Cost Models based on the
A-Calculus

or

The Church Calculus
the Other Turing Machine

Guy Blelloch

Carnegie Mellon University

Church/Turing
Hypothesis

(Ax.e;)e; = e;lex/x]

A: OPLSS

Machine Models and Simulation

Handbook of Theoretical Computer Science

Chapter 1: Machine Models and Simulations
[Peter van Emde Boas]

Machine Models [2"? paragraph]

“If one wants to reason about complexity
measures such as time and space consumed by

an algorithm, then one must specify precisely
what notions of time and space are meant.

The conventional notions of time and space
complexity within theoretical computer science

are based on the implementation of algorithms

language-based cost models

A: OPLSS

Simulation [3" paragraph]

“Even if we base complexity theory on abstract
instead of concrete machines, the arbitrariness

of the choice of model remains. Itis at this
point that the notion of simulation enters. If we

present mutual simulations between two
models and give estimates for the time and

space overheads incurred by performing these
simulations...”

Machine Models

Goes on for over 50 pages on machine models

Turing Machines
— 1 tape, 2 tape, m tapes
— 2 stacks
— 2 counter, m counters,
— multihead tapes,
— 2 dimensional tapes
— various state transitions

Machine Models

Random Access Machines

— SRAM (succ, pred)

— RAM (add, sub)

— MRAM (add, sub, mult)

— LRAM (log length words)

— RAM-L (cost of instruction is word length)
Pointer Machines

— SMM, KUM, pure, impure
Several others

Some Simulation Results (Time)

SRAM(time n) < TM(time n2 log n)
RAM(time n) < TM(time n3)
RAM-L(time n) < TM(time n2)
LRAM(time n) < TM(time n2 log n)
MRAM(time n) < TM(time Exp)

TM(time n) < SRAM(time n)
TM(time n) < RAM(time n/log n)

Parallel Machine Models

 Circuit models
e PSPACE

 TM with alternation
* Vector models
e PRAM
— EREW, CREW, CRCW (priority, arbitrary, ...)
 SIMDAG

* k-PRAM, MIND-RAM, PTM

The two parts

Part 1: The model
— Well defined semantics
— Simple
— Close to programming paradigm

Part 2: Simulatation

— Mapping of costs

— Good bounds when simulated on realistic
machines

Church/Turing

(Ax.e;)e; = e;lex/x]

f

For Costs?

13

Language-Based Cost Models

A cost model based on a “cost semantics” instead of
a machine.

Why use the A-calculus? historically the first model,
a very clean model, well understood.

What costs? Number of reduction steps is the
simplest cost, but as we will see, not sufficient
(e.g. space, parallelism).

Language-Based Cost Models

Advantages over machine models:

— naturally parallel (parallel machine models are
messy)

— more elegant
— model is closer to code and algorithms

— closer in terms of simulation costs to “practical”
machine models such as the RAM.

Disadvantages:
— 50 years of history

Work in this area

SECD machine [Landin 1964]
CBN, CBV and the A-Calculus [Plotkin 1975]

Cost Semantics [Sands, Roe,]
Call-by-value A-Calculus [BG 1995, FPGA

CBV A-Calculus with Arrays [BG 1996, ICFP]
Call-by-need/speculation [BG 1996, POPL]

Various recent work [Martini, Dal Lago,
Accattoli, SGM,...

CVB cache model [BH 2012, POPL]

Work in this area

SECD machine [Landin 1964]
CBN, CBV and the A-Calculus [Plotkin 1975]

Cost Semantics [Sands, Roe,]
Call-by-value A-Calculus [BG 1995, FPGA

CBV A-Calculus with Arrays [BG 1996, ICFP]
Call-by-need/speculation [BG 1996, POPL]

Various recent work [Martini, Dal Lago,
Accattoli, SGM,...

CVB cache model [BH 2012, POPL]

Call-by-value A-calculus

e=xl(e e,)|Ax. e

Call-by-value A-calculus

el v relation

M.e | Ax.e (LAM)

e dAx.e e v elv/x]|V

APP
(e, e,) | V' ()

The A-calculus is Parallel

e, | Ax.e e, v elv/ix]|V

€ erV'

(APP)

It is “safe” to evaluate e; and e, in parallel

But what is the cost model?
How does it compare to other parallel models?

Part 1: Cost Model
el v;w,d

Reads: expression e evaluates to v with work w
and span d.

 Work (W): sequential work
* Span (D): parallel depth

Span captures dependence depth

The Parallel A-calculus: cost model

Ax.e | Ax. e; (LAM)

e, | Ax. e;.m e, | v;.E e[v/x]| v';.@ (APP)
s b M+ e +

Work adds
Span adds sequentially,

and max in parallel

A: OPLSS 22

The Parallel A-calculus: cost model

Ax.e | Ax. e; (LAM)

e, | Ax. e;.m e, | v;.E e[v/x]| v';.@ (APP)
s b M+ e +

let, letrec, datatypes, tuples, case-statement can all
be implemented with constant overhead

Integers and integer operations (+, <, ...) can be added
as primitives or implemented with O(log n) cost.

A: OPLSS

Defining basic types and constructs

Recursive Data types

pair=Axy.(Af.fxy))
first=Ap.p (A xy.x) second=Ap.p(Axy.y)

Local bindings
letvalx=e;ineend = (Ax.e)e;

Conditionals
true=A xy. x false=Axy.y
ife,thene,elsee; = ((A\p. (Axy.pxy))e)) e €3
Recursion
Y-combinator (CBV version)

Integers (logarithmic overhead)
List of bits (true/false values)
Church numerals do not work in CBV

A\: OPLSS Nx.F(F(f (FX)))

Part 2: The Simulation

Simulate on a RAM (sequential) or PRAM
(parallel).

— What about cost of substitution, or variable
lookup?

— What about finding a redux?
Can be done efficienctly

- implement with sharing via a store or
environment. If using an environment variable
lookup is “cheap”

Simulation (sequential)

CEK machine : a state transition system
(C,E,K)=> (C'E",K")

“control” C:=eqje, | Ax.e | x

“environment” E i=x - v

“continuation” K := done | arg(e,E,K) | fun(e,E,K)

Simulation (sequential)

CEK machine : a state transition system
(C,E,K)=> (C'E",K")

(e1e,,E,K) = (eq,E,arg(e,, E,K))
(x,E,K) = (E(x),E, K)
(v,E,arg(e,E',K)) = (e ,E, fun(v,E,K))
(v,E, fun(Ax.e,E',K)) = (e ,E' + (x - v),K)

Simulation (parallel)

P-CEK machine : another state transition system
((C1» E11K1): (Cz» Ez' Kz)») = ((C,v Ell' K,1)» (Clz»Elz' Klz)»)

Each step makes multiple operations in parallel:
(e, e,,E,K) = ((e,,E, fun(l,K)), (e, ,E,arg(l,K))) new |

Need to "synchronize” on |

Part 2: The Simulation Bounds

Theorem [FPCA95]:If ¢ | v; w,d then v can be
calculated from e on a CREW PRAM with p
pProcessors in 0(W+d10gp) time.

pP

Can’ t really do better than:max(ﬁ,d)

11]? 7
If w/p >d log pthen "work dominates

We refer to w/p as the parallelism.

The Parallel A-calculus
(including constants)

c o[} (CONST)

e b cfil] ey vllE] o by e
eve, | v's MRl + max(d,.d,)

C =O,...,n,+,+0,...,+

<< s < 5 X, X g, 00, X oo (constants)

n? n?

A: OPLSS 30

Quicksort in the A-Calculus

fun gsort S =
if (size(S) <= 1) then S
else
let val a = randelt S
val S1 = filter (fn x => x < a) S
val S2 filter (fn x => x a) S

val S3 filter (fn x => x > a) S

in
append (gsort S1) (append S2 (gsort S3))
end

Qsort on Lists

fun gsort [] = []

| gsort S =
let val a:: =S
val Si1 = filter (fn x => x < a) S
val S2 = filter (fn x => x a) S

filter (fn x => x > a) S

val Ss
in
append (gsort S:) (append S2 (gsort Ss3))
end

Qsort Complexity

All bounds expected case
Sequential Partition over all inputs of size n
Parallel calls

Work = O(n log n)

(less than, ...)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'> .
Span = O(n) Parallelism = O(log n)

Not a very good parallel algorithm

A: OPLSS 33

Tree Quicksort

datatype ‘a seq = Empty
| Leaf of ‘a
| Node of ‘a seq * ‘a seq

fun append Empty b = b
| append a Empty = a
| append a b = Node(a,b)

fun filter f Empty = Empty
| £ilter £ (Leaf x) =
if (f x) the Leaf x else Empty
| £ilter £ Node(l,r) =
append (filter £ 1) (filter f r)

Tree Quicksort

fun gsort Empty = Empty
| gsort S =
let val a = first S
val Si1 = filter (fn x => x < a) S
val S2 = filter (fn x => x a) S
filter (fn x => x > a) S

val Ss
in
append (gsort S:) (append S2 (gsort Ss3))
end

Qsort Complexity

Parallel partition Span = O(lg n)
Parallel calls

Work = O(n log n)

All expected case

lllllllllllllllllllllllllllll.'>
Span = O(lg?n)

A good parallel algorithm Parallelism = O(n/log n)

A: OPLSS 36

Remember: Cost Composition

Sequential Add Add
Parallel Add Max

Recurrences For Divide and Conquer:

W(n) = 2W (l;) + Wsplit (n) + VVjoin (Tl)

S() = 5 (5) + Sepuie () + Sy ()

A: OPLSS

37

Cost Composition: Example

Mergesort:
Merge: W(n) = O(n), S(n) = O(log n)
Mergesort:
W(n) =2 W(n/2) + O(n)
= O(n log n)
S(n) =S(n/2) + O(log n)
= O(log? n)

Adding Functional Arrays: NESL

tabulate f e
fl Ax.e’;w,d

el n;w', d"
e'li forx]Uv';;w;,d; i€{l.n}
tabulate fe l [v'y ..V ;w+w +Xw;,d+ d + max(d;)

Other Primitives:

<- : ‘a seq * (int,’a) seq -> ‘a seq
* [quIxIYIS] <- [(0/ 0)1(315)1(211)]
[o,P,1,s,s]

elt,s 1index, length

Conclusions

2 parts to a cost mode:

— Model itself
— Simulation results

A-calculus good for modeling:
— An actual programming modlel

— sequential time (work) — closely matches RAM

— parallel time (nested parallelism) — closely
matches PRAM

