
Lecture 3

Bluespec System Verilog (BSV):
Concurrency and Semantics

Arvind
Computer Science and Artificial Intelligence Laboratory
M.I.T.

Oregon Programming Language Summer School (OPLSS)
Eugene, OR
July 18, 2018

L3-1

Elastic pipeline
Use FIFOs instead of pipeline registers

x
fifo1inQ

f1 f2 f3

fifo2 outQ

rule stage1;
fifo1.enq(f1(inQ.first));
inQ.deq; endrule

rule stage2;
fifo2.enq(f2(fifo1.first));
fifo1.deq; endrule

rule stage3;
outQ.enq(f3(fifo2.first));
fifo2.deq; endrule

When can stage1 rule fire?

Can these 3 rules execute
concurrently?

- inQ has an element
- fifo1 has space

Without concurrent
execution it is
hardly a pipelined
system

Yes, but it must be
possible to do enq
and deq in a fifo
simultaneously

L3-2

Multirule Systems
Most systems we have seen so far had
multiple rules but only one rule was ready to
execute at any given time (pair-wise mutually
exclusive rules)
Consider a system where multiple rules can be
ready to execute at a given time
 When can two such rules be executed together?
 What does the synthesized hardware look like for

concurrent execution of rules?

L3-3

Meaning of Multi-rule
Systems
Repeatedly:

Select a rule to execute
Compute the state updates
Make the state updates

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

Non-deterministic
choice; User
annotations can
be used in rule
selection

However, for performance we execute multiple
rules concurrently whenever possible

L3-4

Concurrent execution of
rules

Two rules can execute concurrently, if
concurrent execution would not cause a
double-write error, and
The final state can be obtained by executing
rules one-at-a-time in some sequential order

L3-5

Double-Write Error

Parallel composition of actions, and
consequently a rule containing it, is illegal if a
double-write possibility exists
The BSV compiler rejects a program if it there
is any possibility of a double write in a rule or
method

rule one;
y <= 3; x <= 5; x <= 7; endrule Double write

Possibility of a
double write

No double write
rule two;
y <= 3; if (b) x <= 7; else x <= 5; endrule

rule three;
y <= 3; x <= 5; if (b) x <= 7; endrule

L3-6

Can these rules execute concurrently?
(without violating the one-rule-at-a-time-semantics)

rule ra;
x <= x+1;

endrule
rule rb;

y <= y+2;
endrule

Final value of (x,y) (initial values (0,0))
Ex 1 Ex 2 Ex3

Concurrent
Execution (1,2) (1,2) (1,2)

ra<rb (1,2) (1,3) (1,2)

rb<ra (1,2) (3,2) (3,2)

Example 1

No Conflict

rule ra;
x <= y+1;

endrule
rule rb;

y <= x+2;
endrule

Example 2
rule ra;

x <= y+1;
endrule
rule rb;

y <= y+2;
endrule

Example 3

≠ ≠ ≠

Conflict ra<rb
L3-7

Conflict Matrix (CM)
BSV compiler generates the pairwise conflict information

rule ra;
x <= x+1;

endrule
rule rb;

y <= y+2;
endrule

Example 1
rule ra;

x <= y+1;
endrule
rule rb;

y <= x+2;
endrule

Example 2
rule ra;

x <= y+1;
endrule
rule rb;

y <= y+2;
endrule

Example 3

ra rb
ra C CF
rb CF C

ra rb
ra C C
rb C C

ra rb
ra C <
rb > C

ra C rb : rules can’t be executed concurrently
ra < rb : rules can be executed concurrently; the net effect
is as if ra executed before rb
CF: rules can be performed concurrently; the net effect is
the same with both rule orders

L3-8

Conflict Matrix for an
Interface

Conflict Matrix (CM) defines which methods of a
module can be called concurrently
CM for a register:

 Two reads can be performed concurrently
 Two concurrent writes conflict and are not permitted
 A read and a write can be performed concurrently and

it behaves as if the read happened before the write
CM of a register is used systematically to derive
the CM for the interface of a module and the CM
for rules

reg.r reg.w
reg.r CF <
reg.w > C

A few examples...

L3-9

module mkFifo (Fifo#(1, t));
Reg#(t) d <‐ mkRegU;
Reg#(Bool) v <‐ mkReg(False);
method Action enq(t x) if (!v);

v <= True; d <= x;
endmethod
method Action deq if (v);

v <= False;
endmethod
method t first if (v);

return d;
endmethod

endmodule

One-Element FIFO

not full

not empty

not empty

n

n

rdy
enab

rdy
enab

rdy

en
q

de
q

fir
st

FIFO

enq and deq are mutually
exclusive and therefore can
never execute concurrently

This FIFO is not useful
for implementing
pipelined system

enq deq first

enq C C >
deq C C >
first < < CF

L3-10

How about a Two-Element
FIFO?

Initially, both va and vb are false
First enq will store the data in da and mark va
true
An enq can be done as long as vb is false; a
deq can be done as long as va is true

Assume, if there is only
one element in the FIFO,
it resides in dadb da

vb va

L3-11

module mkCFFifo (Fifo#(2, t));
//instantiate da, va, db, vb
rule canonicalize if (vb && !va);
da <= db;
va <= True;
vb <= False;

endrule
method Action enq(t x) if (!vb);
begin db <= x; vb <= True; end

endmethod
method Action deq if (va);
va <= False;

endmethod
method t first if (va);
return da;

endmethod
endmodule

Two-Element FIFO

Both enq and deq can
execute concurrently

db da

vb va

But neither enq or deq
can execute again until
the canonicalize rule
fires!

enq deq first

enq C CF CF
deq CF C >
first CF < CF

L3-12

Many other FIFO designs are
possible

enq deq first

enq C > >
deq < C >
first < < CF

enq deq first

enq C < <
deq > C >
first > < CF

Pipelined FIFO
one can enq into a full
FIFO if a deq is done

simultaneously

Bypass FIFO
one can deq from an

empty FIFO if a enq is
done simultaneously

Design of such FIFOs requires the use of EHRs, registers
with bypasses. Unfortunately, we don’t have time to discuss
them here

L3-13

Hardware generation
using conflict (CM)
information

L3-14

Preliminaries
Recall, BSV compiler generates a combinational
circuit for each rule and method
If rule or method sets a register x then it must
generate both the data and the enable signal
for the register, e.g.
rule foo(p(x)); x <= f(x); endrule

similarly for each action method and
actionValue method

x.en
f

x.datax

p

L3-15

Preliminaries – need for
muxes

x1
v1

v

x
x2
v2

We associate a control wire vi with each value xi; xi
has a meaningful value only if its corresponding vi is
true
When we merge two or more values, at most one vi
should be true at any given time (one-hot-encoding),
i.e., vi’s must be pairwise mutually exclusive
x, x1, and x2 are bit vectors and must have the same
size

x = (v1 & x1) | (v2 & x2)
v = v1 | v2

BSV compiler ensures this
L3-16

Need for conflict
information
module mkEx (...);

Reg#(t) x <‐ mkReg(0);
method Action f(t a);

x <= x+a;
endmethod
method Action g(t b);

x <= b;
endmethod

endmodule

+
fa

f.en

x.data

x.en

x
x.data

x.en

Note at most one of f.en and g.en should be true;
otherwise this circuit is not meaningful
How does the compiler ensure that?
CM to rescue: CM for mkEx will show that methods f and
g conflict and should never be called at the same time

g
b

g.en

x.data

x.en

L3-17

Using CM
module mkEx (...);

Reg#(t) x <‐ mkReg(0);
method Action f(t a);

x <= x+a;
endmethod
method Action g(t b);

x <= b;
endmethod

endmodule

The CM for mkEx will show that
methods f and g conflict

Suppose m <‐ mkEx();

rule ra;... m.f(1); m.g(2);... endrule

rule rb;... m.f(1); ... endrule
rule rc;... m.g(2); ... endrule

ra is an illegal rule

rb and rc should not be
scheduled concurrently,
and executed one by one

how?
L3-18

Concurrent rule execution

This circuit will execute rules ra and rb concurrently
This circuit is correct only if rules ra and rb do not
conflict ( methods f and g of m do not conflict)
Suppose rules ra and rb do conflict!

rule ra(p(x));
m.f(x+1);

endrule
rule rb(q(x));

m.g(x+2)
endrule

m.f.en
+1

m.f.argx ra

pm.f.rdy

m.g.en
+2

m.g.argx
rb

qm.g.rdy

f

g

m

L3-19

Need for a rule scheduler

Guards (gs1 ... gsn) of many rules may be true
simultaneously, and some of them may conflict
BSV compiler constructs a combinational scheduler
circuit with the following property:

rule guard signals
(aka can_fire signals)

will_fire
signalsScheduler

gs1

gsn

wfs1

wfn

for all i and j, if wfsi and wfsj are true then the
corresponding gsi and gsj must be true and
rules i and j must not conflict with each other

L3-20

Circuit with a scheduler

The scheduler is
generated based on
the CM of ra and rb,
which in turn depends
upon the CM of m

rule ra (p(x));
m.f(x+1);

endrule
rule rb (q(x));

m.g(x+2)
endrule

+1x
ra

pm.f.rdy

+2x
rb

qm.g.rdy

f

g

m

Scheduler

Generally a scheduler has small number of gates
A correct but low performance scheduler may
schedule only one rule at a time

L3-21

A more complete picture
need for muxes

Multiple rules may invoke
the same method, so we
need to put a mux in front
of the interface
Again, if the scheduler is
implemented correctly, it is
guaranteed that only one of
the inputs to the mux will
be true (one-hot encoding)

bodyA
ra

gA

bodyB
rb

gB

Scheduler

f

L3-22

Takeaway
One-rule-at-a-time semantics are very important
to understand what behaviors a system can
show
Efficient hardware for multi-rule system requires
that many rules execute in parallel without
violating the one-rule-at-time semantics
BSV compiler builds a scheduler circuit to
execute as many rules as possible concurrently
For high-performance designs we have to worry
about the CM characteristics of our modules

L3-23

Bluespec Semantics

Behaviors that can be
generated by executing rules
one at a time

RTL
(Verilog)

Bluespec: Two-Level Compilation

Rules and Actions
(Term Rewriting System)

• Rule conflict analysis
• Rule scheduling

James Hoe & Arvind
@MIT 1997-2000

Level 2 synthesis

Bluespec
(Objects, Types,

Higher-order functions)

Level 1 compilation
• Type checking
• Massive partial evaluation

and static elaboration

Lennart Augustsson
@Sandburst 2000-2002

Now we call this
Guarded Atomic
Actions

L3-25

Static Elaboration

.exe

compile

design2 design3design1

elaborate
w/params

run1run1run2.1
…

run1run1run3.1
…

run1run1run1.1
…

run w/
params

run w/
params

run1run1
…

run

At compile time
 Inline function calls and unroll loops
 Instantiate modules with specific parameters
 Resolve polymorphism/overloading, perform most

data structure operations

source
Software
Toolflow: source

Hardware
Toolflow:

L3-26

GAA Execution model
Repeatedly:

 Select a rule to execute
 Compute the state updates
 Make the state updates

Non-deterministic
choice

L3-27

BSV Kernel syntax
(monadic style)
Expression

e ::= c | x | op(e)
Action

a ::= let x = r in a
| r := e ; a
| let x = f (e) in a
| let x = e in a
| if e then a ; a
| assert e ; a
| return e

Module
m ::= r , c *, s, a *, f , λx. a * | m + m

Conditional action

Method call

Guarded action

Register read
Register assignment

Let binding

Needed to extract the
result of an action

Registers with
initial values

Rules Methods

L3-28

No recursion: methods of
only other modules can be
called from a module

Non-modular operational
semantics

Arvind, Nirav Dave, Michael Pellauer
2007

Semantics of executing an
action

O is the set of values of all the registers in all
the modules before action a executes
U is the set of register updates implied by the
execution of a (initially U is empty)
v is the value returned as a consequence of
executing a

O├ a  (U,v)

L3-30

Action Semantics

reg-update [[e]] = vr O├ a  (U,v)
O├ (r := e; a)  (U  {(r, vr)}, v)

reg-read O├ [O(r)/x]a  (U,v)
O├ (Let x = r; a)  (U,v)

let-action [[e]] = vx O├ [vx/x]a  (U,v)
O├ (x = e; a)  (U, v)

L3-31

 represents a disjoint union;
Otherwise it is a double-write error

method call [[e]] = vy f = y.b O├ [vy/y]b  (Uf,vx)
O├ [vx /x]a  (U,v)

O├ (x = f(e); a)  (Uf  U, v)

Action Semantics continued

assert [[e]] = True O├ a  (U,v)
O├ (assert e; a)  (U,v)

return [[e]] = v
O├ (return e)  ({},v)

L3-32

If-True [[e]] = True O├ aT  (UT, -) O├ a  (U,v)
O├ (if e then aT, a)  (UT  U, v)

If-False [[e]] = False O├ a  (U,v)
O├ (if e then aT ,a)  (U,v)

The system will
get stuck if the
assertion fails

State transition
rule <s, a>  rulesOf(m) O├ a  (U,-)

O├ (rule s)  O[U]
where O[U] is the set of register values O updated
by U

Behavior: sequence of state changes
<s,a>  rulesOf(m) On├ (rule s)  On+1

<O0, ... , On>, m ├ <O0, ... , On, On+1>
where O0 is the initial register values

L3-33

[[m]], the meaning of a module, is the set of all
behaviors, given the initial register values

Module Refinement

One may want to observe state changes only in
a subset of registers for refinement purposes
If two sequences contain the same final state
given the same initial state, we treat them as
congruent or equivalent
A system is deterministic if all its behaviors for
a given input are congruent

L3-34

m1  m2 (m1 refines m2) if [[m1]]  [[m2]]

Modular semantics

Murali Vijayaraghavan,
Adam Chlipala
2016

Modular semantics
The operational semantics we have given so
are non modular because the method call rule
looks inside the module of the called method

For modular semantics we need to assume the
result returned by the called method and
record it in a label
Later we reconcile the labels when two
modules communicate

L3-36

method call [[e]] = vy f = y.b O├ [vy/y]b  (Uf,vx)
O├ [vx /x]a  (U,v)

O├ (x = f(e); a)  (Uf  U, v)

Modular semantics: Action

reg-update [[e]] = vr O, m ├ a  (U,v), l
O, m ├ (r := e; a)  (U  {(r, vr)}, v), l

reg-read O, m ├ [O(r)/x]a  (U,v), l
O, m ├ (Let x = r; a)  (U,v), l

Let-action [[e]] = vx O, m ├ [vx/x]a  (U,v), l
O, m ├ (x = e; a)  (U, v), l

L3-37

 represents a disjoint union of labels;
Otherwise it is a double-method call error

method call [[e]] = vy O, m ├ [vx /x]a  (U,v), l
O, m ├ (x = f(e); a)  (U, v), {<f,vy,vx>}  l

vx is a free variable to
represent the value
returned by a method call

f must not be a method of module m

Modular Semantics: actions
continued

assert [[e]] = True O, m ├ a  (U,v), l
O, m ├ (assert e; a)  (U,v), l

return [[e]] = v
O, m ├ (return e)  ({},v), {}

L3-38

If-True [[e]] = True O, m ├ aT  (UT, -), lT
O, m ├ a  (U,v) , l

O, m├ (if e then aT, a)  (UT  U, v), lT  l

If-False [[e]] = False O, m├ a  (U,v), l
O, m├ (if e then aT ,a)  (U,v), l

empty label

Special Initial label: 
Rule

<s, a>  rulesOf(m) O, m├ a  (U,-), l
O, m├ (rule s)  U,   l

L3-39

There can be only one  in l, thus l1 l2 is defined
only if the following holds:

1. if   l1 then   l2
2. if   l2 then   l1

Incoming method calls

L3-40

empty-method

O, m├ (empty-method)  {}, {}

method calls
<f, x.a>  methodsOf(m) f in not in call set x
O, m├ (x)  U1, l1 O, m├ [vx/x]a  (U2,v), l2

O, m ├ (x  f(vx))  U1 U2, l1  {<f , vx ,v>}  l2

A rule in a module can call several methods of another
module concurrently; thus, we need to give semantics for
concurrent method calls of a module

Notice the underline

Discharging a method call
discharge

O1├ m1  U1, l1 O2├ m2  U2, l2 compatible(l1,l2)
<O1, O2>├ m1+m2  <U1,U2>, (l1  l2)/(m1,m2)
where
compatible(l1,l2) means
1. if <f,x,y>  l1 and f  methodsOf(m2) then <f,x,y>  l2
2. if <f,x,y>  l2 and f  methodsOf(m1) then <f,x,y>  l1

(l1  l2)/(m1,m2) means (l1  l2) where all the matching
labels from m1 and m2 have been deleted

L3-41

State transition
rule-state-transition

<O1,...,On>├ m1+...+mn  <U1,...,Un>, 
<O1,...,On>├ m1+...+mn  <O1[U1], ..., On[Un]>

L3-42

Behavior: sequence of state changes

where OV = <O1,...,On> is the vector of the register values
in all the modules and OV0 is the vector of initial values

<s,a>  rulesOf(m)b OVk├ (rule s)  OVk+1

<OV0, ... , OVk>, m ├ <OV0, ... , OVk, OVk+1>

Labelled transitions
[[m]], the meaning of a module, is the set of
labels a module can produce by applying its rules
given the initial register values (closure of )

Modular refinement theorem

we don’t have to look inside B to refine A!

L3-43

m1  m2 (m1 refines m2) if [[m1]]  [[m2]]

if A’  A (A’ refines A) then (A’+B)  (A+B)

Syntactic merger: +s
Let m1 = r1 , c1 *, s1, a1 *, f1 , λx. a *

m2 = r2 , c2 *, s2, a2 *, f2 , λx. a *
where the identifiers in the two modules are pairwise disjoint,
then
m1+s m2 produces a new module m by merging
modules m1 and m2 such that

1. inline methods of m2 called in m1 and then delete those
method definitions from m2
2. inline methods of m1 called in m2 and then delete those
method definitions from m1
3. Methods of m are the union of methods remaining in m1
and m2

Theorem: [[m1 +s m2]] = [[m1 + m2]]

L3-44

Summary
BSV is being used by us and many other
companies to design extremely sophisticated
hardware
The is no discernable impact on the quality of
hardware being produced
Adam Chlipala and collaborators have built
Kami, a system for writing mechanically
checked proofs for BSV programs
We are teaching our introductory logic design
and computer architecture class using BSV

L3-45

It is the nature of a man as he
grows older, ..., to protest
against change, particularly
change for the better.

Travels with Charlie
John Steinbeck

