Reynolds’ Parametricity

Patricia Johann
Appalachian State University

Based on joint work with Neil Ghani, Fredrik Nordvall Forsberg, Federico Orsanigo, and Tim Revell
Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory
- generalize Reynolds’ construction to very general models

- Lecture 1: Reynolds’ theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F
Course Outline

Topic: Reynolds’ theory of parametric polymorphism for System F

Goals: - extract the fibrational essence of Reynolds’ theory
- generalize Reynolds’ construction to very general models

- Lecture 1: Reynolds’ theory of parametricity for System F
- Lecture 2: Introduction to fibrations
- Lecture 3: A bifibrational view of parametricity
- Lecture 4: Bifibrational parametric models for System F
Intuitively, parametric polymorphism captures uniform behavior of functions across all type instantiations.
Parametric Polymorphic Functions

- Intuitively, *parametric polymorphism* captures uniform behavior of functions across all type instantiations
- Distinct from *ad hoc* polymorphism (e.g., Haskell type classes)
Intuitively, **parametric polymorphism** captures uniform behavior of functions across all type instantiations.

Distinct from *ad hoc* polymorphism (e.g., Haskell type classes).

Uniformity of parametric polymorphic functions means that they
- must be given by a single algorithm that works across all types.
Parametric Polymorphic Functions

- Intuitively, *parametric polymorphism* captures uniform behavior of functions across all type instantiations
- Distinct from *ad hoc* polymorphism (e.g., Haskell type classes)
- Uniformity of parametric polymorphic functions means that they
 - must be given by a single algorithm that works across all types
 - cannot make use of any type-specific operations (e.g., +, \(\neg \))
Parametric Polymorphic Functions

- Intuitively, *parametric polymorphism* captures uniform behavior of functions across all type instantiations.
- Distinct from *ad hoc* polymorphism (e.g., Haskell type classes).
- Uniformity of parametric polymorphic functions means that they
 - must be given by a single algorithm that works across all types
 - cannot make use of any type-specific operations (e.g., +, −)
 - must map related inputs to related outputs
Syntax and Semantics

- **Syntax**: The ∀ type constructor
Syntax and Semantics

- **Syntax**: The \forall type constructor

- **Semantics**: If $f : \forall \alpha. \tau$, then f maps related values to related values (and similarly for $f : \tau_1 \rightarrow \tau_2$)
Syntax and Semantics

- **Syntax**: The \forall type constructor

- **Semantics**: If $f : \forall \alpha. \tau$, then f maps related values to related values (and similarly for $f : \tau_1 \to \tau_2$)

- This semantic “relatedness” requirement ensures that models of parametric polymorphism do not contain *ad hoc* functions
Syntax and Semantics

- **Syntax:** The ∀ type constructor
- **Semantics:** If \(f : \forall \alpha.\tau \), then \(f \) maps related values to related values (and similarly for \(f : \tau_1 \rightarrow \tau_2 \))
- This semantic “relatedness” requirement ensures that models of parametric polymorphism do not contain *ad hoc* functions
- That is, it ensures that ∀ really does mean a uniform “for all”!
Reynolds’ Programme

- Paper: Types, abstraction, and parametric polymorphism (1983)
Reynolds’ Programme

- **Paper:** Types, abstraction, and parametric polymorphism (1983)
- **Construct:** A set-theoretic model of parametric polymorphism for System F by giving, compositionally:
Reynolds’ Programme

- **Paper**: Types, abstraction, and parametric polymorphism (1983)
- **Construct**: A set-theoretic model of parametric polymorphism for System F by giving, compositionally:
 - a set interpretation for every type
Reynolds’ Programme

- **Paper:** Types, abstraction, and parametric polymorphism (1983)
- **Construct:** A set-theoretic model of parametric polymorphism for System F by giving, compositionally:
 - a set interpretation for every type
 - a relational interpretation for every type
Reynolds’ Programme

- **Paper**: Types, abstraction, and parametric polymorphism (1983)
- **Construct**: A set-theoretic model of parametric polymorphism for System F by giving, compositionally:
 - a set interpretation for every type
 - a relational interpretation for every type
 - a set interpretation for every term
Reynolds’ Programme

- **Paper**: Types, abstraction, and parametric polymorphism (1983)
- **Construct**: A set-theoretic model of parametric polymorphism for System F by giving, compositionally:
 - a set interpretation for every type
 - a relational interpretation for every type
 - a set interpretation for every term
- **Prove**: An Abstraction Theorem
Reynolds’ Programme

- **Paper**: Types, abstraction, and parametric polymorphism (1983)

- **Construct**: A set-theoretic model of parametric polymorphism for System F by giving, compositionally:
 - a set interpretation for every type
 - a relational interpretation for every type
 - a set interpretation for every term

- **Prove**: An Abstraction Theorem
 - Intuitively, if the arguments to a function are related at the relational interpretations of their types, then applying the function to them yields results that are related at the relational interpretation of the function’s return type
A Caveat and Its Correction

- However...
A Caveat and Its Correction

- However...
 ...Reynolds discovered that his own construction was flawed!
A Caveat and Its Correction

• However...
 ...Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymorphism for System F can exist in classical set theory
A Caveat and Its Correction

• However...
 ...Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymorphism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided we work in a constructive set theory
A Caveat and Its Correction

- However...

 ...Reynolds discovered that his own construction was flawed!

- Reynolds showed that no set-theoretic model of parametric polymorphism for System F can exist in classical set theory

- The next year, Andrew Pitts showed that such models do exist... provided we work in a constructive set theory

- Subsequently, a number of models of parametric polymorphism for System F have been constructed
A Caveat and Its Correction

- However...
 ...Reynolds discovered that his own construction was flawed!
- Reynolds showed that no set-theoretic model of parametric polymorphism for System F can exist in classical set theory
- The next year, Andrew Pitts showed that such models do exist...provided we work in a constructive set theory
- Subsequently, a number of models of parametric polymorphism for System F have been constructed
- We’ll see one such model, based on bifibrations
A Caveat and Its Correction

• However...
 ...Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymorphism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided we work in a constructive set theory

• Subsequently, a number of models of parametric polymorphism for System F have been constructed

• We’ll see one such model, based on bifibrations

• This model inhabits a “sweet spot” between
 – having the simplicity of functorial models, and
A Caveat and Its Correction

• However...

 ...Reynolds discovered that his own construction was flawed!

• Reynolds showed that no set-theoretic model of parametric polymorphism for System F can exist in classical set theory

• The next year, Andrew Pitts showed that such models do exist... provided we work in a constructive set theory

• Subsequently, a number of models of parametric polymorphism for System F have been constructed

• We’ll see one such model, based on bifibrations

• This model inhabits a “sweet spot” between
 – having the simplicity of functorial models, and
 – having enough structure to derive consequences of parametricity that serve as gold standard properties for “good” models
Type Contexts and Judgements

- A type context Δ is a list of type variables $\alpha_1, ..., \alpha_n$
Type Contexts and Judgements

- A type context Δ is a list of type variables $\alpha_1, ..., \alpha_n$

- A type judgement $\Delta \vdash \tau$ has
 - Δ a type context
 - τ a type
Type Contexts and Judgements

- A type context Δ is a list of type variables $\alpha_1, ..., \alpha_n$

- A type judgement $\Delta \vdash \tau$ has
 - Δ a type context
 - τ a type

- Type judgements are defined inductively:

\[
\begin{align*}
\alpha_i \in \Delta & \quad \frac{\Delta \vdash \alpha_i}{\Delta \vdash \alpha_i} \\
\Delta \vdash \tau_1 & \quad \frac{\Delta \vdash \tau_1}{\Delta \vdash \tau_2} \\
\Delta, \alpha \vdash \tau & \quad \frac{\Delta \vdash \forall \alpha. \tau}{\Delta \vdash \forall \alpha. \tau}
\end{align*}
\]
Type Contexts and Judgements

- A type context Δ is a list of type variables $\alpha_1, ..., \alpha_n$

- A type judgement $\Delta \vdash \tau$ has
 - Δ a type context
 - τ a type

- Type judgements are defined inductively:

$$
\frac{
\alpha_i \in \Delta \\
\Delta \vdash \alpha_i
}{\Delta \vdash \alpha_i}
\quad
\frac{
\Delta \vdash \tau_1 \\
\Delta \vdash \tau_2
}{\Delta \vdash \tau_1 \to \tau_2}
\quad
\frac{
\Delta, \alpha \vdash \tau
}{\Delta \vdash \forall \alpha. \tau}
$$

- We consider α-convertible types equivalent
Term Contexts and Judgements - Part I

- A term context \(\Delta \vdash \Gamma \) has
 - \(\Delta \) a type context
 - \(x_1, \ldots, x_m \) term variables
 - \(\Gamma \) of the form \(x_1 : \tau_1, \ldots, x_m : \tau_m \)
 - \(\Delta \vdash \tau_i \) for each \(i \in \{1, \ldots, m\} \)
Term Contexts and Judgements - Part I

- A term context $\Delta \vdash \Gamma$ has
 - Δ a type context
 - x_1, \ldots, x_m term variables
 - Γ of the form $x_1 : \tau_1, \ldots, x_m : \tau_m$
 - $\Delta \vdash \tau_i$ for each $i \in \{1, \ldots, m\}$

- A term judgement $\Delta; \Gamma \vdash t : \tau$ has
 - Δ a type context
 - $\Delta \vdash \Gamma$ a term context
 - $\Delta \vdash \tau$ a type judgement
 - t a term
Term judgements are defined inductively:

\[
\frac{\Delta \vdash \tau_i \quad x_i : \tau_i \in \Gamma}{\Delta; \Gamma \vdash x_i : \tau_i} \quad \frac{\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2}{\Delta; \Gamma \vdash \lambda x.t : \tau_1 \rightarrow \tau_2} \quad \frac{\Delta; \Gamma \vdash t_1 : \tau_1 \quad \Delta; \Gamma \vdash t_2 : \tau_1 \rightarrow \tau_2}{\Delta; \Gamma \vdash t_2 \ t_1 : \tau_2}
\]

\[
\frac{\Delta, \alpha; \Gamma \vdash t : \tau}{\Delta; \Gamma \vdash \lambda \alpha.\! t : \forall \alpha.\tau} \quad \frac{\Delta; \Gamma \vdash t : \forall \alpha.\tau_2 \quad \Delta \vdash \tau_1}{\Delta; \Gamma \vdash t\ \tau_1 : \tau_2[\alpha \mapsto \tau_1]}
\]
Term Contexts and Judgements - Part II

• Term judgements are defined inductively:

\[
\begin{align*}
\Delta & \vdash \tau_i \quad x_i : \tau_i \in \Gamma \\
\Delta; \Gamma & \vdash x_i : \tau_i \\
\Delta; \Gamma, x : \tau_1 & \vdash t : \tau_2 \\
\Delta; \Gamma & \vdash \lambda x.t : \tau_1 \rightarrow \tau_2 \\
\Delta; \Gamma & \vdash t_1 : \tau_1 \quad \Delta; \Gamma & \vdash t_2 : \tau_1 \rightarrow \tau_2 \\
\Delta; \Gamma & \vdash t_2 t_1 : \tau_2 \\
\Delta, \alpha; \Gamma & \vdash t : \tau \\
\Delta; \Gamma & \vdash \Lambda \alpha.t : \forall \alpha.\tau \\
\Delta; \Gamma & \vdash t : \forall \alpha.\tau_2 \quad \Delta & \vdash \tau_1 \\
\Delta; \Gamma & \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]
\end{align*}
\]

• Type abstraction requires that \(\alpha \) does not appear (free) in \(\Gamma \)
Term Contexts and Judgements - Part II

- Term judgements are defined inductively:

\[
\begin{align*}
\Delta \vdash \tau_i \quad &x_i : \tau_i \in \Gamma \\
\Delta; \Gamma \vdash x_i : \tau_i \\
\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2 \\
\Delta; \Gamma \vdash \lambda x.t : \tau_1 \rightarrow \tau_2 \\
\Delta; \Gamma \vdash t_1 : \tau_1 \\
\Delta; \Gamma \vdash t_2 : \tau_1 \rightarrow \tau_2 \\
\Delta; \Gamma \vdash t_2 \ t_1 : \tau_2 \\
\Delta, \alpha; \Gamma \vdash t : \tau \\
\Delta; \Gamma \vdash \Lambda \alpha.t : \forall \alpha.\tau \\
\Delta; \Gamma \vdash t : \forall \alpha.\tau_2 \\
\Delta; \Gamma \vdash t_1 : \tau_2[\alpha \mapsto \tau_1] \\
\Delta; \Gamma \vdash t_1 : \tau_1 \\
\Delta; \Gamma \vdash t \ t_1 : \tau_2[\alpha \mapsto \tau_1]
\end{align*}
\]

- Type abstraction requires that \(\alpha \) does not appear (free) in \(\Gamma \)

- \(\tau_2[\alpha \mapsto \tau_1] \), \(t[\alpha \mapsto \tau_1] \), and \(t[x \mapsto y] \) denote (capture-free) substitution
Conversion Rules - Part I

\[\Delta; \Gamma \vdash \lambda x. t = \lambda y. t[x \mapsto y] : \tau_1 \to \tau_2 \] \quad (\alpha_{\lambda})

\[\Delta; \Gamma \vdash \Lambda \alpha_1. t = \Lambda \alpha_2. t[\alpha_1 \mapsto \alpha_2] : \forall \alpha_1. \tau \] \quad (\alpha_{\Lambda})

\[\Delta; \Gamma \vdash (\lambda x. t) s = t[x \mapsto s] : \tau_2 \] \quad (\beta_{\lambda})

\[\Delta; \Gamma \vdash (\Lambda \alpha. t) \tau_1 = t[\alpha \mapsto \tau_1] \] \quad (\beta_{\Lambda})

\[x \notin FV(t) \]
\[\Delta; \Gamma \vdash t = \lambda x. t \, x : \tau_1 \to \tau_2 \] \quad (\eta_{\lambda})

\[\alpha \notin FTV(t) \]
\[\Delta; \Gamma \vdash t = \Lambda \alpha. t \, \alpha : \forall \alpha. \tau \] \quad (\eta_{\Lambda})

\[\Delta; \Gamma, x : \tau_1 \vdash t_1 = t_2 : \tau_2 \]
\[\Delta; \Gamma \vdash \lambda x. t_1 = \lambda x. t_2 : \tau_1 \to \tau_2 \] \quad (\xi_{\lambda})

\[\Delta, \alpha; \Gamma \vdash t_1 = t_2 : \tau \]
\[\Delta; \Gamma \vdash \Lambda \alpha. t_1 = \Lambda \alpha. t_2 : \forall \alpha. \tau \] \quad (\xi_{\Lambda})
Conversion Rules - Part II

\[
\begin{align*}
\Delta; \Gamma \vdash t_1 = t_2 : \tau_1 \rightarrow \tau_2 & \quad \Delta; \Gamma \vdash s_1 = s_2 : \tau_1 \\
\Delta; \Gamma \vdash t_1 s_1 = t_2 s_2 : \tau_2 & \\
(\text{cong}_\lambda) \\
\Delta; \Gamma \vdash t_1 = t_2 : \forall \alpha.\tau_2 & \\
\Delta; \Gamma \vdash t_1 \tau_1 = t_2 \tau_1 : \tau_2[\alpha \mapsto \tau_1] & \\
(\text{cong}_\Lambda) \\
\Delta; \Gamma \vdash t = t : \tau & \\
(\text{refl}) \\
\Delta; \Gamma \vdash s = t : \tau & \\
(\text{sym}) \\
\Delta; \Gamma \vdash t = s : \tau & \\
\Delta; \Gamma \vdash t = u : \tau & \\
(\text{trans})
\end{align*}
\]
Reynolds’ Semantics of Types - The Set Up

- Reynolds defines two “parallel” semantics for System F types $\Delta \vdash \tau$
Reynolds’ Semantics of Types - The Set Up

- Reynolds defines two “parallel” semantics for System F types $\Delta \vdash \tau$
 - an object semantics $\llbracket \Delta \vdash \tau \rrbracket_o : \text{Set}^{\mid \Delta \mid} \rightarrow \text{Set}$
Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types $\Delta \vdash \tau$
 – an object semantics $[\Delta \vdash \tau]_o : \text{Set}^{\lvert \Delta \rvert} \to \text{Set}$
 – a relational semantics $[\Delta \vdash \tau]_r : \text{Rel}^{\lvert \Delta \rvert} \to \text{Rel}$
Reynolds’ Semantics of Types - The Set Up

• Reynolds defines two “parallel” semantics for System F types $\Delta \vdash \tau$
 – an object semantics $[\Delta \vdash \tau]_o : \text{Set}^{\left| \Delta \right|} \rightarrow \text{Set}$
 – a relational semantics $[\Delta \vdash \tau]_r : \text{Rel}^{\left| \Delta \right|} \rightarrow \text{Rel}$

• Write
 – $S : \text{Set}$ if S is a set
 – $R : \text{Rel}$ if R is a relation
 – $R : \text{Rel}(X, Y)$ if R is a relation on sets X and Y (i.e., $R \subseteq X \times Y$)
Reynolds’ Semantics of Types - The Set Up

- Reynolds defines two “parallel” semantics for System F types $\Delta \vdash \tau$
 - an object semantics $[\Delta \vdash \tau]_o : \text{Set}^{|\Delta|} \rightarrow \text{Set}$
 - a relational semantics $[\Delta \vdash \tau]_r : \text{Rel}^{|\Delta|} \rightarrow \text{Rel}$

- Write
 - $S : \text{Set}$ if S is a set
 - $R : \text{Rel}$ if R is a relation
 - $R : \text{Rel}(X, Y)$ if R is a relation on sets X and Y (i.e., $R \subseteq X \times Y$)

- Let
 - \overline{X} be a $|\Delta|$-tuple of sets
 - \overline{R} be a $|\Delta|$-tuple of relations
 - $R_i : \text{Rel}(X_i, Y_i)$ for $i = 1, ..., |\Delta|$
 - $\text{Eq } X = \{(x, x) \mid x \in X\}$
Reynolds’ Semantics of Types

- Type variables: $[\Delta \vdash \alpha_i]_o X = X_i$ and $[\Delta \vdash \alpha_i]_r R = R_i$
Reynolds’ Semantics of Types

- Type variables: $\left[\Delta \vdash \alpha_i \right]_o X = X_i$ and $\left[\Delta \vdash \alpha_i \right]_r R = R_i$

- Arrow types:
 - $\left[\Delta \vdash \tau_1 \rightarrow \tau_2 \right]_o X = \left[\Delta \vdash \tau_1 \right]_o X \rightarrow \left[\Delta \vdash \tau_2 \right]_o X$
Reynolds’ Semantics of Types

- Type variables: \([\Delta \vdash \alpha_i]_\circ X = X_i\) and \([\Delta \vdash \alpha_i]_r R = R_i\)

- Arrow types:
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_\circ X = [\Delta \vdash \tau_1]_\circ X \rightarrow [\Delta \vdash \tau_2]_\circ X\)
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_r R = \{(f, g) \mid (a, b) \in [\Delta \vdash \tau_1]_r R \Rightarrow (f a, g b) \in [\Delta \vdash \tau_2]_r R\}\)
Reynolds’ Semantics of Types

- **Type variables:** \([\Delta \vdash \alpha_i]_o X = X_i\) and \([\Delta \vdash \alpha_i]_r R = R_i\)

- **Arrow types:**
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_o X = [\Delta \vdash \tau_1]_o X \rightarrow [\Delta \vdash \tau_2]_o X\)
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_r R = \{(f, g) \mid (a, b) \in [\Delta \vdash \tau_1]_r R \Rightarrow (fa, gb) \in [\Delta \vdash \tau_2]_r R\}\)

Here, \(f \in [\Delta \vdash \tau_1 \rightarrow \tau_2]_o X\) and \(g \in [\Delta \vdash \tau_1 \rightarrow \tau_2]_o Y\)
Reynolds’ Semantics of Types

• Type variables: \([\Delta \vdash \alpha_i]_o X = X_i\) and \([\Delta \vdash \alpha_i]_r R = R_i\)

• Arrow types:
 \(- [\Delta \vdash \tau_1 \to \tau_2]_o X = [\Delta \vdash \tau_1]_o X \to [\Delta \vdash \tau_2]_o X\)
 \(- [\Delta \vdash \tau_1 \to \tau_2]_r R = \{(f, g) \mid (a, b) \in [\Delta \vdash \tau_1]_r R \Rightarrow (f a, g b) \in [\Delta \vdash \tau_2]_r R\}\)

 Here, \(f \in [\Delta \vdash \tau_1 \to \tau_2]_o X\) and \(g \in [\Delta \vdash \tau_1 \to \tau_2]_o Y\)

• Forall types:
 \(- [\Delta \vdash \forall \alpha. \tau]_o X = \{f : \prod_{S: \text{Set}} [\Delta, \alpha \vdash \tau]_o (X, S) \mid \forall R' : \text{Rel}(X', Y'). (f X', f Y') \in [\Delta, \alpha \vdash \tau]_r (\text{Eq} X, R')\}\)
Reynolds’ Semantics of Types

- Type variables: \([\Delta \vdash \alpha_i]_o X = X_i \) and \([\Delta \vdash \alpha_i]_r R = R_i \)

- Arrow types:
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_o X = [\Delta \vdash \tau_1]_o X \rightarrow [\Delta \vdash \tau_2]_o X \)
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_r R = \{(f, g) \mid (a, b) \in [\Delta \vdash \tau_1]_r R \Rightarrow (f \ a, g \ b) \in [\Delta \vdash \tau_2]_r R\}\)

 Here, \(f \in [\Delta \vdash \tau_1 \rightarrow \tau_2]_o X\) and \(g \in [\Delta \vdash \tau_1 \rightarrow \tau_2]_o Y\)

- Forall types:
 - \([\Delta \vdash \forall \alpha.\tau]_o X = \{f : \prod_{S: \text{Set}} [\Delta, \alpha \vdash \tau]_o (X, S) \mid \forall R' : \text{Rel}(X', Y'). (f X', f Y') \in [\Delta, \alpha \vdash \tau]_r (\text{Eq } X, R')\}\)
 - \([\Delta \vdash \forall \alpha.\tau]_r R = \{(f, g) \mid \forall R' : \text{Rel}(X', Y'). (f X', g Y') \in [\Delta, \alpha \vdash \tau]_r (R, R')\}\)
Reynolds’ Semantics of Types

- **Type variables:** \([\Delta \vdash \alpha_i]_o X = X_i\) and \([\Delta \vdash \alpha_i]_r R = R_i\)

- **Arrow types:**
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_o X = [\Delta \vdash \tau_1]_o X \rightarrow [\Delta \vdash \tau_2]_o X\)
 - \([\Delta \vdash \tau_1 \rightarrow \tau_2]_r R = \{(f, g) \mid (a, b) \in [\Delta \vdash \tau_1]_r R \Rightarrow (f a, g b) \in [\Delta \vdash \tau_2]_r R\}\)

 Here, \(f \in [\Delta \vdash \tau_1 \rightarrow \tau_2]_o X\) and \(g \in [\Delta \vdash \tau_1 \rightarrow \tau_2]_o Y\)

- **Forall types:**
 - \([\Delta \vdash \forall \alpha.\tau]_o X = \{f : \prod_{S: \text{Set}} [\Delta, \alpha \vdash \tau]_o (X, S) \mid \forall R' : \text{Rel}(X', Y'). (f X', f Y') \in [\Delta, \alpha \vdash \tau]_r (\text{Eq} X, R')\}\)
 - \([\Delta \vdash \forall \alpha.\tau]_r R = \{(f, g) \mid \forall R' : \text{Rel}(X', Y'). (f X', g Y') \in [\Delta, \alpha \vdash \tau]_r (R, R')\}\)

 Here, \(f \in [\Delta \vdash \forall \alpha.\tau]_o X\) and \(g \in [\Delta \vdash \forall \alpha.\tau]_o Y\)
Some Observations

- By construction, relational interpretations of functions (on types and on terms) map related inputs to related outputs
Some Observations

- By construction, relational interpretations of functions (on types and on terms) map related inputs to related outputs
- If $\overline{R} : \text{Rel}(\overline{X}, \overline{Y})$ then $[\Delta \vdash \tau]_r \overline{R} : \text{Rel}([\Delta \vdash \tau]_o \overline{X}, [\Delta \vdash \tau]_o \overline{Y})$
Some Observations

- By construction, relational interpretations of functions (on types and on terms) map related inputs to related outputs.
- If $\overline{R} : \text{Rel}(\overline{X}, \overline{Y})$ then $[[\Delta \vdash \tau], \overline{R} : \text{Rel}([[\Delta \vdash \tau]_o \overline{X}, [\Delta \vdash \tau]_o \overline{Y})$.
- The two interpretations of terms get progressively more intertwined.
Some Observations

- By construction, relational interpretations of functions (on types and on terms) map related inputs to related outputs.
- If $R : \text{Rel}(X, Y)$ then $[[\Delta \vdash \tau]]_rR : \text{Rel}([[\Delta \vdash \tau]]_oX, [[\Delta \vdash \tau]]_oY)$
- The two interpretations of terms get progressively more intertwined:
 - The object and relational interpretations of type variables are independent of one another.
Some Observations

• By construction, relational interpretations of functions (on types and on terms) map related inputs to related outputs

• If $R : \text{Rel}(\overline{X}, \overline{Y})$ then $[[\Delta \vdash \tau]]_r R : \text{Rel}([[\Delta \vdash \tau]]_o \overline{X}, [[\Delta \vdash \tau]]_o \overline{Y})$

• The two interpretations of terms get progressively more intertwined:
 – The object and relational interpretations of type variables are independent of one another
 – The object interpretation of an arrow type does not depend on its relational interpretation, but the relational interpretation of an arrow type does depend on its object interpretation
Some Observations

- By construction, relational interpretations of functions (on types and on terms) map related inputs to related outputs

- If $\overline{R} : \text{Rel}(\overline{X}, \overline{Y})$ then $[[\Delta \vdash \tau]]_r \overline{R} : \text{Rel}([[\Delta \vdash \tau]]_o \overline{X}, [[\Delta \vdash \tau]]_o \overline{Y})$

- The two interpretations of terms get progressively more intertwined:
 - The object and relational interpretations of type variables are independent of one another
 - The object interpretation of an arrow type does not depend on its relational interpretation, but the relational interpretation of an arrow type does depend on its object interpretation
 - The object and relational interpretations of forall types depend crucially on one another
Some Observations

- By construction, relational interpretations of functions (on types and on terms) map related inputs to related outputs
- If \(\bar{R} : \text{Rel}(X, Y) \) then \([\Delta \vdash \tau]_r \bar{R} : \text{Rel}([\Delta \vdash \tau]_o X, [\Delta \vdash \tau]_o Y)\)
- The two interpretations of terms get progressively more intertwined:
 - The object and relational interpretations of type variables are independent of one another
 - The object interpretation of an arrow type does not depend on its relational interpretation, but the relational interpretation of an arrow type does depend on its object interpretation
 - The object and relational interpretations of forall types depend crucially on one another
- So we do not really have two semantics, but rather a single interconnected semantics!
Identity Extension Lemma

- Key for many applications of parametricity
Identity Extension Lemma

- Key for many applications of parametricity
- Intuitively, relational interpretations of types preserve equality
Identity Extension Lemma

- Key for many applications of parametricity
- Intuitively, relational interpretations of types preserve equality
- **Theorem (Identity Extension Lemma)** For all $\Delta \vdash \tau$,

\[
[[\Delta \vdash \tau]]_r (\text{Eq } X_1, \ldots, \text{Eq } X_{|\Delta|}) = \text{Eq} ([[\Delta \vdash \tau]]_o (X_1, \ldots, X_{|\Delta|}))
\]
Reynolds’ Semantics of Terms - The Set Up

- Object and relational interpretations of term contexts

\[\Gamma = x_1 : \tau_1, \ldots, x_m : \tau_m \]

are given by

\[[\Delta \vdash \Gamma]_o = [\Delta \vdash \tau_1]_o \times \cdots \times [\Delta \vdash \tau_m]_o \]

and

\[[\Delta \vdash \Gamma]_r = [\Delta \vdash \tau_1]_r \times \cdots \times [\Delta \vdash \tau_m]_r \]
Reynolds’ Semantics of Terms - The Set Up

- Object and relational interpretations of term contexts

\[\Gamma = x_1 : \tau_1, \ldots, x_m : \tau_m \]

are given by

\[[\Delta \vdash \Gamma]_o = [\Delta \vdash \tau_1]_o \times \cdots \times [\Delta \vdash \tau_m]_o \]

and

\[[\Delta \vdash \Gamma]_r = [\Delta \vdash \tau_1]_r \times \cdots \times [\Delta \vdash \tau_m]_r \]

- An object interpretation of each term is a family of functions

\[[\Delta; \Gamma \vdash t : \tau]_o \bar{X} : [\Delta \vdash \Gamma]_o \bar{X} \rightarrow [\Delta \vdash \tau]_o \bar{X} \]

parameterized over a set environment \(\bar{X} \)
Reynolds’ Semantics of Terms - The Set Up

- Object and relational interpretations of term contexts

\[\Gamma = x_1 : \tau_1, \ldots, x_m : \tau_m \]

are given by

\[[\Delta \vdash \Gamma]_o = [\Delta \vdash \tau_1]_o \times \cdots \times [\Delta \vdash \tau_m]_o \]

and

\[[\Delta \vdash \Gamma]_r = [\Delta \vdash \tau_1]_r \times \cdots \times [\Delta \vdash \tau_m]_r \]

- An object interpretation of each term is a family of functions

\[[\Delta; \Gamma \vdash t : \tau]_o \overline{X} : [\Delta \vdash \Gamma]_o \overline{X} \rightarrow [\Delta \vdash \tau]_o \overline{X} \]

parameterized over a set environment \(\overline{X} \)

- We’ll sanity-check the definitions as we go along
Reynolds’ Semantics of Terms - variables

- If
 \[\Delta; \Gamma \vdash x_i : \tau_i \]

 then

 \[[\Delta; \Gamma \vdash x_i : \tau_i]_o \bar{X} \bar{A} = A_i \]
Reynolds’ Semantics of Terms - variables

- If
 \[\Delta; \Gamma \vdash x_i : \tau_i \]
 then
 \[[\Delta; \Gamma \vdash x_i : \tau_i]_o \overline{X} \overline{A} = A_i \]
- This is sensible because we want
 \[[\Delta; \Gamma \vdash x_i : \tau_i]_o \overline{X} : [\Delta \vdash \Gamma]_o \overline{X} \rightarrow [\Delta \vdash \tau_i]_o \overline{X} \]
Reynolds’ Semantics of Terms - variables

- If
 \[\Delta; \Gamma \vdash x_i : \tau_i \]
 then
 \[\left[\Delta; \Gamma \vdash x_i : \tau_i \right]_o X A = A_i \]

- This is sensible because we want
 \[\left[\Delta; \Gamma \vdash x_i : \tau_i \right]_o X : \left[\Delta \vdash \Gamma \right]_o X \rightarrow \left[\Delta \vdash \tau_i \right]_o X \]
 and because if \(\overline{A} : \left[\Delta \vdash \Gamma \right]_o X \), then \(A_i : \left[\Delta \vdash \tau_i \right]_o X \)
Reynolds’ Semantics of Terms - term abstractions

- If

\[
\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2
\]

\[
\Delta; \Gamma \vdash \lambda x.t : \tau_1 \rightarrow \tau_2
\]

then

\[
[\Delta; \Gamma \vdash \lambda x.t : \tau_1 \rightarrow \tau_2]_o \overline{X} \overline{A} A = [\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2]_o \overline{X} (\overline{A}, A)
\]
Reynolds’ Semantics of Terms - term abstractions

- If

\[
\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2 \\
\Delta; \Gamma \vdash \lambda x. t : \tau_1 \rightarrow \tau_2
\]

then

\[
[\Delta; \Gamma \vdash \lambda x. t : \tau_1 \rightarrow \tau_2]_o \overline{X} \overline{A} A = [\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2]_o \overline{X} (\overline{A}, A)
\]

- This is sensible because we want

\[
[\Delta; \Gamma \vdash \lambda x. t : \tau_1 \rightarrow \tau_2]_o \overline{X} : [\Delta \vdash \Gamma]_o \overline{X} \rightarrow [\Delta \vdash \tau_1 \rightarrow \tau_2]_o \overline{X}
\]

\[
= [\Delta \vdash \Gamma]_o \overline{X} \rightarrow [\Delta \vdash \tau_1]_o \overline{X} \rightarrow [\Delta \vdash \tau_2]_o \overline{X}
\]
Reynolds’ Semantics of Terms - term abstractions

- If

\[
\frac{\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2}{\Delta; \Gamma \vdash \lambda x.t : \tau_1 \rightarrow \tau_2}
\]

then

\[
[\Delta; \Gamma \vdash \lambda x.t : \tau_1 \rightarrow \tau_2]_o X AA = [\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2]_o X (A, A)
\]

- This is sensible because we want

\[
[\Delta; \Gamma \vdash \lambda x.t : \tau_1 \rightarrow \tau_2]_o X : \quad [\Delta \vdash \Gamma]_o X \rightarrow [\Delta \vdash \tau_1 \rightarrow \tau_2]_o X
\]

\[
= [\Delta \vdash \Gamma]_o X \rightarrow [\Delta \vdash \tau_1]_o X \rightarrow [\Delta \vdash \tau_2]_o X
\]

and because the IH gives

\[
[\Delta; \Gamma, x : \tau_1 \vdash t : \tau_2]_o X : \quad [\Delta \vdash \Gamma]_o X \times [\Delta \vdash \tau_1]_o X \rightarrow [\Delta \vdash \tau_2]_o X
\]
Reynolds’ Semantics of Terms - term applications

- If

\[
\Delta; \Gamma \vdash t_1 : \tau_1 \quad \Delta; \Gamma \vdash t_2 : \tau_1 \rightarrow \tau_2
\]

then

\[
[\Delta; \Gamma \vdash t_2 t_1 : \tau_2]_o \overline{X} \overline{A} = [\Delta; \Gamma \vdash t_2 : \tau_1 \rightarrow \tau_2]_o \overline{X} \overline{A} ([\Delta; \Gamma \vdash t_1 : \tau_1]_o \overline{X} \overline{A})
\]
Reynolds’ Semantics of Terms - term applications

• If

$$\Delta; \Gamma \vdash t_1 : \tau_1 \quad \Delta; \Gamma \vdash t_2 : \tau_1 \rightarrow \tau_2$$

then

$$[\Delta; \Gamma \vdash t_2 t_1 : \tau_2]_o \overline{X} \overline{A} = [\Delta; \Gamma \vdash t_2 : \tau_1 \rightarrow \tau_2]_o \overline{X} \overline{A} (\overline{A}; \Gamma \vdash t_1 : \tau_1)_o \overline{X} \overline{A}$$

• This is sensible because we want

$$[\Delta; \Gamma \vdash t_2 t_1 : \tau_2]_o \overline{X} : [\Delta; \Gamma]_o \overline{X} \rightarrow [\Delta; \Gamma]_o \overline{X}$$
Reynolds’ Semantics of Terms - term applications

- If
 \[
 \frac{\Delta; \Gamma \vdash t_1 : \tau_1}{\Delta; \Gamma \vdash t_2 : \tau_1 \to \tau_2}
 \]
 \[
 \Delta; \Gamma \vdash t_2 \, t_1 : \tau_2
 \]
 then
 \[
 [\Delta; \Gamma \vdash t_2 \, t_1 : \tau_2]_o \overline{X \overline{A}} = [\Delta; \Gamma \vdash t_2 : \tau_1 \to \tau_2]_o \overline{X \overline{A}} ([\Delta; \Gamma \vdash t_1 : \tau_1]_o \overline{X \overline{A}})
 \]

- This is sensible because we want
 \[
 [\Delta; \Gamma \vdash t_2 \, t_1 : \tau_2]_o \overline{X} : [\Delta \vdash \Gamma]_o \overline{X} \to [\Delta \vdash \tau_2]_o \overline{X}
 \]
 and because the IH gives
 \[
 [\Delta; \Gamma \vdash t_2 : \tau_1 \to \tau_2]_o \overline{X} : [\Delta \vdash \Gamma]_o \overline{X} \to [\Delta \vdash \tau_1 \to \tau_2]_o \overline{X}
 \]
 \[
 = [\Delta \vdash \Gamma]_o \overline{X} \to [\Delta \vdash \tau_1]_o \overline{X} \to [\Delta \vdash \tau_2]_o \overline{X}
 \]
Reynolds’ Semantics of Terms - term applications

• If

\[
\Delta; \Gamma \vdash t_1 : \tau_1 \quad \Delta; \Gamma \vdash t_2 : \tau_1 \to \tau_2
\]

\[
\Delta; \Gamma \vdash t_2 \, t_1 : \tau_2
\]

then

\[
[\Delta; \Gamma \vdash t_2 \, t_1 : \tau_2]_o \overline{X} \overline{A} = [\Delta; \Gamma \vdash t_2 : \tau_1 \to \tau_2]_o \overline{X} \overline{A} ([\Delta; \Gamma \vdash t_1 : \tau_1]_o \overline{X} \overline{A})
\]

• This is sensible because we want

\[
[\Delta; \Gamma \vdash t_2 \, t_1 : \tau_2]_o \overline{X} : [\Delta \vdash \Gamma]_o \overline{X} \to [\Delta \vdash \tau_2]_o \overline{X}
\]

and because the IH gives

\[
[\Delta; \Gamma \vdash t_2 : \tau_1 \to \tau_2]_o \overline{X} \quad [\Delta \vdash \Gamma]_o \overline{X} \to [\Delta \vdash \tau_1 \to \tau_2]_o \overline{X}
\]

\[
= [\Delta \vdash \Gamma]_o \overline{X} \to [\Delta \vdash \tau_1]_o \overline{X} \to [\Delta \vdash \tau_2]_o \overline{X}
\]

and

\[
[\Delta; \Gamma \vdash t_1 : \tau_1]_o \overline{X} : [\Delta \vdash \Gamma]_o \overline{X} \to [\Delta \vdash \tau_1]_o \overline{X}
\]
Taking Stock

- So far, term interpretations are all in the required sets
Taking Stock

- So far, term interpretations are all in the required sets
- But when Reynolds interpreted type abstractions and applications
Taking Stock

• So far, term interpretations are all in the required sets

• But when Reynolds interpreted type abstractions and applications

 ... and tried to show that term interpretations are in the required sets
Taking Stock

- So far, term interpretations are all in the required sets
- But when Reynolds interpreted type abstractions and applications

 ... and tried to show that term interpretations are in the required sets

 ... he ran into problems
Reynolds’ Semantics of Terms - type abstractions

- If

\[
\begin{align*}
\Delta, \alpha; \Gamma & \vdash t : \tau \\
\Delta; \Gamma & \vdash \Lambda \alpha. t : \forall \alpha. \tau
\end{align*}
\]

then

\[
[\Delta; \Gamma \vdash \Lambda \alpha. t : \forall \alpha. \tau]_o \overline{X}A = \Pi_{S: \text{Set}}[\Delta, \alpha; \Gamma \vdash t : \tau]_o (\overline{X}, S) \overline{A}
\]
Reynolds’ Semantics of Terms - type abstractions

- If

\[\Delta, \alpha; \Gamma \vdash t : \tau \]

\[\Delta; \Gamma \vdash \Lambda \alpha. t : \forall \alpha. \tau \]

then

\[[\Delta; \Gamma \vdash \Lambda \alpha. t : \forall \alpha. \tau]_o X \ A = \Pi_{S: \text{Set}} [\Delta, \alpha; \Gamma \vdash t : \tau]_o (X, S) \ A \]

- This is sensible because we want

\[[\Delta; \Gamma \vdash \Lambda \alpha. t : \forall \alpha. \tau]_o X : [\Delta \vdash \Gamma]_o X \rightarrow [\Delta \vdash \forall \alpha. \tau]_o X \]

\[= [\Delta \vdash \Gamma]_o X \rightarrow \{ f : \Pi_{S: \text{Set}} [\Delta, \alpha \vdash \tau]_o (X, S) \mid \ldots \} \]
Reynolds’ Semantics of Terms - type abstractions

• If

\[
\frac{\Delta, \alpha; \Gamma \vdash t : \tau}{\Delta; \Gamma \vdash \Lambda \alpha.t : \forall \alpha.\tau}
\]

then

\[
[\Delta; \Gamma \vdash \Lambda \alpha.t : \forall \alpha.\tau]_o \overline{X} \overline{A} = \Pi_{S:\text{Set}}[\Delta, \alpha; \Gamma \vdash t : \tau]_o (\overline{X}, S) \overline{A}
\]

• This is sensible because we want

\[
[\Delta; \Gamma \vdash \Lambda \alpha.t : \forall \alpha.\tau]_o \overline{X} : \quad [\Delta \vdash \Gamma]_o \overline{X} \rightarrow [\Delta \vdash \forall \alpha.\tau]_o \overline{X}
= \quad [\Delta \vdash \Gamma]_o \overline{X} \rightarrow \{ f : \Pi_{S:\text{Set}}[\Delta, \alpha \vdash \tau]_o (\overline{X}, S) \mid \ldots \}
\]

and because \(\alpha \) not free in \(\Gamma \) implies

\[
[\Delta, \alpha; \Gamma \vdash t : \tau]_o (\overline{X}, S) : \quad [\Delta, \alpha \vdash \Gamma]_o (\overline{X}, S) \rightarrow [\Delta, \alpha \vdash \tau]_o (\overline{X}, S)
= \quad [\Delta \vdash \Gamma]_o \overline{X} \rightarrow [\Delta, \alpha \vdash \tau]_o (\overline{X}, S)
\]
Reynolds’ Semantics of Terms - type abstractions

• If

$$\frac{\Delta, \alpha; \Gamma \vdash t : \tau}{\Delta; \Gamma \vdash \Lambda \alpha.t : \forall \alpha.\tau}$$

then

$$[\Delta; \Gamma \vdash \Lambda \alpha.t : \forall \alpha.\tau]_o \ X \ A = \Pi_{S:\text{Set}}[\Delta, \alpha; \Gamma \vdash t : \tau]_o (X, S) \ A$$

• This is sensible because we want

$$[\Delta; \Gamma \vdash \Lambda \alpha.t : \forall \alpha.\tau]_o \ X : [\Delta \vdash \forall \alpha.\tau]_o \ X \rightarrow [\Delta \vdash \forall \alpha.\tau]_o \ X$$

$$= [\Delta \vdash \Gamma]_o \ X \rightarrow \{f : \Pi_{S:\text{Set}}[\Delta, \alpha \vdash \tau]_o (X, S) \mid \ldots\}$$

and because α not free in Γ implies

$$[\Delta, \alpha; \Gamma \vdash t : \tau]_o (X, S) : [\Delta, \alpha \vdash \Gamma]_o (X, S) \rightarrow [\Delta, \alpha \vdash \tau]_o (X, S)$$

$$= [\Delta \vdash \Gamma]_o \ X \rightarrow [\Delta, \alpha \vdash \tau]_o (X, S)$$

• But now we’d have to check that the condition after the vertical bar in the set interpretation of a \forall-type holds...
Reynolds’ Semantics of Terms - type applications

- If

\[
\frac{\Delta; \Gamma \vdash t : \forall \alpha. \tau_2 \quad \Delta \vdash \tau_1}{\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]}
\]

then

\[
[[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} \overline{A} = [[\Delta; \Gamma \vdash t : \forall \alpha. \tau_2]]_o \overline{X} \overline{A} ([[\Delta \vdash \tau_1]]_o \overline{X})
\]
Reynolds’ Semantics of Terms - type applications

- If
 \[
 \Delta; \Gamma \vdash t : \forall \alpha.\tau_2 \quad \Delta \vdash \tau_1
 \]
 \[
 \Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]
 \]
 then
 \[
 [[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} \overline{A} = [[\Delta; \Gamma \vdash \forall \alpha.\tau_2]_o \overline{X} \overline{A} ([[\Delta \vdash \tau_1]_o \overline{X})
 \]
- This is sensible because we want
 \[
 [[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} : [[\Delta \vdash \Gamma]_o \overline{X} \to [[\Delta \vdash \tau_2[\alpha \mapsto \tau_1]]_o \overline{X}
 \]
Reynolds’ Semantics of Terms - type applications

• If

\[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2 \quad \Delta \vdash \tau_1 \]

\[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1] \]

then

\[[[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} \overline{A} = [[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o \overline{X} \overline{A} ([[\Delta \vdash \tau_1]_o \overline{X}) \]

• This is sensible because we want

\[[[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} : [[\Delta \vdash \Gamma]_o \overline{X} \rightarrow [[\Delta \vdash \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} \]

and because

\[[[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o \overline{X} : [[\Delta \vdash \Gamma]_o \overline{X} \rightarrow [[\Delta \vdash \forall \alpha.\tau_2]_o \overline{X} \]

\[= [[\Delta \vdash \Gamma]_o \overline{X} \rightarrow \{f : \Pi S: Set[[\Delta, \alpha \vdash \tau_2]_o (\overline{X}, S)|...\}] \]
Reynolds’ Semantics of Terms - type applications

• If

$$\Delta; \Gamma \vdash t : \forall \alpha.\tau_2 \quad \Delta \vdash \tau_1$$

then

$$\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]$$

$$[[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o X \ A = [[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o X \ A ([\Delta \vdash \tau_1]_o X)$$

• This is sensible because we want

$$[[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o X : [[\Delta \vdash \tau_1]_o X \rightarrow [[\Delta \vdash \tau_2[\alpha \mapsto \tau_1]]_o X$$

and because

$$[[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o X : [[\Delta \vdash \tau_1]_o X \rightarrow [[\Delta \vdash \forall \alpha.\tau_2]_o X$$

$$\quad = [[\Delta \vdash \tau_1]_o X \rightarrow \{ f : \Pi_{S: Set}[\Delta, \alpha \vdash \tau_2]_o (X, S)|\ldots\}$$

• To type-check this, we’d need to show

$$[[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o X \ A ([\Delta \vdash \tau_1]_o X) : [[\Delta \vdash \tau_2[\alpha \mapsto \tau_1]]_o X$$
Reynolds’ Semantics of Terms - type applications

- If

\[
\Delta; \Gamma \vdash t : \forall \alpha.\tau_2 \quad \Delta \vdash \tau_1
\]

then

\[
[[\Delta; \Gamma \vdash t \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} \overline{A} = [[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o \overline{X} \overline{A} ([\Delta \vdash \tau_1]_o \overline{X})
\]

- This is sensible because we want

\[
[[\Delta; \Gamma \vdash t \tau_1 : \tau_2[\alpha \mapsto \tau_1]]_o \overline{X} : [[\Delta \vdash \tau_1]_o \overline{X} \rightarrow [[\Delta \vdash \tau_2[\alpha \mapsto \tau_1]]_o \overline{X}
\]

and because

\[
[[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o \overline{X} : [[\Delta \vdash \forall \alpha.\tau_2]_o \overline{X}
\]

\[
= [[\Delta \vdash \tau_2]_o \overline{X} \rightarrow \{f : \Pi_S:\text{Set}[[\Delta, \alpha \vdash \tau_2]_o (\overline{X}, S)|...\}
\]

- To type-check this, we’d need to show

\[
[[\Delta; \Gamma \vdash t : \forall \alpha.\tau_2]_o \overline{X} \overline{A} ([[\Delta \vdash \tau_1]_o \overline{X}) : [[\Delta \vdash \tau_2[\alpha \mapsto \tau_1]]_o \overline{X}
\]

- But this *assumes* the interpretation of type abstractions is sensible...
What About Type Abstractions and Applications?

- Due to size considerations, Reynolds cannot interpret $\forall \alpha.\tau$ as a set of the form $\prod_{S \in \text{Set}} S$ for the usual set-theoretic product.
What About Type Abstractions and Applications?

- Due to size considerations, Reynolds cannot interpret $\forall \alpha. \tau$ as a set of the form $\prod_{S \in \text{Set}} S$ for the usual set-theoretic product
 - α would have to range over all sets interpreting types... including the set interpreting $\forall \alpha. \tau$!
What About Type Abstractions and Applications?

Due to size considerations, Reynolds cannot interpret $\forall \alpha. \tau$ as a set of the form $\Pi_{S \in \text{Set}} S$ for the usual set-theoretic product

- α would have to range over all sets interpreting types... including the set interpreting $\forall \alpha. \tau$!
- This is impossible!
• Due to size considerations, Reynolds cannot interpret $\forall \alpha. \tau$ as a set of the form $\prod_{S \in \text{Set}} S$ for the usual set-theoretic product
 - α would have to range over all sets interpreting types... including the set interpreting $\forall \alpha. \tau$!
 - This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret $\forall \alpha. \tau$ while still preserving the usual binary product and function space?
What About Type Abstractions and Applications?

- Due to size considerations, Reynolds cannot interpret $\forall \alpha. \tau$ as a set of the form $\prod_{S \in \text{Set}} S$ for the usual set-theoretic product
 - α would have to range over all sets interpreting types... including the set interpreting $\forall \alpha. \tau$!
 - This is impossible!

- **Idea**: Maybe a weaker notion of “large” product can interpret $\forall \alpha. \tau$ while still preserving the usual binary product and function space?

- In order to exclude *ad hoc* polymorphic functions from his model, Reynolds restricts it by imposing a so-called parametricity property
What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret $\forall \alpha.\tau$ as a set of the form $\Pi_{S\in\text{Set}} S$ for the usual set-theoretic product
 – α would have to range over all sets interpreting types... including the set interpreting $\forall \alpha.\tau$!
 – This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret $\forall \alpha.\tau$ while still preserving the usual binary product and function space?

• In order to exclude *ad hoc* polymorphic functions from his model, Reynolds restricts it by imposing a so-called *parametricity property*

• This leads to the interpretations we have seen
What About Type Abstractions and Applications?

• Due to size considerations, Reynolds cannot interpret $\forall \alpha. \tau$ as a set of the form $\Pi_{S \in \text{Set}} S$ for the usual set-theoretic product
 – α would have to range over all sets interpreting types... including the set interpreting $\forall \alpha. \tau$!
 – This is impossible!

• Idea: Maybe a weaker notion of “large” product can interpret $\forall \alpha. \tau$ while still preserving the usual binary product and function space?

• In order to exclude ad hoc polymorphic functions from his model, Reynolds restricts it by imposing a so-called parametricity property

• This leads to the interpretations we have seen

• Conjecturing that these definitions give a sensible model, Reynolds proves his Abstraction Theorem
Problems in Parametricity Paradise

- The next year Reynolds discovered that there can be no set model of System F in which
 - \times is interpreted as the usual binary product
 - \to is the interpreted as the usual function space
 - $\forall \alpha.\tau$ is interpreted as a possibly restricted “large” product
The next year Reynolds discovered that there can be no set model of System F in which

- \(\times \) is interpreted as the usual binary product
- \(\to \) is the interpreted as the usual function space
- \(\forall \alpha.\tau \) is interpreted as a possibly restricted “large” product

This is the case no matter what notion of “parametric” is used to restrict “large” products to exclude \textit{ad hoc} functions!
The next year Reynolds discovered that there can be no set model of System F in which

- \times is interpreted as the usual binary product
- \rightarrow is the interpreted as the usual function space
- $\forall \alpha.\tau$ is interpreted as a possibly restricted “large” product

This is the case no matter what notion of “parametric” is used to restrict “large” products to exclude ad hoc functions!

Reynolds proved this working in a classical set theory
The next year Reynolds discovered that there can be no set model of System F in which
- \times is interpreted as the usual binary product
- \to is interpreted as the usual function space
- $\forall\alpha.\tau$ is interpreted as a possibly restricted “large” product

This is the case no matter what notion of “parametric” is used to restrict “large” products to exclude ad hoc functions!

Reynolds proved this working in a classical set theory

In 1987, Andrew Pitts showed that set models of System F do exist in constructive set theories
The next year Reynolds discovered that there can be no set model of System F in which
- \times is interpreted as the usual binary product
- \rightarrow is the interpreted as the usual function space
- $\forall \alpha. \tau$ is interpreted as a possibly restricted “large” product

This is the case no matter what notion of “parametric” is used to restrict “large” products to exclude ad hoc functions!

Reynolds proved this working in a classical set theory

In 1987, Andrew Pitts showed that set models of System F do exist in constructive set theories

We won’t look at constructive set models of System F in this course
The next year Reynolds discovered that there can be no set model of System F in which
- \times is interpreted as the usual binary product
- \to is interpreted as the usual function space
- $\forall \alpha.\tau$ is interpreted as a possibly restricted “large” product

This is the case no matter what notion of “parametric” is used to restrict “large” products to exclude ad hoc functions!

Reynolds proved this working in a classical set theory.

In 1987, Andrew Pitts showed that set models of System F do exist in constructive set theories.

We won’t look at constructive set models of System F in this course.

Instead, we’ll just draw inspiration from Reynolds’ ideas.
The Abstraction Theorem

- Formalizes uniformity of parametric polymorphism
The Abstraction Theorem

- Formalizes uniformity of parametric polymorphism
- Intuitively, every (interpretation of every) term is related to itself by the relational interpretation of its type
The Abstraction Theorem

- Formalizes uniformity of parametric polymorphism
- Intuitively, every (interpretation of every) term is related to itself by the relational interpretation of its type

Theorem (Abstraction Theorem) Let $X, Y : \text{Set}^{\Delta}$, $R : \text{Rel}^{\Delta}(X, Y)$, $\bar{A} \in [\Delta \vdash \Gamma]_o X$, and $\bar{B} \in [\Delta \vdash \Gamma]_o Y$. For all $\Delta; \Gamma \vdash t : \tau$, if
 $$(\bar{A}, \bar{B}) \in [\Delta \vdash \Gamma]_r R$$

then

$$([\Delta; \Gamma \vdash t : \tau]_o X \bar{A}, [\Delta; \Gamma \vdash t : \tau]_o Y \bar{B}) \in [\Delta \vdash \tau]_r R$$
The Abstraction Theorem

- Formalizes uniformity of parametric polymorphism
- Intuitively, every (interpretation of every) term is related to itself by the relational interpretation of its type
- **Theorem (Abstraction Theorem)** Let $\overline{X}, \overline{Y} : \text{Set}^{\Delta}$, $\overline{R} : \text{Rel}^{\Delta}(\overline{X}, \overline{Y})$, $\overline{A} \in [\Delta \vdash \Gamma]_o \overline{X}$, and $\overline{B} \in [\Delta \vdash \Gamma]_o \overline{Y}$. For all $\Delta; \Gamma \vdash t : \tau$, if

$$\left(\overline{A}, \overline{B} \right) \in [\Delta \vdash \Gamma]_{r \overline{R}}$$

then

$$\left([\Delta; \Gamma \vdash t : \tau]_o \overline{X} \overline{A}, [\Delta; \Gamma \vdash t : \tau]_o \overline{Y} \overline{B} \right) \in [\Delta \vdash \tau]_{r \overline{R}}$$

- This doesn’t make complete sense because of missing interpretations...
The Abstraction Theorem

- Formalizes uniformity of parametric polymorphism
- Intuitively, every (interpretation of every) term is related to itself by the relational interpretation of its type
- **Theorem (Abstraction Theorem)** Let $X, Y : \text{Set}^{\Delta}$, $R : \text{Rel}^{\Delta}(X, Y)$, $\overline{A} \in [\Delta \vdash \Gamma]_o X$, and $\overline{B} \in [\Delta \vdash \Gamma]_o Y$. For all $\Delta; \Gamma \vdash t : \tau$, if
 \[
 (\overline{A}, \overline{B}) \in [\Delta \vdash \Gamma]_r R
 \]
 then
 \[
 ([\Delta; \Gamma \vdash t : \tau]_o X \overline{A}, [\Delta; \Gamma \vdash t : \tau]_o Y \overline{B}) \in [\Delta \vdash \tau]_r R
 \]
- This doesn’t make complete sense because of missing interpretations...
- ...but a model of System F in which the Abstraction Theorem and Identity Extension Lemma hold is what Reynolds was aiming for
Coming Up

- Introduction to (bi)fibrations
Coming Up

- Introduction to (bi)fibrations
- View Reynolds’ construction and results through the lens of the relations (bi)fibration on Set
Coming Up

- Introduction to (bi)fibrations
- View Reynolds’ construction and results through the lens of the relations (bi)fibration on \textbf{Set}
- Generalize Reynolds’ constructions to (bi)fibrational models of System F for which we can prove (fibrational versions of) the IEL and Abstraction Theorem
Coming Up

• Introduction to (bi)fibrations

• View Reynolds’ construction and results through the lens of the relations (bi)fibration on \textbf{Set}

• Generalize Reynolds’ constructions to (bi)fibrational models of System F for which we can prove (fibrational versions of) the IEL and Abstraction Theorem

• Reynolds’ construction is (ignoring size issues) such a model
References

- Polymorphism is set-theoretic, constructively. A. Pitts. CTCS’84.