system was the bedrock of mathe-
matical certainty if the axioms of a formal theory could be proved consistent using only finitistic
constructive reasoning about symbols [86, 87]. The type theories are completely formal in the very
precise sense of being implemented in a computer system. L.E.J. Brouwer believed that logic rests
on the mental constructions that we use to understand propositions and come to believe them
[25, 26]. Nowadays that sort of justification is achieved using the propositions as types principle
also called the Curry-Howard isomorphism. This is still an evolving principle, and we might find
even better names for it. The mental constructions now include computations (from the “minds of
machines”). This idea is related to Russell’s primacy of typed logics.

After visiting Brouwer, Kleene proposed a very precise formulation of Brouwer’s ideas. By 1945
he called his approach recursive realizability [100, 99]. Kleene’s approach for constructive number
theory and later for constructive analysis was based on Church’s thesis. By 1965 he had discovered
a fundamental result showing that Brouwer’s Fan Theorem is not consistent with Church’s Thesis.
Very early on, Curry [51] also noticed a connection between his combinatory calculus and Brouwer’s
notion of truth, and Howard made this connection very precise by 1968 [92] and finally published
his ideas in 1980 [92] leading to the Curry-Howard correspondence. Moreover, the great Dutch
mathematician N.G. de Bruijn learned of these ideas from Heyting and applied them to classical
classical logic in his famous Automath system [52].

Before 1970 Dana Scott had sketched a theory of constructive validity based on these ideas
[141]. By 1972 Per Martin-Löf organized the ideas into his intuitionistic type theory (ITT) [113].
Meanwhile the author had proposed in 1971 using constructive mathematics based on realizability
as a programming logic [38], and as early as 1979 J. Bates had produced a working version of these
ideas [14] that eventually became λ-PRL [16], the predecessor of the Nuprl proof assistant [44].
Now there are entire books devoted to the topic by title [55, 144].

4 Lecture 2: Foundational Matters

As we try to imagine a foundational theory for computer science, it is important to understand
the nature of that discipline as an intellectual pursuit as well as a transformative technology. One
way to gain a perspective is from the history of the discipline as we have noted above. There is
sufficient history already mentioned to appreciate that computer science has the character of a
meta-science in the sense of Hilbert (and perhaps Brouwer as well if we can rely on his private
notes). Core computing technology is about designing programming languages, software systems
and domain specific formalisms and implementing them. A great deal of mathematics has grown up
around these activities, and it has guided the implementation of a large variety of core artifacts such
as compilers, programming languages, browsers, networks, operating systems, database systems,
symbolic computing systems, proof assistants, language translators, and so forth.
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4.1 Computer science as a meta-science

Typically a formal theory is introduced in the context of an informal metatheory. In the case of
theories such as constructive type theory that are designed to be implemented, certain elements
of the theory are formalized by the programming language which implements them. It is possible
to go even further and use another implemented formal type theory as the meta-language. This
has been done for Constructive Type Theory [5] where the metalanguage is the Coq type theory
[18, 29] and the implementation is by Anand and Rahli [10]. We abbreviate this theory as CTT14;
it is implemented in Common Lisp as its mother language. Details of the implementation are on
line [11].

The idea of a meta-language was introduced by Hilbert and also by Brouwer who called such
languages second-level mathematics. The idea was developed in detail by Hilbert and his associates.

This approach to defining formal theories was adopted by Edinburgh LCF [77], and the meta
language there included the programming language ML, standing for Meta Language. This became
the basis for the highly successful family of ML programming languages including Standard ML
[122, 129], OCaml [123], and other less well known variants.

4.2 Computer science and its dynamic technologies

Many of the practical applications of proof assistants are in support of important deployed software
systems. This area of work raises new foundational and methodological questions. The abstract
mentioned examples of constructive type theory providing a formal semantics for programming
language [50], compilers [106], operating systems [143], and distributed systems [133, 140].

This kind of work is quite different from formally proving fundamental results in mathematics.
The difference arises from the fact that all of these practical applications share the property that
the languages and systems about which formal properties are established change over time and the
environments in which they operate change as well. Therefore many of the fundamental assumptions
in the specification of the artifact change over time. This means that that the verifications must be
redone and updated even though the original authors are no longer available to do the work or even
consult about it. So far there is no convincing technology to deal with this important issue. Once
it is developed, it will also be valuable in other areas of science and engineering where systems,
books, course materials and so forth must be reliably updated.

There is new work on this very important problem. It will be an integral part of maintaining
a dynamic library of formalized mathematics and science. There are interesting hints about the
depth of this problem in early work on formal digital libraries [107, 36, 8].

4.3 Presenting constructive type theory

There are many ways to approach the study of constructive type theory. Already we have seen
fit to first introduce the notion of a metatheory and then to make the case that questions about
explaining and implementing any theory belong to its metatheory. We also note that historically,
before any formal theory has been created, we have conceived an informal one that fulfills some
purpose worthy of further significant further effort.

The context stressed in these notes is that mathematicians and philosophers had created by the
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mid 1900’s a very rich and satisfactory foundational theory for mathematics, namely set theory.
Moreover, the group of French mathematicians known as Bourbaki had announced a plan to pub-
lish over a several year span a definitive encyclopedic account of modern mathematics formulated
in terms of set theory [23] to be called The Elements of Mathematics [22]. There were several
interesting features of this program, one being that the authors were a somewhat secretive collec-
tive of eminent mathematicians who tried to reach consensus on the topics they presented. One
of their aims was to demonstrate that set theory was an adequate foundation by using it to cover
every important topic. One of their decisions was not to completely formalize the theory. (Another
interesting decision was to use Hilbert’s epsilon operator as part of the underlying informal logic.)

Much later, the Mizar group [155] led by Wojciech Trybulec created the Journal of Formalized
Mathematics based on Tarski-Grothendieck set theory [154], a generalization of ZFC. Their goal was
to follow the program of N. G. de Bruijn [52, 126] and create completely formal proofs that would
be checked by a computer program before they were published in the journal. It is noteworthy
that de Bruijn’s program was based on type theory rather than set theory, with the idea that sets
were one kind of type important for mathematics, but not the only one. Moreover, de Bruijn knew
a great deal about intuitionistic mathematics, and was not only open to constructive ideas, but
the Automath language was based on the lambda calculus and embraced ideas from intuitionistic
mathematics, including the interpretation of propositions as types.

At about the same time as de Bruijn’s work, computer scientists were inspired to build pro-
gramming logics to formalize reasoning about computer programs as a way to avoid dangerous
and costly errors in deployed software. This work was inspired by the writings of C. A. R. Hoare
[89, 90, 91] and Edgar W. Dijkstra [56], John Reynolds [135], David Gries [82], Kleene [103], and
others. Among the first implemented systems were PLCV at Cornell [46, 45] and Pascal based
systems at Stanford [108] and Texas [75, 74]. The Cornell systems used constructive logic to take
advantage of the strong connection between constructive proofs and programs stressed by this au-
thor [38, 39]. In PLCV programs were essential elements of proofs, and one could view programs
as algorithmic proofs in the logic.

In the same period, both mathematicians and computer scientists were very inspired by the work
of Errett Bishop [20, 21] showing that constructive mathematics could be presented in a way that
was readable either classically or constructively. The constructive proofs were a bit more detailed
than those presented in classical textbooks, but as a compensating benefit, they carried strong
computational meaning. The Cornell computer scientists were keen on making this computational
content fully useable [109]. This goal was part of the inspiration for formulating a foundational
theory adequate for Bishop’s mathematics. The first attempt was to extend the programming logics
along the lines sketched in 1971. This effort was advanced by studying the work of Per Martin-Löf
[112] and later [113]. Building on the PhD thesis of Joseph Bates [14], we started to implement the
LambdaPRL system [16] and then by 1982 with NSF funding, Nuprl [44], operational by 1984 and
still being used.

4.4 Where to start, Language, Concepts, Categories, or Computation?

Readers expect concepts to be presented in a particular linear order, later ones depending on earlier
ones. The ordering implies that some notions are more primitive than others. But it’s often not
clear when a particular order is necessary. In the case of constructive type theory, certain key
ideas are concrete, and they must be presented in terms of a concrete syntax. In that instance, the
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syntax must come first. This is also the case with programming languages.

Other concepts are less dependent on syntax and on order of presentation and on the exact
form of rules. In this sense they are more abstract and more general. The notion of a set has
this character. It does not depend intrinsically on a specific syntax, although the theory ZFC
does depend on knowledge of first-order logic (FOL), and that entails certain syntactic details.7 A
commonly held view among mathematicians is that set theory is part of the Platonic reality behind
mathematics. A mathematician strives to grasp this reality by whatever means. Although Hilbert
held this view of reality, his method of securing mathematics depended on his idea of a formal
system that allows us to also view mathematics as a precisely defined game, like chess.

To Hilbert, the important feature of the game of mathematics is that it should be impossible to
derive a contradiction. Proving this feature of a formal system adequate for all of mathematics such
as set theory or the type theory of Principia Mathematica and doing it using extremely elementary
constructive methods (even what Hilbert called finitistic methods) is Hilbert’s route to a secure
foundation. Gödel’s incompleteness theorem showed that this goal is not achievable as initially
conceived [71]. Gentzen [67] and others suggested using stronger logical methods in the metatheory
as a way to further investigation of Hilbert’s program. The appeal of using constructive methods
for this task was strong because they seemed safer and appropriate for the task as Herbrand also
demonstrated [73].

Computational versus abstract approaches Constructive type theory is built on computa-
tion and can be explained in computational terms. That explanation requires a specific syntax
and careful rules for transforming one expression into another. If we start with the computational
aspect of type theory, then we are immediately in the realm of computer science and programming
languages. That is how we will eventually present certain the details.

For many subjects in mathematics and computer science, it is possible to be more abstract
and avoid computation. We can draw pictures for geometry and topology. Indeed, one geometric
definition of π is the ratio of the circumference of a circle to its diameter, and it does not refer at
all to computation.8 On the other hand, we are nowadays fascinated by the fact that pi is also a
constructive real number, and we can compute it to arbitrary decimal precision. It has been done
to many millions of digits! But its definition is something we can imagine in Plato’s ideal world.

We discover in this Platonic world other interesting abstract facts related to computation such
as the asymptotic running time of the problem of computing the lower envelope of Davenport-
Schinzel sequences, known to be on the order of the inverse Ackermann function, denoted α. So
even features related to primitive recursive function definitions show up in the Platonic world.9

The geometrically inspired insights of Grothendieck also show up naturally in type theory [145], in
the definition of universes, and in set theory, specifically Tarski-Grothendieck Set Theory [154, 145].
This set theory is formalized in the Mizar project [137]. It is a generalization of ZFC that allows
Grothendieck universes as sets. In these universes, all the subsets of a set are members.

We can study simple algebraic structures such as groups and rings using a variety of nota-

7This dependence on FOL was something that Zermelo stove to avoid, but Fraenkel’s views prevailed, and the
dependence on FOL [88] is standard in modern set theory, especially for two axioms, comprehension and replacement.
ZFC thus presupposes elements of first-order logic in the foundations of mathematics.

8Another important definition is that pi is the first positive root of the sine function.
9Ackermann’s function was used to show that there are recursive definitions that are not primitive recursive, and

his function is a simple way to majorize any primitive recursive function.
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tions. We study computational complexity within certain bounds that allow several different pre-
cise models of computation to justify the same asymptotic complexity results. Moreover, many of
the landmark results and open questions, such as does P = NP, and the possibility of feasible prob-
abilistically checkable proofs, make sense for a wide variety of computing models and formalisms.
On the other hand, when we want to formalize these results, we must pick a particular computation
system and define it in complete detail. Ideally we want to execute these algorithms as part of the
process of understanding them and explaining them, so the details matter and must be formalized
and implemented.

A good methodology for the computational foundations of type theory are the methods used by
computer scientists. One of the earliest and most relevant examples is the approach of John Mc-
Carthy and his students who defined the programming language Lisp [117, 116] based on Church’s
lambda calculus [34]. The lambda calculus is a programming notation adequate to express all com-
putable functions. On the other hand, Lisp is almost a completely untyped programming language,
and so is the untyped lambda calculus. Thus the comparison only goes part way in explaining type
theory!10 We will turn to this computational approach after we have discussed other options.

Contrast with set theory Mathematicians discovered early in the 20th century, when they
focused on building the logical foundations of their field, that the language of set theory is adequate
[166, 64, 62, 63]. Set theory does not depend on computation. That means that presentations can be
much less strict about syntax. Indeed, the foundations of set theory are not required to say anything
about computation, not even numerical computation. Computation is explicit and important only
in the meta-language of set theory. In the object theory itself, we could only find some semblance of
computation in the interpretation of the logic used to express the axioms. This logic is first-order
logic, and that is an important feature of the set-theoretic foundation. So normally only the details
of first-order logic might shed light on how computation could enter the foundations of mathematics
in its object theory. But normally this possibility is never discussed. Below is a sample introduction
to set theory. It stresses the concepts deemed most important and striking about this parsimonious
foundation.

Quote from Kenneth Kunen’s book Set Theory [104] (italics in quote are mine):

“Set theory is the foundation of mathematics. All mathematical concepts are defined in terms
of the primitive notions of set and membership. In axiomatic set theory we formulate a few simple
axioms about these primitive notions in an attempt to capture the basic obviously true set-theoretic
principles. From such axioms, all known mathematics may be derived. However, there are some
questions which the axioms fail to settle, and that failure is the subject of this book.”

The syntax for denoting sets could be quite vague since it is not necessary or even sensible to
do serious computation with sets – they were not designed for that purpose. Lists and bags could
be used to approximate sets, and they have clear computational meaning. Peter Aczel eventually
found a systematic way to embed set theory into Martin-Löf’s intuitionistic type theory [2, 3, 4]. His
approach was implemented by Hickey in Meta-PRL [85, 165]. We do not discuss that approach here.
We offer a different comparison that does not presuppose understanding the details of Martin-Löf’s

10John McCarthy was a graduate student at Princeton, and it is clear from his work that he learned the lambda
calculus in that environment and used it as a model for Lisp. On the other hand, one suspects that he was uninterested
in types, perhaps because he did not study that aspect of Church’s work. The historians might sort that out at some
point.
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intuitionistic type theory nor CTT.

Mathematicians also discovered that they could explain many of their foundational ideas using
category theory. Here too it is not necessary to carry out numerical computations, instead one
can draw arrows and chase around diagrams, more as in geometry but now even more abstractly.
It is possible to present constructive type theory in a manner closer to set theory or in a manner
closer to category theory. There are excellent textbooks and articles in this style [142, 17, 95, 96],
and the connections to type theory can be explained abstractly as well, defining the topos of sets
[105, 110]. Recent work on the connections between homotopy theory and type theory is a promising
approach to creating a more abstract account of type theory that is an adequate foundation for
both mathematics and computer science [131]. On the other hand, existing rich type theories such
as CTT can do a good job.

4.5 Starting with types – the type of sets

Given that our aim is to use type theory as a foundational theory, is there a way to use types that
is close to the abstract approach offered by set theory? The closest approximation to starting with
sets is starting with types rather than starting with a programming language and its computing
rules. We can discuss the architecture of type theory both in parallel to and in contrast with that
of set theory. In set theory, we start with the empty set φ and say that it has no elements. We
define all other sets as sets of sets. The collection of all sets cannot itself be a set without risking
paradox. So the meta-theory of set theory allows us to think of the collection of all the sets we
plan to build. But that collection is called a class not a set. The idea is that the collection of all
sets is too big to be a set itself.

Comparing types and sets In the case of type theory, if we start by forming the type of sets,
then we will face a similar size problem. Is there a type of all sets? If so, is it too big to be a
type itself? Do we need types corresponding to classes as well? In type theory there is a natural
hierarchy. Type theory includes the notion of large types just as set theory has large sets, called
classes. Large types that are closed under the type constructors are called universes.

In set theory, we start building all other sets from the empty set, denoted φ. The set whose
only element is the empty set is written as {φ}. It has precisely one element. Just below we use
the membership relation, ∈, to define this equality relation. We say φ ∈ {φ}. This membership
relation is a primitive relation of set theory along with the equality that can be defined from it.
By making equality a primitive of the theory, the rules of first-order logic with equality guarantee
that all definitions and operations respect equality.

In type theory, there is an empty type, it is denoted Void. It has no elements. We can also
form a type whose only element is Void. It requires that we mention the first universe, forming
{x : U1|x = Void in U1}. The existing universe structure modeled on Martin-Löf’s ITT [113] is not
sufficient to support modeling set theory in this way. It is not clear that an extensive enrichment of
the universe structure is worthwhile for constructive mathematics and computer science, and there
are more elementary alternatives for capturing set theory in type theory. We examine these briefly.

Defining sets in type theory We consider briefly adding to type theory the type Set. It is
important to note right at the start that there is an equality relation on every type, thus there is

18



an equality relation on Set. We want it to be the natural extensional equality. Two sets x1 and x2
are extensionally equal if and only if they have the same elements. So this definition tells us that
sets have no repeated elements in that the set {φ, φ} is equal to the set {φ}. In some textbooks the
authors say explicitly that sets do not have repeated elements. Collections that allow repetitions
are called bags.11 There is a sense that this equality relation is essential to mathematics. We call
the equality extensional because it depends on the elements of the set, i.e. the set’s extent and
not on the way the set is defined, its intensional structure. The two descriptions above are clearly
not equal, they use different symbols and one explicitly repeats an element. So the description of
the two sets is different. The description is called an intensional feature of the set. But in normal
foundational set theory, we do not take account of the description when we axiomatize the equality
relation.

Set theory must also provide operations for building sets. But “building” is a synonym for
defining sets. We can’t really build the most interesting sets, the so called infinite ones. Perhaps
the next most key axiom is the one that says there is a particular infinite set. It arises from the
process of defining a certain sequence of sets that has the following structure. We think of φ as the
set “zero”; denote it as 0. Then we form the set {φ}. We can think of this as the set {0}, and it
has precisely one element the empty set. Call this the set “one” and abbreviate it as 1.

Next form the set {φ, {φ}}. This set has exactly two elements, 0 and 1. We abbreviate this set
as 2. Now form the set {φ, {φ}, {φ, {φ}}}. It has three elements, and we abbreviate it as 3. We
see that the pattern is to build the sets, 0, {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, and so forth. We are
building representations of the natural numbers, 0,1,2,3,4,.... as sets. We can clearly keep doing
this. Set theory provides a set called ω that is this infinite set. The axiom is called appropriately
the Axiom of Infinity.

Set theory is organized to have axioms that justify specific methods for building sets. It requires
an axiom that says we can form the union of two sets. We use the union to keep extending the
sequence. This process does not stop with the infinite set ω since we can imagine extending it
by the same process, we add ω to the collection and keep going. It is tempting to say that we
are “building” these sets, but the process we have just described is not actually building anything
because we as humans nor we with our machines cannot actually carry out a process “forever”.
In type theory, we will examine what we and our computational partners can actually construct
in our minds, and we will create our mathematics around those mental constructions. Hence the
name constructive type theory.

Set theory postulates the Power Set of a set, that is the set of all subsets of the set. The power
set of ω, sometimes written 2ω or P(ω) is the set of all subsets of ω. We can form the power set of
any set. One way to define interesting subsets of a set is using the comprehension axiom scheme.
It allows sets of the form {x : S|φ(x)} where φ(x) is a first-order formula in the variable x that
defines particular elements of S. The only kind of subset we can define in the set theory ZFC is
one that can be described by a first-order formula in the language of sets. The CTT type theory
has a version of comprehension that is written in nearly the same way, namely {x : T |P (x)} where
P is a propositional function over the type T .

11Some textbooks then discuss why set theory is not based on collections that allow repetition, a more fundamental
notion. This shows that even for set theory, there are some arbitrary decisions made in its axiomatization and design.
There is basically universal agreement to use sets for mathematics and not bags, although we will see that in type
theory, bags are very critical.
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Set theoretic functions as abstractions of rules In CTT the type of integers Z is defined in
terms of computation, and the natural numbers are {z : Z | 0 ≤ z}. Let this type be abbreviated as
N. The computable functions of one argument on the natural numbers belong to the type N→ N.
Their canonical form is λ(x.b(x)) where we know that for any n in the type N, we know that b(n)
reduces in a finite number of steps to a canonical natural number m. Given a specific function f , we
can now define an abstraction of it into the set-theoretic functions on ω by defining a computable
mapping of N into ω in the obvious way, and defining the set of ordered pairs to be the injection
of pair(n, f(n)) into a single valued relation in Set.

So we can carry out computations in the type theory and inject the results into the abstract
set-theoretic model of functions.

The set theoretic definition of a function is given in terms of relations, which are sets of ordered
pairs. So the set of functions from ω to ω is the set of relations F on ω × ω such that if F (n,m)
and F (n,m′), then m = m′ in ω, and such that for every n in ω, there is a unique m in ω such
that F (n,m). It is this last clause that allows us to make a connection to computation through
the interpretation of the first-order formula ∀n : ω.∃m : ω.F (n,m). The type theory realizer for
this first-order formula is a function λ(n.f(n)). In order to provide a computational interpretation
of this function, we need to be clear about the type theoretic semantics of first order logic. We
can use virtual evidence semantics [43] to accomplish this. That semantics uses a computational
interpretation of functions, and yet it is adequate to express classical logic because some of the
evidence can be virtual. Nevertheless, virtual evidence has a computational meaning. When the
body of the function, f(n) is built from the standard type theory constructors, then the function
is computable.

4.6 Starting with computation

The primitive objects of this calculus are λ-terms. Among them are abstractions written as
λ(x.b(x)). The letter x is the binding variable of the abstraction and the subexpression b(x) is
a λ-term which might contain the letter x and is called the body of the λ-term. The syntax also
shows the scope of the binding variable x, which is exactly the term b. We say that a variable x of
a λ-term is bound if it is in the scope of a binding operator λ(x.).

The other kind of λ-term is called an application; it has the form ap(f ; a) where f and a are
λ-terms. We say that f is in the function position and a is in the argument position. In the example
λ(x.λ(y.ap(y;x))), in the subterm λ(y.ap(y;x)) the variable x is free and y is bound, by λ(y.). The
term λ(y.ap(y;x)) is not considered a value because it has a free occurrence of x. A λ-term with
no free variables is called closed. The values are the closed terms of the form λ(x.b(x)). Values are
also called canonical expressions, meaning that they cannot be reduced by the computation rules.

The applications are non-canonical terms. They can be reduced by the computation rules. The
rule for evaluating ap(f ; a) is to first evaluate the expression f . This process may not terminate,
in which case the application does not have a value. If the evaluation of f results in a value,
say λ(x.b(x)), then there are two standard choices for how the evaluation might continue, called
lazy evaluation (or call by name) or eager evaluation (or call by value). In lazy evaluation, the
expression a is not evaluated, but rather is substituted for the variable x in expression b(x).

In eager evaluation, the expression a is evaluated. This process might not result in a value, in
which case the application does not have a value. If a evaluates to a value, say val, then this is
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substituted for x in b(val), and the result is evaluated.

This evaluation process is typical for the applied lambda calculus. We can see from attempting
to evaluate the following expression, ap(λ(ap(x;x));λ(x.ap(x;x)) that the reduction rule produces
the exact same term, ap(λ(ap(x;x));λ(x.x)). This term is sometimes called Ω, and it simply
diverges under the computation rules.

It was a remarkable discovery by Church, Kleene, and Rosser that with this simple calculus of
functions and with the appropriate coding of natural numbers as λ-terms, they could define any
computable function they could imagine. Once Turing defined his Turing machines, he was able
to prove that he could compute any lambda computable function, and Kleene proved the converse.
Based on this research Church was led to conjecture his famous thesis that λ-terms could compute
any effectively computable function of the natural numbers.

KEY PAPERS [10, 9, 132, 19]

5 Types unique to CTT and their value

In this section we examine some of the types that have been added to CTT over the years and
implemented in Nuprl. We clear up some history of these types as well.

5.1 Quotient types, set types, partial types, and dependent intersection types

Right from the beginning, say in CTT84, the type theory that was implemented by Nuprl in 1984
and presented in the the 1986 book, Implementing Mathematics with the Nuprl Proof Development
System [44] included types that did not appear in other versions of constructive type theory such as
Martin-Löf’s ITT82 [113], Coq88 the Calculus of Constructions [47, 48], ALF [111], and the book
Programming in Martin-Löf ’s Type Theory [128]. The recursive types were developed in Mendler’s
thesis [118, 119] and were investigated by Coquand and Paulin-Mohring [49], and a version appeared
centrally in Coq. The set type and the quotient type came from an article in the proceedings of
a 1983 conference Topics in the Theory of Computation’83 [40]. They have not been adopted in
other type theories, but were used in the Edinburgh version of CTT84 [27, 28], the Oyster-Clam
system (which had a “pearl” in it).

Quotient Type The quotient type allows defining a new equality over a type. For example, to
define the integers modulo 5 over Z we define the equality modulo five relation, say Eq5(x, y) is
defined as ∃n : N.x−y = n×5. Then the type expression Z//x, y.Eq5(x, y) denotes the type whose
elements are integers and whose equality is the equivalence relation just defined. This is a simpler
explanation than defining the elements to be “equivalence classes modulo 5.” It is very easy to
compute over this type, and we can also inject the elements into the equivalence classes that would
be defined in the standard way over Set. This shows that the quotient type is a computational
implementation of equivalence classes.

Set Type The set type looks very much like the definition of a subset in ZFC. We write it as
{x : A|P (x)}, and its elements are those members of the type A for which we have evidence that
the predicate P holds. The important feature of the set type is that the evidence is “hidden” in the
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sense that in order to claim that an element a of the type A belongs to {x : A|P (x)}, we must prove
P (a). From the proof we can extract evidence pa that a has the required property. However, that
evidence is not stored with the type. One reason for hiding the evidence is a matter of efficiency
in presenting evidence. By hiding this evidence, we are saying that it will not be needed in further
computation. If we wanted to keep the evidence, we would use the product type, x : A × P (x)
whose elements are pairs, pair(a; p) where a belongs to A and p belongs to P (a).

Partial Types The partial types are used to capture the fundamental notion of the partial
recursive functions. Programming languages are built on this notion in the sense that a program f
which accepts inputs x of type A and computes outputs of type B (or type B(x) if we use dependent
types) is actually computing a partial function f which on a specific input a of type A produces an
output f(a) of type B(a) provided it terminates. On some inputs it might not terminate. Normal
type checkers do not attempt to establish termination; that is a non-computable task. One way
to express that f(a) might diverge is to name diverging computations and treat them as partial
objects. One convenient mode of expression is to name these diverging computations, say with the
term ⊥.12 We say that partial types have ⊥ as a member, but a member with no canonical form.
For any type A it is possible to write expression that are in this type if and only if they terminate.
Expressions with this property are said to be in the type Ā.

Intersection Types Dependent intersection types were introduced by Kopylov in 2000 as a
generalization of the intersection types studied by Reynolds [136] and Pierce [130] and used in
increasingly interesting ways thereafter [101, 102, 35]. They lead naturally to the notion of poly-
morphic logics and uniform validity [35] mentioned earlier. They can be used to give an elegant
definition of dependent records, and they led to Kopylov’s definition of objects in CTT [102].

Kopylov’s investigations established quite clearly that many types have a logical interpretation
and that the propositions-as-types correspondence is as open-ended as our imaginations. It is easy
to imagine that if type theory serves well as a foundation for computer science, it will also play a
significant role in the foundations of mathematics. We see signs of this in the efforts to formulate
a Homotopy Type Theory for mathematics.

A Formal Semantics for CTT From the beginning, the CTT type theory was based on a
semantic definition of types as partial equivalence relations as defined by Stuart F. Allen [6, 7] and
given an alternative definition by Robert Harper [83]. Allen also provided an induction principle
adequate for proving correctness of the rules for CTT and for Martin-löf type theory [113], but he
did not make it formal as was done by Dybjer in 2000 [58]. This rigorous formal semantics for CTT
combined with Howe’s fundamental work on computational equality [93] and Crary’s formalization
of partial types [50] made it possible for Anand and Rahli to give a completely formal account of
the CTT semantics as of 2014 in Coq [10] and prove the key rules formally correct.

12The typical diverging value in CTT is fix(λ(x.x)).
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