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Elastic pipeline
Use FIFOs instead of pipeline registers

x
fifo1inQ

f1 f2 f3

fifo2 outQ

rule stage1;
fifo1.enq(f1(inQ.first));
inQ.deq; endrule

rule stage2;
fifo2.enq(f2(fifo1.first)); 
fifo1.deq; endrule

rule stage3;
outQ.enq(f3(fifo2.first)); 
fifo2.deq; endrule

When can stage1 rule fire?

Can these 3 rules execute 
concurrently?

- inQ has an element
- fifo1 has space

Without concurrent 
execution it is 
hardly a pipelined 
system

Yes, but it must be 
possible to do enq
and deq in a fifo
simultaneously
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Multirule Systems
Most systems we have seen so far had 
multiple rules but only one rule was ready to 
execute at any given time (pair-wise mutually 
exclusive rules)
Consider a system where multiple rules can be 
ready to execute at a given time
 When can two such rules be executed together? 
 What does the synthesized hardware look like  for 

concurrent execution of rules?
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Meaning of Multi-rule 
Systems
Repeatedly:

Select a rule to execute 
Compute the state updates 
Make the state updates

One-rule-at-a-time-semantics: Any legal 
behavior of a Bluespec program can be 
explained by observing the state updates 
obtained by applying only one rule at a time

Non-deterministic 
choice; User 
annotations can 
be used in rule 
selection

However, for performance we execute multiple 
rules concurrently whenever possible
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Concurrent execution of 
rules

Two rules can execute concurrently, if 
concurrent execution would not cause a 
double-write error, and
The final state can be obtained by executing 
rules one-at-a-time in some sequential order
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Double-Write Error

Parallel composition of actions, and 
consequently a rule containing it, is illegal if a 
double-write possibility exists 
The BSV compiler rejects a program if it there 
is any possibility of a double write in a rule or 
method

rule one; 
y <= 3; x <= 5; x <= 7; endrule Double write

Possibility of a 
double write

No double write
rule two; 
y <= 3; if (b) x <= 7; else x <= 5; endrule

rule three; 
y <= 3; x <= 5; if (b) x <= 7; endrule
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Can these rules execute concurrently?
(without violating the one-rule-at-a-time-semantics) 

rule ra;
x <= x+1; 

endrule
rule rb;

y <= y+2; 
endrule

Final value of (x,y) (initial values (0,0)) 
Ex 1 Ex 2 Ex3

Concurrent
Execution (1,2) (1,2) (1,2)

ra<rb (1,2) (1,3) (1,2)

rb<ra (1,2) (3,2) (3,2)

Example 1

No Conflict

rule ra;
x <= y+1; 

endrule
rule rb;

y <= x+2; 
endrule

Example 2
rule ra;

x <= y+1; 
endrule
rule rb;

y <= y+2; 
endrule

Example 3

≠ ≠ ≠

Conflict ra<rb
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Conflict Matrix (CM)
BSV compiler generates the pairwise conflict information

rule ra;
x <= x+1; 

endrule
rule rb;

y <= y+2; 
endrule

Example 1
rule ra;

x <= y+1; 
endrule
rule rb;

y <= x+2; 
endrule

Example 2
rule ra;

x <= y+1; 
endrule
rule rb;

y <= y+2; 
endrule

Example 3

ra rb
ra C CF
rb CF C

ra rb
ra C C
rb C C

ra rb
ra C <
rb > C

ra C rb : rules can’t be executed concurrently
ra < rb : rules can be executed concurrently; the net effect 
is as if ra executed before rb
CF: rules can be performed concurrently; the net effect is 
the same with both rule orders
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Conflict Matrix for an 
Interface

Conflict Matrix (CM) defines which methods of a 
module can be called concurrently
CM for a register: 

 Two reads can be performed concurrently
 Two concurrent writes conflict and are not permitted
 A read and a write can be performed concurrently and 

it behaves as if the read happened before the write
CM of a register is used systematically to derive 
the CM for the interface of a module and the CM 
for rules

reg.r reg.w
reg.r CF <
reg.w > C

A few examples...
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module mkFifo (Fifo#(1, t));
Reg#(t)    d  <‐ mkRegU; 
Reg#(Bool) v  <‐ mkReg(False);
method Action enq(t x) if (!v);

v <= True; d <= x;
endmethod
method Action deq if (v);

v <= False;
endmethod
method t first if (v);

return d;
endmethod

endmodule

One-Element FIFO

not full

not empty

not empty

n

n

rdy
enab

rdy
enab

rdy

en
q

de
q

fir
st

FIFO

enq and deq are mutually 
exclusive and therefore can 
never execute concurrently

This FIFO is not useful 
for implementing  
pipelined system

enq deq first

enq C C >
deq C C >
first < < CF
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How about a Two-Element 
FIFO?

Initially, both va and vb are false
First enq will store the data in da and mark va
true
An enq can be done as long as vb is false; a 
deq can be done as long as va is true

Assume, if there is only 
one element in the FIFO, 
it resides in dadb da

vb va
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module mkCFFifo (Fifo#(2, t));
//instantiate da, va, db, vb
rule canonicalize if (vb && !va);
da <= db;
va <= True;
vb <= False;

endrule
method Action enq(t x) if (!vb);
begin db <= x; vb <= True; end

endmethod
method Action deq if (va);
va <= False;

endmethod
method t first if (va);
return da;   

endmethod
endmodule

Two-Element FIFO

Both enq and deq can 
execute concurrently

db da

vb va

But neither enq or deq
can execute again until 
the canonicalize rule 
fires! 

enq deq first

enq C CF CF
deq CF C >
first CF < CF
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Many other FIFO designs are 
possible

enq deq first

enq C > >
deq < C >
first < < CF

enq deq first

enq C < <
deq > C >
first > < CF

Pipelined FIFO
one can enq into a full 
FIFO if a deq is done 

simultaneously

Bypass FIFO
one can deq from an 

empty FIFO if a enq is 
done simultaneously

Design of such FIFOs requires the use of EHRs, registers 
with bypasses. Unfortunately, we don’t have time to discuss 
them here
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Hardware generation
using conflict (CM) 
information
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Preliminaries
Recall, BSV compiler generates a combinational 
circuit for each rule and method
If rule or method sets a register x then it must 
generate both the data and the enable signal 
for the register, e.g.
rule foo(p(x)); x <= f(x); endrule

similarly for each action method and 
actionValue method

x.en
f

x.datax

p
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Preliminaries – need for 
muxes

x1
v1

v

x
x2
v2

We associate a control wire vi with each value xi; xi
has a meaningful value only if its corresponding vi is 
true
When we merge two or more values, at most one vi 
should be true at any given time (one-hot-encoding), 
i.e., vi’s must be pairwise mutually exclusive
x, x1, and x2 are bit vectors and must have the same 
size

x = (v1 & x1) | (v2 & x2)
v = v1 | v2  

BSV compiler ensures this
L3-16



Need for conflict 
information
module mkEx (...);

Reg#(t) x <‐ mkReg(0);  
method Action f(t a); 

x <= x+a;
endmethod
method Action g(t b); 

x <= b;
endmethod

endmodule

+
fa

f.en

x.data

x.en

x
x.data

x.en

Note at most one of f.en and g.en should be true; 
otherwise this circuit is not meaningful
How does the compiler ensure that?
CM to rescue: CM for mkEx will show that methods f and 
g conflict and should never be called at the same time

g
b

g.en

x.data

x.en
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Using CM
module mkEx (...);

Reg#(t) x <‐ mkReg(0);  
method Action f(t a); 

x <= x+a;
endmethod
method Action g(t b); 

x <= b;
endmethod

endmodule

The CM for mkEx will show that 
methods f and g conflict

Suppose m <‐ mkEx();

rule ra;... m.f(1); m.g(2);... endrule

rule rb;... m.f(1); ... endrule
rule rc;... m.g(2); ... endrule

ra is an illegal rule

rb and rc should not be 
scheduled concurrently, 
and executed one by one

how?
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Concurrent rule execution

This circuit will execute rules ra and rb concurrently
This circuit is correct only if rules ra and rb do not 
conflict ( methods f and g of m do not conflict) 
Suppose rules ra and rb do conflict!

rule ra(p(x));
m.f(x+1); 

endrule
rule rb(q(x));

m.g(x+2)
endrule

m.f.en
+1

m.f.argx ra

pm.f.rdy

m.g.en
+2

m.g.argx
rb

qm.g.rdy

f

g

m
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Need for a rule scheduler

Guards (gs1 ... gsn) of many rules may be true 
simultaneously, and some of them may conflict
BSV compiler constructs a combinational scheduler 
circuit with the following property:

rule guard signals
(aka can_fire signals)

will_fire
signalsScheduler

gs1

gsn

wfs1

wfn

for all i and j, if wfsi and wfsj are true then the
corresponding gsi and gsj must be true and
rules i and j must not conflict with each other
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Circuit with a scheduler

The scheduler is 
generated based on 
the CM of ra and rb, 
which in turn depends 
upon the CM of m

rule ra (p(x));
m.f(x+1); 

endrule
rule rb (q(x));

m.g(x+2)
endrule

+1x
ra

pm.f.rdy

+2x
rb

qm.g.rdy

f

g

m

Scheduler

Generally a scheduler has small number of gates
A correct but low performance scheduler may 
schedule only one rule at a time 
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A more complete picture
need for muxes

Multiple rules may invoke 
the same method, so we 
need to put a mux in front 
of the interface
Again, if the scheduler is 
implemented correctly, it is 
guaranteed that only one of 
the inputs to the mux will 
be true (one-hot encoding)

bodyA
ra

gA

bodyB
rb

gB

Scheduler

f
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Takeaway
One-rule-at-a-time semantics are very important 
to understand what behaviors a system can 
show
Efficient hardware for multi-rule system requires 
that many rules execute in parallel without 
violating the one-rule-at-time semantics
BSV compiler builds a scheduler circuit to 
execute as many rules as possible concurrently
For high-performance designs we have to worry 
about the CM characteristics of our modules
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Bluespec Semantics

Behaviors that can be 
generated by executing rules 
one at a time



RTL
(Verilog)

Bluespec: Two-Level Compilation

Rules and Actions
(Term Rewriting System)

• Rule conflict analysis
• Rule scheduling

James Hoe & Arvind
@MIT 1997-2000

Level 2 synthesis

Bluespec
(Objects, Types,

Higher-order functions)

Level 1 compilation
• Type checking
• Massive partial evaluation

and static elaboration

Lennart Augustsson
@Sandburst 2000-2002

Now we call this 
Guarded Atomic 
Actions
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Static Elaboration

.exe

compile

design2 design3design1

elaborate 
w/params

run1run1run2.1
…

run1run1run3.1
…

run1run1run1.1
…

run w/
params

run w/
params

run1run1
…

run

At compile time
 Inline function calls and unroll loops
 Instantiate modules with specific parameters
 Resolve polymorphism/overloading, perform most 

data structure operations

source
Software
Toolflow: source

Hardware
Toolflow:
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GAA Execution model
Repeatedly:

 Select a rule to execute 
 Compute the state updates 
 Make the state updates

Non-deterministic 
choice
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BSV Kernel syntax 
(monadic style)
Expression 

e ::= c | x | op(e)
Action 

a ::= let x = r in a
| r := e ; a
| let x = f (e) in a
| let x = e in a
| if e then a ; a
| assert e ; a
| return e

Module 
m ::= r , c *, s, a *, f , λx. a * | m + m

Conditional action

Method call

Guarded action

Register read
Register assignment

Let binding

Needed to extract the 
result of an action

Registers with 
initial values

Rules Methods

L3-28

No recursion: methods of 
only other modules can be 
called from a module



Non-modular operational 
semantics

Arvind, Nirav Dave, Michael Pellauer
2007



Semantics of executing an 
action

O is the set of values of all the registers in all 
the modules before action a executes
U is the set of register updates implied by the 
execution of a (initially U is empty)
v is the value returned as a consequence of 
executing a

O├ a  (U,v)
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Action Semantics

reg-update    [[e]] = vr O├ a  (U,v)
O├ (r := e; a)  (U  {(r, vr)}, v)

reg-read      O├ [O(r)/x]a  (U,v)
O├ (Let x = r; a)  (U,v)

let-action    [[e]] = vx O├ [vx/x]a  (U,v)
O├ (x = e; a)  (U, v)

L3-31

 represents a disjoint union;
Otherwise it is a double-write error 

method call    [[e]] = vy f = y.b O├ [vy/y]b  (Uf,vx)
O├ [vx /x]a  (U,v)

O├ (x = f(e); a)  (Uf  U, v)



Action Semantics  continued

assert      [[e]] = True     O├ a  (U,v)
O├ (assert e; a)  (U,v)

return                  [[e]] = v
O├ (return e)  ({},v)
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If-True   [[e]] = True   O├ aT  (UT, -)  O├ a  (U,v)  
O├ (if e then aT, a)  (UT  U, v)

If-False   [[e]] = False     O├ a  (U,v)
O├ (if e then aT ,a)  (U,v)

The system will 
get stuck if the 
assertion fails



State transition
rule     <s, a>  rulesOf(m)      O├ a  (U,-)

O├ (rule s)  O[U]
where O[U] is the set of register values O updated 
by U

Behavior: sequence of state changes
<s,a>  rulesOf(m)    On├ (rule s)  On+1

<O0, ... , On>, m ├ <O0, ... , On, On+1>
where O0 is the initial register values 

L3-33

[[m]], the meaning of a module, is the set of all 
behaviors, given the initial register values



Module Refinement 

One may want to observe state changes only in 
a subset of registers for refinement purposes
If two sequences contain the same final state 
given the same initial state, we treat them as 
congruent or equivalent
A system is deterministic if all its behaviors for 
a given input are congruent
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m1  m2 (m1 refines m2) if [[m1]]  [[m2]] 



Modular semantics

Murali Vijayaraghavan, 
Adam Chlipala
2016



Modular semantics
The operational semantics we have given so 
are non modular because the method call rule 
looks inside the module of the called method

For modular semantics we need to assume the 
result returned by the called method and 
record it in a label 
Later we reconcile the labels when two 
modules communicate  
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method call    [[e]] = vy f = y.b   O├ [vy/y]b  (Uf,vx)
O├ [vx /x]a  (U,v)

O├ (x = f(e); a)  (Uf  U, v)



Modular semantics: Action

reg-update    [[e]] = vr O, m ├ a  (U,v), l
O, m ├ (r := e; a)  (U  {(r, vr)}, v), l

reg-read      O, m ├ [O(r)/x]a  (U,v), l
O, m ├ (Let x = r; a)  (U,v), l

Let-action    [[e]] = vx O, m ├ [vx/x]a  (U,v), l
O, m ├ (x = e; a)  (U, v), l

L3-37

 represents a disjoint union of labels;
Otherwise it is a double-method call error 

method call [[e]] = vy O, m  ├ [vx /x]a  (U,v), l
O, m  ├ (x = f(e); a)  (U, v), {<f,vy,vx>}  l

vx is a free variable to 
represent the value 
returned by a method call

f must not be a method of module m



Modular Semantics: actions  
continued

assert      [[e]] = True     O, m ├ a  (U,v), l
O, m ├ (assert e; a)  (U,v), l

return                  [[e]] = v
O, m ├ (return e)  ({},v), {}
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If-True   [[e]] = True   O, m ├ aT  (UT, -), lT
O, m ├ a  (U,v) , l 

O, m├ (if e then aT, a)  (UT  U, v), lT  l

If-False   [[e]] = False     O, m├ a  (U,v), l
O, m├ (if e then aT ,a)  (U,v), l

empty label



Special Initial label: 
Rule

<s, a>  rulesOf(m)       O, m├ a  (U,-), l
O, m├ (rule s)  U,    l

L3-39

There can be only one  in l, thus l1 l2 is defined 
only if the following holds:

1. if   l1 then   l2
2. if   l2 then   l1



Incoming method calls
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empty-method 

O, m├ (empty-method)  {}, {}

method calls 
<f, x.a>  methodsOf(m)     f in not in call set x
O, m├ (x)  U1, l1 O, m├ [vx/x]a  (U2,v), l2

O, m ├ (x  f(vx))  U1 U2,   l1  {<f , vx ,v>}  l2

A rule in a module can call several methods of another 
module concurrently; thus, we need to give semantics for 
concurrent method calls of a module 

Notice the underline



Discharging a method call
discharge

O1├ m1  U1, l1 O2├ m2  U2, l2 compatible(l1,l2)
<O1, O2>├ m1+m2  <U1,U2>, (l1  l2)/(m1,m2)
where 
compatible(l1,l2) means 
1. if <f,x,y>  l1 and f  methodsOf(m2) then <f,x,y>  l2
2. if <f,x,y>  l2 and f  methodsOf(m1) then <f,x,y>  l1

(l1  l2)/(m1,m2) means (l1  l2) where all the matching 
labels from m1 and m2 have been deleted
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State transition
rule-state-transition

<O1,...,On>├ m1+...+mn  <U1,...,Un>, 
<O1,...,On>├ m1+...+mn  <O1[U1], ..., On[Un]>

L3-42

Behavior: sequence of state changes

where OV = <O1,...,On> is the vector of the register values 
in all the modules and OV0 is the vector of initial values

<s,a>  rulesOf(m)b    OVk├ (rule s)  OVk+1

<OV0, ... , OVk>, m ├ <OV0, ... , OVk, OVk+1>



Labelled transitions
[[m]], the meaning of a module, is the set of 
labels a module can produce by applying its rules 
given the initial register values (closure of )

Modular refinement theorem

we don’t have to look inside B to refine A!
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m1  m2 (m1 refines m2) if [[m1]]  [[m2]] 

if A’  A (A’ refines A) then (A’+B)  (A+B) 



Syntactic merger: +s
Let  m1 = r1 , c1 *, s1, a1 *, f1 , λx. a *

m2 = r2 , c2 *, s2, a2 *, f2 , λx. a *
where the identifiers in the two modules are pairwise disjoint, 
then
m1+s m2 produces a new module m by merging 
modules m1 and m2 such that 

1. inline methods of m2 called in m1 and then  delete those 
method definitions from m2
2. inline methods of m1 called in m2 and then  delete those 
method definitions from m1
3. Methods of m are the union of methods remaining in m1 
and m2

Theorem: [[m1 +s m2]] = [[m1 + m2]]
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Summary
BSV is being used by us and many other 
companies to design extremely sophisticated 
hardware
The is no discernable impact on the quality of 
hardware being produced
Adam Chlipala and collaborators have built 
Kami, a system for writing mechanically 
checked proofs for BSV programs
We are teaching our introductory logic design 
and computer architecture class using BSV 
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It is the nature of a man as he 
grows older, ..., to protest 
against change, particularly 
change for the better.

Travels with Charlie 
John Steinbeck


