Correct and Secure Compilation
for Multi-Language Software

Amal Ahmed

Northeastern University

Compiler Correctness

S«?t —> S’&Tit

compiles to same behavior

Semantics-preserving compilation

S«?t —> S’&Tit

compiles to same behavior

Range of Compiler Properties...

B Type-preserving compilation (90s) A
* Semantics-preserving compilation (00s...)
_ — Correct compilation D

* Fully abstract compilation
— Equivalence-preserving and -reflecting
= Secure compilation

* Security-preserving compilation

- preserving “security types’ vs.
preserving noninterference

Compiler Verification

One of the “big problems” of computer science

* since McCarthy and Painter 1967
Correctness of a Compiler for Arithmetic Expressions

* see Dave 2003: Compiler Verification: A Bibliography

Compiler Verification since 2006...

Leroy "06 : Formal certification of a compiler back-end or:
brogramming a compiler with a proof assistant.

Lochbihler °1 0 : Verifying a compiler for Java threads.

Myreen °1 0 : Verified just-in-time compiler on x86.

Sevcik et al’l I: Relaxed-memory concurrency and verified
combpilation.

Zhao et al’l 3 : Formal verification of SSA-based
optimizations for LLVM

Kumar et al’l4 : CakeML: A verified implementation of ML

Why CompCert had such impact...

* Demonstrated that realistic verified compilers are both
feasible and bring tangible benefits

The striking thing about our CompCert results is that the

middle-end bugs we found

in all other compilers are

absent. As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack

of trying: we have devotec
task. The apparent unbrea

about six CPU-years to the
kability of CompCert supports a

strong argument that deve
within a proof framework,
and machine-checked, has

loping compiler optimizations
where safety checks are explicit
tangible benefits for compiler

users. (Yang et al. PLDI 2011)

http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

Why CompCert had such impact...

* Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes

- proof using simulations

external preprocessor

lexing and parsing (*)

type-checking and elaboration

printing

external assembler
Object file

external linker

validation by the ccheckl ink tool

Not verified yet
(*) the parser is formally verified

pull side effects out of expressions

type climination; simplification of control

stack allocation

instruction selection

construction of a CFG

function inlining

tail call optimization

constant propagation

common subexpression elimination
dead code elimination

live range splitting

register allocation, spilling, reloading

linecarization of the CFG

layout of the stack frame

generation of Asm code

Formally verified

[CompCert manual 2015]

Why CompCert had such impact...

* Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes

- proof using simulations

But the simplicity of the proof architecture
comes at a price...

Problem: Whole-Program Assumption

Correct compilation guarantee only applies to
whole programs!

CompCert’s ... “formal guarantees of
semantics preservation apply only to whole
brograms that have been compiled as a
whole by [the] CompCert C

[compiler]” (Leroy 2014)

Ps

Problem: Whole-Program Assumption

Correct compilation guarantee only applies to

whole programs!
i from
dlfferent

compiler &

source laneg.
low-leve
libraries

Ps

Why Whole Programs?

S ~> T > S =1

T

expressed how!

Why Whole Programs?

PSWPt >PS%P75
T

expressed how!

CompCert

Pi— ...+— P+ P

Proof composes per-pass simulations

Why Whole Programs?

PSWPt >PS%P75
T

“closed” simulations

CompCert

Pi— ...+— P+ P

Correct Compilation of Components?

Cs

€g ~ €T
2 |

expressed how!?!

Produced by

- same compiler,
e, 7 - diff cqmpiler fqr S,
€. - compiler for diff lang R,

- R that’s very diff from S?

Behavior expressible in S?

Correct Compilers, Multi-language SW

€g ~ €T

|

Definition should:

Cs

e permit linking with
target code of arbitrary

provenance
Ct o * support verification of
t multi-pass compilers

Plan

* Survey the literature: how to express €5 ~ €
- “compositional” compiler correctness

= correct compilation of components

Compositional Compiler Correctness

€g ~ €T

Dictates: T

 what we can link with
(horizontal compositionality)
and how to check it’s
okay to link

e effort involved in
proving transitivity for
multi-pass compilers
(vertical compositionality)

Plan

e Survey the literature: how to express €5 ~ €T
* How does the choice affect:

- what we can link with

- how we check if some e,’c is okay to link with

- effort required to prove transitivity

- effort required to have confidence in theorem
statement

* How to support linking with code from very different R

Plan

e Survey the literature: how to express €5 ~ €T
* How does the choice affect:

- what we can link with

- how we check if some e,’c is okay to link with

- effort required to prove transitivity

- effort required to have confidence in theorem
statement

* How to support linking with code from very different R
* Type-preserving compilation

* Secure (fully abstract) compilation

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R

V 1 1 1 1
v v v v

CompCert horizontal compositionality

SepCompCert

Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Separate Compilation (C)

SepCompCert
[Kang et al.’| 6]

Eod ¢

Approach: Separate Compilation (C)

(S].C]o(52.cjo(53.cj

SepCompCert T g
[Kang et al.’[6] ' .

[ml 1r j [Ill AT] [Ill Ar j
Level A correctness {T, T T

[tl asm] [tvasm] [tzasm]

End-to-end

Vi e {1...n}.C(si.c) = ti.asm
s =load(s1.co...08,.C) t = load(t;.asmo...0t,.asm)

Behav(s) 2 Behav(t)

Approach: Separate Compilation (C)

SepCompCert Level B correctness: omit some RTL
[Kang et al.’| 6]

optimizations

[sy.rtl J ® [sp.rtl j 0O [s3.rtl]
Vn | |

(tlrtl] [szrtlj [sartl)
|l T |

[tlrtl] [m Itl]o[sntl]
| i3 |

(tlrtl]o(t?:tl):[&,rtlj

L
1 | Ta

(ty.rtl] O [to.rtl) 0O (tg.‘rtl]

Approach: Separate Compilation (C)

SepCompCert Level B correctness: omit some RTL

K tal’l6 STy
[Rang et al."f¢] optimizations

End-to-end

v
Vie {1...n}.Ci(si.c) =t;.asm
s = load(sj.co...08,.c) t = load(t;.asmo...0t,.asm)

Behav(s) 2 Behav(t)

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Cross-Language Relations

Cross-language relation

!
€g ~ €T

Compiling ML-like langs:
Logical relations
- [Benton-Hur ICFP’09]
- [Hur-Dreyer POPL’| |]
j e’ Parametric inter-language
t simulations (PILS)
- [Neis et al. ICFP’1 5]

Case Study: Closure Conversion

- Typed Closure Conversion

- Correctness of closure conversion

using a cross-language logical relation...

[on board]

Cross-Language Relation: Problem 1

X:T Fe:7T~e = x:7T'Fe~ei:T

T

cross-language logical relation

Vel,el. Fei~el : 7" = Feglel/x| ~eilel /x| T

Cross-Language Relation: Problem 1

Have x: 7' Fe.~e;: 7
Cs
4)

Does the compiler
i correctness theorem
permit linking with e ?

_ _J
Ct ’

Cross-Language Relation: Problem 1

Y

Have x: 7' Fe.~e;: 7

1

cross-language logical relation

Vel,el. Fe~el : 7" = Felel/x| ~eilel /x| T

S) s

je

/
t

SN,
* Need to come up with €
-- not feasible in practice!

e Cannot link with e,'c
whose behavior cannot
be expressed in source.

Cross-Language LR: Problem 2

Transitivity for single-lang. logical relation!?

61 ~ 62 ?
€2 ~ €3

X

Cross-Language LR: Problem 2

cross-language relation;
no definition of ctx. equiv

2 |

—> €g X e

.
Transitivity for single-lang.
logical relation:

e ~e <«— e T

Cross-Language LR: Problem 2

- PILS

€s For langs with refs:
/ - step-indexed Kripke LR

?
—> €g X e

Cross-Language LR: Problem 2

- PILS _ / but lots of effort

€s For langs with refs:
/ - step-?@d Kripke LRX

?
—> €g X e

PILS: Problem 1 remains

Have x: 7' Fe.~e;: 7
|
j PILS

= ~

* Need to come up with e;
et j o -- not feasible in practice!
t | e Cannot link with ei’:

whose behavior cannot
be expressed in source.

Need a New Approach...

* that works for multi-pass compilers

* that allows linking with target code of arbitrary
provenance

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

Correct Compilation of Components?

€g ~ €T
e; T

expressed how!

Need a semantics

of source-target
e , in.terope.rability: |
€t |- interaction semantics

- source-target multi-language

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Interaction Semantics

Compositional CompCert
[Stewart et al.’| 5]

* Language-independent linking

at_external

Q0

initial core ——>» running interference

VAN

halted after external

Semantlcs (G C M : Type) : Type £

initial_core : G —>V —listV — option C
at_external : C — option (F X list V)

{ after_external : optionV — C — option C
halted : C — option V

| corestep : G>C—>M-—>C— M — Prop

Figure 2. Interaction semantics interface. The types G (global
environment), C' (core state), and M (memory) are parameters to
the interface. JF is the type of external function identifiers. V is the

type of CompCert values.

Approach: Interaction Semantics

Compositional CompCert
[Stewart et al.’| 5]

* Language-independent linking

* Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality

Semantic representation of contexts code can link with.

Approach: Interaction Semantics

Compositional CompCert
[Stewart et al.’| 5]

* Language-independent linking
- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML),
compilers with different source/target memory models

e Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality

- transitivity relies on compiler passes performing
restricted set of memory transformations

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

Approach: Source-Target Multi-lang.

[Perconti-Ahmed’14]

Specify semantics
of source-target

interoperability:

S Tet TS S

Multi-language semantics:
a la Matthews-Findler °07

/
t

Approach: Source-Target Multi-lang.
TS (es (STe)

[Perconti-Ahmed’14]
STe
%ctaz et et
€t ’
r j et

Approach: Source-Target Multi-lang.

[Perconti-Ahmed’14]

Multi-Language Semantics Approach

Compiler Correctness

eS‘

i €g ~ClT SIGI

Multi-Lang. Approach: Multi-pass v’

Compiler Correctness

eS‘

i €g S SZGI

€1 |H

i STey = ZTET er)

GT‘

€g S SITQT

Multi-Lang. Approach: Linking v’

4
S ¥
€t ’

r j et

TLS (es (SITei’:))

tha: et et

Compiler Correctness: F to TAL

CF

Closure Conversion 7€

€C

Allocation T

€A

Code Generation T

er

X
X
X

Combined language FCAT

e Boundaries mediate between
A T
T&T & T &T

Compiler Correctness: F to TAL

CF

er

$ Closure Conversion 7
[Perconti-Ahmed | ¢ c‘
ESOP’ 4]
¢ Allocation A
ea ‘
¢ Code Generation 7

CompCompCert vs. Multi-language

Transitivity:

- structured simulations i - all passes use multi-lang ~°**

Check okay-to-link-with:

- satisfies CompCert - satisfies expected type
memory model i (translation of source type)

Contexts:

- semantic representation : - syntactic representation

Requires uniform memory model across compiler IRs!?

- yes i - Nno

Case Study: Closure Conversion

Correctness of typed closure conversion

using multi-language semantics... [on board]

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Interoperability: € and A

H, 2 — (v); "'CAL — H, £ +— (v);

H: AC —— H, £ — (v); £ Allocate a new
location for tuple

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Central Challenge: interoperability between
high-level (direct-style) language &
assembly (continuation style)

FunTAL: Reasonably Mixing a Functional Language
with Assembly [Patterson et al.’| 7]

What is a component in TAL?

e. T v~ e Instruction Sequence

l

Typing TAL Components

return q = e\r\i
marker

U:A:x;o;:qFe:T;0’

type stack result

environ type type
”e‘,’P reg-file P P stack type
fyping typing on return

Basic blocks

\code[A]{x;a'}q.I . V[A].{x;0}“

Equivalence of T Components: Tricky!

Logical relations: related inputs to related outputs
V[[Tl — 7'2]] — {(W,)\x.el,)\x.el) ‘ . }

HV[V[A].{x; 0} = {(W,code[A]{x;0}911,code[A]l{x;0}13)]| ...}

Equivalence of T Components

Logical relations: related inputs to related outputs
V[—] ={(W, Ax.e1, Ax.e1)| ...}

HV[V[A]{x;0}9] = {(W,code[A]{x; 0}9.11,code[A]{x;0}9.12)] ...}

related inputs — -
related outputs—>

related outputs—> -

Ongoing: Multi-lang. Approach

* Underway: Code Generation pass to TAL

* Working on simplifying multi-language design to support
easier proofs when multiple embedded languages have
polymorphism & refs

- Matthew Kolosick, Dustin Jamner, Max New, AA

Horizontal / Vertical Compositionality

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner -
+ Neis et al’l 5
Transitivity Compositional CompCert
requires E Stewart et al’l 5 :
effort / E Multi-language ST :

engineering ™. Perconti-Ahmed’| 4 .

Horizontal Compositionality

Behavior inexpressible in S ?

/

Horizontal / Vertical Compositionality

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

i EHEN IH I = H H = H = H =H H = = =H = = =H I g,

Allows linking with behavior JMuIti—Ianguage ST
inexpressible in S + Perconti-Ahmed’1 4

Verified Compilers for Multi-lang. World

C/C++ ML/Haskell/Rust Coq/F*

breserve preserve types, breserve
behavior info. hiding equivalence

dependently typed

- It’s about principled language interoperability!

“Principled” Language Interoperability?

call/cc no call/cc

Scheme ML

breserve types,
info. hiding

breserve contextual
equivalence?

°
°

dynamically typed statically typed

°
.

target

e Compiler can preserve different properties through
choice of type-translation: a spectrum of linking options

Next...

* Fully Abstract Compilation / Secure Compilation
* compiler is equivalence-preserving

* ensures a compiled component does not interact with
any target behavior that is inexpressible in S

* Recent results on fully abstract compilation

Next...

* Fully Abstract Compilation / Secure Compilation
* compiler is equivalence-preserving

* ensures a compiled component does not interact with
any target behavior that is inexpressible in S

* Recent results on fully abstract compilation

* Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers?

e Answer: we want both!

* How to get there! Languages should let programmers
specify what behavior they want to link with

Verified Compilers for Multi-lang. World

c c
= " 3
b Rmme Y

: o
o

Source programmers should be able to
reason in the source language!

Source Language Reasoning

Contextual Equivalence

C1 Co

~Cctx
™S

Source Language Reasoning

Contextual Equivalence

Co

N < W T

C1 Co

' is indistinguishable from "

by contexts at type T

Source Language Reasoning

Contextual Equivalence

C1 Co

~Cctx
™S

Formal basis for
® Refactoring

T

Source Language Reasoning

Contextual Equivalence

C1 Co

~Cctx
™S

Formal basis for
® Refactoring
® Data abstraction

Source Language Reasoning

Contextual Equivalence

C1 Co

~Cctx
™S

Formal basis for

® Refactoring

® Data abstraction
® Security

Fully Abstract / Secure Compilation

Secure compilation of components:

Want guarantee that €t
will remain as secure as €¢
when executed in arbitrary
target-level contexts

Cs

i i.e. target contexts (attackers!) can make
no more observations about €¢ than a

: source context can make about €.
Ct ‘

Ensuring Secure Compilation

source e,

target ety D
d

Must ensure that any a we link with behaves like some source context

Ensuring Secure Compilation

source e,

target ety D
d

|. Add target features to the source language.

Ensuring Secure Compilation

source €

o Y T
d

|. Add target features to the source language. Bad!

2. Dynamics checks: catch badly behaved code in the act.
Performance cost

Ensuring Secure Compilation

source €

target € : 0 JQ/ D
d

|. Add target features to the source language. Bad!

2. Dynamics checks: catch badly behaved code in the act.
Performance cost

3. Static checks: rule our badly behaved code in the first place
Verification

Type-preserving compilation

e . T ~~ e:T_I_

Equivalence-preserving compilation

Ifei:T ~ e;:T" and ey : T ~ €5 :7TT then:

€1 %(S:tm € : T —> €4 %%m e . T

Fully abstract compilation

Ifei:T ~ e;:T" and ey : T ~ €5 :7TT then:

e ~FT ey T < e AT ey T

f

preserves & reflects equivalence

Challenge of proving full abstraction

Suppose ' Fe; : T~ ey and I' ey : T~ es.

ke ~§%ex:T

F+ I—e N%ta: €9 ZT_I_

Challenge of proving full abstraction

Suppose ' Fe; : T~ ey and I' ey : T~ es.
Fe =% ey Given:

No (g can
distinguish €1, €2

F+ I—e N%ta: €9 ZT_I_

Challenge: Back-translation

|. If target is not more expressive than source, use the same
language: back-translation can be avoided in lieu of
wrappers between T and T

* Closure conversion: System F with recursive types
[Ahmed-Blume ICFP’08]

o f* (STLC with refs) to js* (encoding of JavaScript in f*)
[Fournet et al. POPL’1 3]

Challenge: Back-translation

2. If target is more expressive than source

(a) Both terminating: use back-translation by partial
evaluation

* Equivalence-preserving CPS from STLC to System F
[Ahmed-Blume ICFP’[|]

* Noninterference for Free (DCC to Fw)
[Bowman-Ahmed ICFP’| 5]

(b) Both nonterminating: use ??
back-trans by partial evaluation is not well-founded!

Observation: our source lang. has recursive types,
can write interpreter for target lang. in source lang.

Fully Abstract Closure Conversion

Source: STLC + 1 types [New et al."16]

Target: System F + dtypes + 1 types + exceptions

First full abstraction result where target has exceptions but
source does not.

Earlier work, due to lack of sufficiently powerful back-
translation techniques, adds features from target to source.

Novel proof technique — Universal Embedding
* Untyped embedding of target in source

* Mediate between strongly typed source and untyped
back-translation

Fully Abstract Closure Conversion

Source: STLC + p types
Target: System F + dtypes + 1 types + exceptions

Equivalent source terms, inequivalent in lang. with exceptions:

e1 = M. (f true;f false; ()) eo = M. (f false; f true; ()
(' = catch y = ([/] (Ax.raisex)) in y

Cle1] | true C'les] | false

|ldea: use modal type system at target to rule out linking
with code that throws unhandled exceptions

Ensuring Full Abstraction

~ Ctx

e1 =<' eg : (bool - 1) —1

(bool - E01) - EO01

£

C : (bool —+ Ebooll) — Ebool1

C

(|-] A(x:bool). raise x)

Static Fully Abstract Compilation

* Type checking ensures that we never link with target

code whose (extensional) behavior does not match some
source behavior

e But what if we want to link with behaviors unavailable in
the source!?

- Surely, we want that when building multi-language
software!

Multi-Language System

Web Server

Listener

Protocol Parser

Spam System

Stateful DSL

4 Terminating CFG DSL

Declarative Data-driven DSL

Web Server

Protocol Parser Listener

227
TerminatinaD Stateful DSL
Does Nontermination Leak?

— S —

Can we instead allow
reasoning at source level?

O
O
=
3
r
m

Protocol Parser m Listener

31IdINOD

Common Target Common Target

Linking types are about raising
programmer reasoning back to the
source level

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too
[Patterson-Ahmed SNAPL’17]

In a Simpler Setting

(simply-typed)\ref (extended with
lambda calculus) ML references)
= | int | T = ref 7

e refe|e:=¢e| le

How to reason in)\ while linking with)\ "ef ?

Refactoring is reasoning about equivalence

Reasoning About Refactoring

—

Should be okay because

~u CIlX

N\

el ~S e2

Fully abstract

compilers preserve I

equivalences

el ~° |e2

What about linking with)\ref?

let counter f' =letv = ref Qin
letc’ () =v:=Iv+1; lvinf'c

let f - U/)

1n counter £

but

let counter f' =letv = ref Qin

etc’()=v:=Iv+1; lvinf'c \U/ 1

let £
1n counter f

When linked with)\r,efno longer equivalent!

Is this refactoring correct?

—>

't depends on what it is linked with!

unit — intX

Programmer should be able to specity
which they want, so that the compiller
can be fully abstract!

with linking types extension

K ro—unit|int| 7 — R~
ref7 |7 —> R T

Type and effect systems, e.qg., F*, Koka

Allows Programmers To Write Both

unit — Int

unit — RYint unit — R’int

Refactoring: Pure Inputs

Ac: unit — Rlint. c(); ¢() = Ac: unit — Rlint. c()

et counter f' =letv = 14

c: unit — R@mt c()

lll-typed, since f requires pure code

Refactoring: Impure Inputs

Ac: unit = Rfint. c(); c() %S \c: unit — R'int. c()

let counter f' =letv = ref Oin

letc’ () =v:=Wv+1; Ivinf'c
let f = Ac: unit — Rfint. c()
in counter f

Well-typed, since f accepts impure code

Minimal Annotation Burden
unit — R%nt

" must provide default translation

kT(unit) =unit
kT (int) = int
R) = &*(11)— RV K*(72)

Stepping Back...

Correct Compilation of Components

/

\
>
/

specifies behaviors
compiled code may
be linked with

l

€g ~ €T

Correct Compilation of Components

specifies behaviors

compiled code may
. be linked with
S
o VNN
> €g ~ €T

/

r j - Compositional CompCert
- SepCompCert

expreSS|bIe in S - Pilsner

Correct Compilation: Multi-Language

specifies behaviors

compiled code may
'l ’ e IinI[ed with
> g =~ €

7 T

- [Perconti-Ahmed’14]

- Verified Compilers for a
Multi-Language World
[Ahmed SNAPL’15]

|nexpreSS|bIe in S

Correct Compilation: Multi-Language

' j \) e Y

7 SNeT

.
Problem: programmer cannot

reason at source level!
_ y,
/
St
A

‘inexpressible in S |

Fully Abstract Compilation?

hatches

a)
Language specifications are incomplete!

Don’t account for linking
g J

Rethink PL Design with Linking Types

hatches

Design linking types extensions that
support sate interoperability with other
languages

PL Design, Linking Types

w hy
X 4) 3
Y, L Y
|

: affine

cohtinuatians

'Y ' 4
~-"

Only need linking types extensior
iINnteract with behavior inexpressib
your language.

S to
e n

PL Design, Linking Types, Compilers

w hy
X 4 L 3
Y, L Y

1

: affine

cohtinuatians
4

Fully*--"
abstract i i i

compilers

Type d IR modal types /

LLVM

PL Design Linking Types, Compilers

- hy

. aff‘ne .

co(\tlnuathns ' pure .

Fully*--"
abstract i i i i
compilers

+ pure
+ dependent types

LLVM

Typed IR

Linking Types

Allow programmers to reason in almost their own

source languages, even when building multi-language
software

Allow compilers to be fully abstract, yet support
multi-language linking

Conclusion

Compiler Verif. for Multi-Lang. World

* Compositional Compiler Correctness

- horizontal and vertical compositionality

Horizontal / Vertical Compositionality

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner -
+ Neis et al’l 5
Transitivity Compositional CompCert
requires E Stewart et al’l 5 :
effort / E Multi-language ST :

engineering ™. Perconti-Ahmed’| 4 .

Compiler Verif. for Multi-Lang. World

* CompCert started a renaissance in compiler verification
- major advances in mechanized proof

* Now we need: Compositional Compiler Correctness
- but horizontal and vertical compositionality at odds

* Need to rethink proof architectures for compiler
verification to support linking with code of arbitrary
provenance. But want transitivity to be easier!

Verification of redalistic compilers for a multi-language world
demands formal techniques and language design

- compositional equational reasoning
- formal semantics of language interoperability
- types and logics to enforce sensible (safe, secure) linking

- extending our language designs with principled extensions
to replace unprincipled escape hatches

