
Foundations of Programming Languages

Paul Downen

July 3–8, 2018

2

Contents

1 Static and Dynamic Semantics of a Little Language 7
1.1 Syntax . 7
1.2 Static Scope . 8
1.3 Substitution . 8
1.4 Renaming: α equivalence . 11
1.5 Static Semantics: Types . 14
1.6 Dynamic Semantics: Behavior . 15
1.7 Statics & Dynamics: Type Safety 17

1.7.1 Progress . 17
1.7.2 Preservation . 19
1.7.3 Type Safety . 20

2 Lambda Calculus 21
2.1 Syntax . 21
2.2 Substitution and Scope . 21
2.3 Laws . 22

2.3.1 Alpha . 22
2.3.2 Beta . 22
2.3.3 Eta . 22

2.4 Dynamic Semantics: Call-by-Name vs Call-by-Value 22
2.4.1 Call-by-Name . 22
2.4.2 Call-by-Value . 23

2.5 Some Encodings . 23
2.6 Intermezzo: Russel’s Paradox . 23
2.7 Untyped λ-Calculus: Recursion 24
2.8 Static Semantics: “Simple” Types 25
2.9 Simply-Typed λ-Calculus: Termination 25

3 Products and Sums 27
3.1 Syntax . 27
3.2 Laws . 28

3.2.1 Product Laws . 28
3.2.2 Sum Laws . 28

3.3 Static Semantics . 29

3

4 CONTENTS

3.3.1 Product Types . 29
3.3.2 Sum Types . 29

3.4 Dynamic Semantics . 29
3.4.1 Call-by-Name . 29
3.4.2 Call-by-Value . 29

4 Primitive Recursion 31
4.1 Syntax . 31
4.2 Examples . 31
4.3 Laws . 32
4.4 Static Semantics . 32
4.5 Dynamic Semantics . 32

5 General Recursion 35
5.1 Untyped Recursion . 35
5.2 Recursive Types . 35
5.3 Syntax . 36
5.4 Laws . 36
5.5 Encodings . 36
5.6 Typed Recursion . 37

6 Polymorphism 39
6.1 Polymorphic Types . 39
6.2 Syntax . 40
6.3 Laws . 40
6.4 Operational Semantics . 40

6.4.1 Call-by-Name . 41
6.4.2 Call-by-Value . 41

7 Encodings 43
7.1 Untyped Encodings . 43

7.1.1 Booleans . 43
7.1.2 Sums . 43
7.1.3 Products . 43
7.1.4 Numbers . 44
7.1.5 Lists . 44

7.2 Typed Encodings . 44
7.2.1 Booleans . 44
7.2.2 Sums . 45
7.2.3 Products . 45
7.2.4 Existentials . 46
7.2.5 Numbers . 47
7.2.6 Lists . 47

CONTENTS 5

8 Linear Logic 49
8.1 Connectives . 49
8.2 Classification . 49
8.3 Inference Rules . 49

8.3.1 Core Identity Rules . 50
8.3.2 Additive Conjunction . 50
8.3.3 Multiplicative Conjunction 50
8.3.4 Additive Disjunction . 50
8.3.5 Multiplicative Disjunction 50
8.3.6 Exponentials . 50

8.4 Examples . 51
8.5 Negation and Duality . 53

9 A Linear Lambda Calculus 55
9.1 Asymmetrical, Intuitionistic, Linear Logic 55
9.2 A Resource-Sensitive Lambda Calculus 56
9.3 Operational Semantics . 56
9.4 Type Safety: Resource Safety . 57

10 Reducibility 59
10.1 A False Start on Termination . 59
10.2 Reducibility Model of Types . 61
10.3 Termination . 61

11 Parametricity 65
11.1 Reducibility Candidates . 65
11.2 Logical Relations . 66
11.3 Termination . 66

12 Free Theorems 71
12.1 Logical Operators . 71
12.2 Polymorphic Absurdity (Void Type) 71
12.3 Polymorphic Identity (Unit Type) 72
12.4 Encodings . 72

12.4.1 Booleans . 72
12.4.2 Sums . 73
12.4.3 Products . 73
12.4.4 Numbers . 74

12.5 Relational parametricity . 75
12.5.1 Red vs Blue . 76

6 CONTENTS

Chapter 1

Static and Dynamic
Semantics of a Little
Language

1.1 Syntax

x, y, z ∈ Variable ::= . . .

A grammar for abstract syntax:

n ∈ Num ::= 0 | 1 | 2 | . . .
b ∈ Bool ::= true | false

e ∈ Expr ::= x | num[n] | bool[b] | plus(e1; e2) | less(e1; e2) | if (e1; e2; e3) | let (e1;x.e2)

A more “user-friendly” presentation of the same syntax:

n ∈ Num ::= 0 | 1 | 2 | . . .
b ∈ Bool ::= true | false

e ∈ Expr ::= x | n | b | e1 + e2 | e1 ≤ e2 | if e1 then e2 else e3 | letx = e1 in e2

The two grammars contain exactly the same information, but one is more
explicit and regular at the cost of being more verbose:

x ≡ x
n ≡ num[n]
b ≡ bool[b]

e1 + e2 ≡ plus(e1; e2)
e1 ≤ e2 ≡ less(e1; e2)

if e1 then e2 else e3 ≡ if (e1; e2; e3)
letx = e1 in e2 ≡ let (e1;x.e2)

7

8CHAPTER 1. STATIC ANDDYNAMIC SEMANTICS OF A LITTLE LANGUAGE

1.2 Static Scope
Static variables should obey the following two (for now informal) laws:

1. The names of local variables don’t matter (they can be renamed without
affecting the meaning of an expression).

2. The free variables of an expression remain the same after substitution
(they cannot be captured by local bindings).

BV (x) = {}
BV (num[n]) = {}

BV (bool[b]) = {}
BV (plus(e1; e2)) = BV (e1) ∪ BV (e2)
BV (less(e1; e2)) = BV (e1) ∪ BV (e2)

BV (if (e1; e2; e3)) = BV (e1) ∪ BV (e2) ∪ BV (e3)
BV (let (e1;x.e2)) = BV (e1) ∪ (BV (e2) ∪ {x})

FV (x) = {x}
FV (num[n]) = {}

FV (bool[b]) = {}
FV (plus(e1; e2)) = FV (e1) ∪ FV (e2)
FV (less(e1; e2)) = FV (e1) ∪ FV (e2)

FV (if (e1; e2; e3)) = FV (e1) ∪ FV (e2) ∪ FV (e3)
FV (let (e1;x.e2)) = FV (e1) ∪ (FV (e2) \ {x})

1.3 Substitution
The capture-avoiding substitution operation e1[e/x] means to replace every free
occurence of x appearing inside e1 with the expression e.

x[e/x] = e

y[e/x] = y (if y 6= x)
num[n][e/x] = num[n]

bool[b][e/x] = bool[b]
plus(e1; e2)[e/x] = plus(e1[e/x]; e2[e/x])
less(e1; e2)[e/x] = less(e1[e/x]; e2[e/x])

if (e1; e2; e3)[e/x] = if (e1[e/x]; e2[e/x]; e3[e/x])
let (e1;x.e2)[e/x] = let (e1[e/x];x.e2)
let (e1; y.e2)[e/x] = let (e1; y.e2[e/x]) (if y 6= x and y /∈ FV (e))

1.3. SUBSTITUTION 9

Note that substitution is a partial function, because it might not be defined
when substituting into a let : if the replacement expression e for x happens to
contain a free variable y, then e cannot be substituted into a let -expression
that binds y because that would capture the free y found in e.

The partiality of capture-avoiding substitution is expressed in the above
equations by the following implicit convention: the particular case is only defined
when each recursive call is also defined. This implicit convention can be made
more explicit by the use of inference rules as an alternative definition of substi-
tution:

x[e/x] = x

y 6= x

y[e/x] = y num[n][e/x] = num[n] bool[b][e/x] = bool[b]

e1[e/x] = e′1 e2[e/x] = e′2
plus(e1; e2)[e/x] = plus(e′1; e′2)

e1[e/x] = e′1 e2[e/x] = e′2
less(e1; e2)[e/x] = less(e′1; e′2)

e1[e/x] = e′1 e2[e/x] = e′2 e3[e/x] = e′3
if (e1; e2; e3)[e/x] = if (e′1; e′2; e′3)

e1[e/x] = e′1
let (e1;x.e2)[e/x] = let (e′1;x.e2)

e1[e/x] = e′1 y 6= x y /∈ FV (e) e2[e/x] = e′2
let (e1; y.e2)[e/x] = let (e′1; y.e′2)

Both definitions should be seen as two different ways of expressing exactly the
same operation.

Lemma 1.1. For all expressions e′ and e and variables x, if BV (e′)∩FV (e) =
{} then e′[e/x] is defined.

Proof. By induction on the syntax of the expression e′.

• y: Note that BV (y) ∩ FV (e) = {} ∩ FV (e) = {}. By definition y[e/x] is
defined for any variable y, with y[e/x] = e when y = x and y[e/x] = y
when y 6= x.

• num[n]: Note that BV (num[n])∩FV (e) = {}∩FV (e) = {}. By definition,
num[n][e/x] = num[n], which is defined.

• bool[b]: follows by definition similarly to the case for num[n].

• plus(e1; e2): The inductive hypothesis we get for e1 and e2 are

Inductive Hypothesis. For both i = 1 and i = 2, if BV (ei)∩FV (e) = {}
then ei[e/x] is defined.

Now, note that BV (plus(e1; e2)) = BV (e1) ∪ BV (e2) by definition, so

BV (plus(e1; e2)) ∩ FV (e) = (BV (e1) ∪ BV (e2)) ∩ FV (e)
= (BV (e1) ∩ FV (e)) ∪ (BV (e2) ∩ FV (e))

10CHAPTER 1. STATIC ANDDYNAMIC SEMANTICS OF A LITTLE LANGUAGE

It follows that BV (plus(e1; e2)) ∩ FV (e) = {} exactly when BV (ei) ∩
FV (e) = {} for both i = 1 and i = 2. Similarly, the substitution

plus(e1; e2)[e/x] = plus(e1[e/x]; e2[e/x])

is defined exactly when ei[e/x] is defined for both i = 1 and i = 2. By ap-
plying the inductive hypothesis to the assumption that BV (plus(e1; e2))∩
FV (e) = {}, we learn that plus(e1; e2)[e/x] is defined.

• less(e1; e2) and if (e1; e2; e3): follows from the inductive hypothesis sim-
ilarly to the case for plus(e1; e2).

• let (e1; y.e2): The inductive hypotheses we get for e1 and e2 are

Inductive Hypothesis. For both i = 1 and i = 2, if BV (ei)∩FV (e) = {}
then ei[e/x] is defined.

Note that BV (let (e1; y.e2)) = BV (e1)∪ ({y}∪BV (e2)) by definition, so

BV (let (e1; y.e2)) ∩ FV (e)
= (BV (e1) ∪ ({y} ∪ BV (e2))) ∩ FV (e)
= (BV (e1) ∩ FV (e)) ∪ ({y} ∩ FV (e)) ∪ (BV (e2) ∩ FV (e))

It follows that BV (let (e1; y.e2)) ∩ FV (e) = {} exactly when y /∈ FV (e)
and BV (ei) ∩ FV (e) = {} for both i = 1 and i = 2. There are now two
cases to consider, depending on whether or not x and y are equal.

– y = x: By definition, let (e1;x.e2)[e/x] = let (e1[e/x];x.e2), which
is defined only when e1[e/x] is defined. By applying the inductive
hypothesis to the fact that BV (e1) ∩ FV (e) = {} as implied by the
assumption that BV (let (e1;x.e2)) ∩ FV (e), we learn that e1[e/x]
must be defined, so let (e1;x.e2)[e/x] is defined, too.

– y 6= x: By definition, let (e1;x.e2)[e/x] = let (e1[e/x];x.e2), which
is defined only when both e1[e/x] and e2[e/x] are defined and when
the side condition y /∈ FV (e) is met. By applying the inductive
hypothesis to the facts that BV (e1)∩FV (e) = {}, BV (e2)∩FV (e) =
{} as implied by the assumption that BV (let (e1; y.e2)) ∩ FV (e) =
{}, we learn that both e1[e/x] and e2[e/x] are defined. Furthermore,
the same assumption also implies that y /∈ FV (e), meeting the side
condition so that let (e1; y.e2)[e/x] is defined.

Lemma 1.2. For all expressions e′ and e and all variables x, if x /∈ FV (e′)
then e′[e/x] = e when e′[e/x] is defined.

Proof. By induction on the syntax of e′:

• y: Since FV (y) = {y}, the assumption that x /∈ FV (y) implies that x 6= y.
Therefore, y[e/x] = y.

1.4. RENAMING: α EQUIVALENCE 11

• num[n]: By definition, num[n][e/x] = num[n].

• bool[b]: follows by definition similarly to the case for num[n].

• plus(e1; e2): The inductive hypotheses we get for e1 and e2 are

Inductive Hypothesis. For both i = 1 and i = 2, if x /∈ FV (ei) then
ei[e/x] = e when ei[e/x] is defined.

Now, note that FV (plus(e1; e2)) = FV (e1) ∪ FV (e2), so the assumption
that x /∈ FV (plus(e1; e2)) implies that x /∈ FV (e1) and x /∈ FV (e2). From
the inductive hypothesis, we then learn that e1[e/x] = e1 and e2[e/x] = e2
are defined. So by definition of substitution

plus(e1; e2)[e/x] = plus(e1[e/x]; e2[e/x]) = plus(e1; e2)

when it is defined.

• less(e1; e2) and if (e1; e2; e3): follows from the inductive hypothesis sim-
ilarly to the case for plus(e1; e2).

• let (e1; y.e2): The inductive hypotheses we get for e1 and e2 are

Inductive Hypothesis. For both i = 1 and i = 2, if x /∈ FV (ei) then
ei[e/x] = e when ei[e/x] is defined.

Now, note that FV (let (e1; y.e2)) = FV (e1) ∪ (FV (e2) \ {y}), so the
assumption that x /∈ FV (let (e1; y.e2)) implies that x /∈ FV (e1) and that
either x = y or x /∈ FV (e2). By applying the inductive hypothesis to the
fact that x /∈ FV (e1), we learn that e1[e/x] = e1 when it is defined. There
are now two cases, depending on whether or not x and y are equal.

– y = x: From the above fact that e1[e/x] = e1, we get

let (e1;x.e2)[e/x] = let (e1[e/x];x.e2) = let (e1;x.e2)

when it is defined.
– y 6= x: It must be that x /∈ FV (e2), so by applying the inductive

hypothesis we learn that e2[e/x] = e2 when it is defined. Therefore,

let (e1; y.e2)[e/x] = let (e1[e/x]; y.e2[e/x]) = let (e1; y.e2)

when it is defined.

1.4 Renaming: α equivalence
The renaming operation—replacing all occurrences of a free variable with an-
other variable—can be derived from capture-avoiding substitution. That is, the

12CHAPTER 1. STATIC ANDDYNAMIC SEMANTICS OF A LITTLE LANGUAGE

renaming operation e[y/x] is just a special case of the more general substitution
operation e[e′/x] since the variable y is an instance of an expression.

In general, the particular choice of variable (i.e. name) of a bound variable
should not matter: two expressions where the bound variables have been re-
named should be the same. This idea is captured for the only binder in our
little language—let -expressions—with the following α equivalence law

(α) let (e1;x.e2) =α let (e1; y.e2[y/x]) (if y /∈ FV (e2))

If two expressions e and e′ can be related by any number of applications of
this α equivalence rule to any sub-expression, then those terms are considered
α-equivalent, which is written as e =α e

′. This can be formalized with inference
rules. The main rule is

e1 =α e
′
1 e2[z/x] =α e

′
2[z/y] z /∈ FV (e1) ∪ FV (e2)

let (e1;x.e2) =α let (e′1; y.e′2)
α

And the other rules just apply α-equivalence within sub-expressions

x =α x num[n] =α num[n] bool[b] =α bool[b]

e1 =α e
′
1 e2 =α e

′
2

plus(e1; e2) =α plus(e′1; e′2)
e1 =α e

′
1 e2 =α e

′
2

less(e1; e2) =α less(e′1; e′2)

e1 =α e
′
1 e2 =α e

′
2 e3 =α e

′
3

if (e1; e2; e3) =α if (e′1; e′2; e′3)

The importance of α equivalence is not just so that we can ignore the
superfluous choice of bound variable names. It means that capture-avoiding
substitution—which is technically a partial operation from a surface-level reading—
can always be done without restrictions so long as some convenient renaming is
done first.

Lemma 1.3. For any expression e and variables x and y, BV (e[y/x]) = BV (e)
if e[y/x] is defined.

Proof. By induction on the syntax of the expression e.

Lemma 1.4. For any expression e and set of variables X, there is an α-
equivalent expression e′ such that e =α e

′ and X ∩ BV (e′) = {}.

Proof. By induction on the syntax of e.

• y: Note that FV (y) = {}, so FV (y) ∩X = {} ∩X = {} already for any
set of variables X and no renaming is needed.

• num[n] and bool[b]: these expressions have no free variables so no renaming
is needed similar to the case for a variable y.

• plus(e1; e2): The inductive hypotheses for the sub-expressions e1 and e2
are

1.4. RENAMING: α EQUIVALENCE 13

Inductive Hypothesis. For both i = 1 and i = 2, and for any set
of variables X, there is an α-equivalent e′i such that e1 =α e′1 and X ∩
BV (e′i) = {}.

Now, since BV (plus(e′1; e′2)) = BV (e′1) ∪ BV (e′2), it follows that for any
set of variables X,

BV (plus(e′1; e′2)) ∩X = (BV (e′1) ∪ BV (e′2)) ∩X
= (BV (e′1) ∩X) ∪ (BV (e′2) ∩X)
= {} ∪ {} = {}

Furthermore, this expression is α-equivalent to the original one, by apply-
ing the α rule in both sub-expressions like so:

plus(e1; e2) =α plus(e′1; e2) =α plus(e′1; e′2)

• less(e1; e2) and if (e1; e2; e3): follows from the inductive hypothesis sim-
ilar to the case.

• let (e1;x.e2): The inductive hypotheses for the sub-expressions e1 and e2
are

Inductive Hypothesis. For both i = 1 and i = 2, and for any set
of variables X, there is an α-equivalent e′i such that e1 =α e′1 and X ∩
BV (e′i) = {}.

By applying the inductive hypothesis to any set of variables X, we find a
new pair of sub-expressions e′1 and e′2 such that ei =α e

′
i and X∩BV (e′i) =

{} for both i = 1 and i = 2. It may be possible that x ∈ X, so that the
bound variable x would need to be renamed. We can handle this worst-case
scenario by choosing an arbitrary new variable y /∈ X ∪ FV (e′2) ∪BV (e′2)
for any set of variables X. Now, observe that we have the α-equivalent
let -expression

let (e1;x.e2) =α let (e′1;x.e2) =α let (e′1;x.e′2) =α let (e′1; y.e′2[y/x])

where the substitution e′2[y/x] is defined because y /∈ BV (e′2). Further-
more, the bound variables of this new expression are distinct from X
because

BV (let (e′1; y.e′2[y/x])) = BV (e′1) ∪ (BV (e′2[y/x]) ∪ {y})
= BV (e′1) ∪ (BV (e′2) ∪ {y})

and so

BV (let (e′1; y.e′2[y/x])) ∩X
= (BV (e′1) ∩X) ∪ (BV (e′2) ∩X) ∪ ({y} ∩X)
= {} ∪ {} ∪ {} = {}

14CHAPTER 1. STATIC ANDDYNAMIC SEMANTICS OF A LITTLE LANGUAGE

Theorem 1.1. For any expressions e1 and e and any variable x, there is an
α-equivalent e2 such that e1 =α e2 and e2[e/x] is defined.

Proof. We can find such an e2 by renaming e1 so that BV (e2) ∪ FV (e) = {},
which implies that e2[e/x] is defined.

Theorem 1.2. For any expressions e1, e2, and e and any variable x, if e1 =α e2
then e1[e/x] =α e2[e/x] whenever both e1[e/x] and e2[e/x] are both defined.

Proof. By induction on the derivation of derivation e1 =α e2.

1.5 Static Semantics: Types

τ ∈ Type ::= num | bool

The type system for our little language consists of inference rules for con-
cluding hypothetical judgements of the form Γ ` e : τ , which can be read as “in
the environment Γ, e has type τ .” The environment Γ is a list of assumed types
for free variables as shown in the following grammar

Γ ∈ Environment ::= • | Γ, x : τ

Note that we will impose an extra side condition on valid Γs so that a variable
can only appear at most once in Γ. For example, x : τ1, y : τ2, x : τ3 is not
allowed. In contrast, a type may appear many times in Γ if multiple variables
have the same type, like in this valid environment x : num, y : num, z : num. Fur-
thermore, the order of Γ does not matter, so that the following two environments
are considered equal: x : num, y : bool = y : bool, x : num.

The inference rules for typing expressions of our little language are as follows:

Γ, x : τ ` x : τ Γ ` num[n] : num Γ ` bool[b] : bool

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1; e2) : num

Γ ` e1 : num Γ ` e2 : num
Γ ` less(e1; e2) : bool

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ
Γ ` if (e1; e2; e3) : τ

Γ ` e1 : τ ′ Γ, x : τ ′ ` e2 : τ
Γ ` let (e1;x.e2) : τ

Note that the typing rule for variables can be read as “x has type τ in any
environment where x is assumed to have type τ .” Since the order of Γ does not
matter, the assumption x : τ can appear anywhere to the left of ` to use this
rule.

Furthermore, the requirement that Γ does not have multiple assumptions for
the same variable means that the typing rule for let -expressions only applies
when the bound variable x does not already appear in Γ. This means that an
expression like

letx = 2 in letx = 1 inx

1.6. DYNAMIC SEMANTICS: BEHAVIOR 15

which should be well-typed actually isn’t, because the inner let attempts to
“shadow” the binding of x given by the outer let . This problem can be avoided
by renaming away all shadowing, as in

letx = 2 in letx = 1 inx =α letx = 2 in let y = 1 in y

where there is a typing derivation of • ` letx = 2 in let y = 1 in y : num.
And since we always consider α-equivalent expressions to be the “same” ex-
pression, that means that letx = 2 in letx = 1 inx is also well-typed up to
α-equivalence.

1.6 Dynamic Semantics: Behavior

Small-step, operational reduction relation e 7→ e′, “e steps to e′.” Multi-step
operational semantics is the smallest binary relation e 7→∗ e′ between terms
closed under the following:

• Inclusion: e 7→∗ e′ if e 7→ e′,

• Reflexivity: e 7→∗ e, and

• Transitivity: e 7→∗ e′′ if e 7→∗ e′ and e′ 7→∗ e′′ for some e′.

The basic steps for reducing an expression:

plus(num[n1]; num[n2]) 7→ num[n1 + n2]
less(num[n1]; num[n2]) 7→ bool[n1 = n2]
if (bool[true]; e1; e2) 7→ e1

if (bool[false]; e1; e2) 7→ e2

let (e1;x.e2) 7→ e2[e1/x]

These are axioms; they apply exactly as-is to an expression. But they are not
enough to reduce expressions down to an answer (a number or boolean literal)!
What about

(1 + 2) + 3 = plus(plus(num[1]; num[2]); num[4])

You cannot yet add 1 + 2 to 4 because 1 + 2 is not a number literal. Rather,
you want to add 1 and 2 first, and then add that result to 4. Hence, the need

16CHAPTER 1. STATIC ANDDYNAMIC SEMANTICS OF A LITTLE LANGUAGE

to reduce sub-expressions, as expressed by the following inference rules:

num[n] val bool[b] val

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

e1 val e2 7→ e′2
less(e1; e2) 7→ less(e1; e′2)

e1 7→ e′1
less(e1; e2) 7→ less(e′1; e2)

e1 val e2 7→ e′2
less(e1; e2) 7→ less(e1; e′2)

e1 7→ e′1
if (e1; e2; e3) 7→ if (e′1; e2; e3)

Combined with the above axioms, these rules are now enough to reduce expres-
sions. For example, we can take a step in

plus(num[1]; num[2]) 7→ num[3]
plus(plus(num[1]; num[2]); num[4]) 7→ plus(num[3]; num[4])

Chaining together multiple (zero or more) reduction steps is done by

e 7→∗ e
e 7→∗ e′ e′ 7→∗ e′′

e 7→∗ e′′
e 7→ e′

e 7→∗ e′

But these inference rules are awfully repetitive. A more concise presenta-
tion of exactly the same thing is to define a grammar of values (a subset of
expressions) and evaluation contexts (a subset of expression contexts) like so:

V ∈ Value ::= num[n] | bool[b]
E ∈ EvalCxt ::= � | plus(E; e) | plus(V ;E) | less(E; e) | less(V ;E) | if (E; e1; e2)

Now, the judgement e val is derivable exactly when e ∈ Value, and all of the
above inference rules for evaluating certain sub-expressions are expressed by the
one inference rule:

e 7→ e′

E[e] 7→ E[e′]

Where E[e] is the notation for plugging e in for the � inside the evaluation
context E, defined as:

�[e] = e

plus(E; e′)[e] = plus(E[e]; e′)
plus(V ;E)[e] = plus(V ;E[e])
less(E; e′)[e] = less(E[e]; e′)
less(V ;E)[e] = less(V ;E[e])

if (E; e′1; e′2)[e] = if (E[e]; e′1; e′2)

1.7. STATICS & DYNAMICS: TYPE SAFETY 17

Note that, unlike with substitution, there is no issues involving capture when
plugging a term into a context. In fact, the convention is that plugging a term
into a more general kind of context (which might place the hole � under a binder
like let (e1;x.�)) will intentionally capture free variables of the expression
that’s replacing�. For example, reducing the expression plus(plus(num[1]; num[2]); num[4])
goes like

plus(plus(num[1]; num[2]); num[4])
7→ plus(num[3]; num[4]) (E = plus(�; num[4]), plus(num[1]; num[2]) 7→ num[3])
7→ num[7] (E = �, plus(num[3]; num[4]) 7→ num[7])

1.7 Statics & Dynamics: Type Safety
1.7.1 Progress
Lemma 1.5 (Canonical Forms).

• If • ` V : num then there is an n such that V = num[n].

• If • ` V : bool then there is a b such that V = bool[b].

Proof. By inversion on the possible derivations of • ` V : num and • ` V :
bool.

Lemma 1.6 (Progress). If • ` e : τ then either e val or there exists an e′ such
that e 7→ e′.
Proof. By induction on the derivation D of • ` e : τ ,

.... D
• ` e : τ

• The bottom inference cannot possibly be the axiom for variables

Γ, x : τ ` x : τ

since there is no Γ which makes Γ, x : τ = •.

• If the bottom inference is the axiom for numbers or booleans

• ` num[n] : num • ` bool[n] : bool

then the expression is a value since num[n] val and bool[b] val are both
axioms.

• If the bottom inference is the rule for plus
.... D1

• ` e1 : num

.... D2
• ` e2 : num

• ` plus(e1; e2) : num

then proceed by induction on the derivations Di of • ` ei : num:

18CHAPTER 1. STATIC ANDDYNAMIC SEMANTICS OF A LITTLE LANGUAGE

Inductive Hypothesis. For i = 1 and i = 2, either ei val or there is
an e′i such that ei 7→ e′i.

There are three cases to consider depending on the results of the inductive
hypothesis; whether ei is a value or takes a step:

– If e1 7→ e′1 for some e′1, then

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

– If e1 val and e2 7→ e′2 for some e′2, then

e1 val e2 7→ e′2
plus(e1; e2) 7→ plus(e1; e′2)

– If both e1 val and e2 val , then there must be numbers n1 and n2
such that ei = num[ni] (canonical forms). Therefore,

plus(e1; e2) = plus(num[n1]; num[n2]) 7→ num[n1 + n2]

• If the bottom inference is the rule for less, then progress follows similarly
to the above case for plus.

• If the bottom inference is the rule for if
.... D1

• ` e1 : bool

.... D2
• ` e2 : τ

.... D3
• ` e3 : τ

• ` if (e1; e2; e3) : τ

then proceed by induction on the derivation D1 of • ` e1 : bool:

Inductive Hypothesis. Either e1 val or there is an e′1 such that e1 7→
e′1.

There are two cases depending on the result of the inductive hypothesis:

– If e1 7→ e′1 for some e′1, then

e1 7→ e′1
if (e1; e2; e3) 7→ if (e′1; e2; e3)

– If e1 val , then there must be a boolean b such that e1 = bool[b]
(canonical forms). Therefore,

if (e1; e2; e3) = if (bool[b]; e2; e3) 7→ e′

where e′ = e2 when b = true and e′ = e3 when b = false.

1.7. STATICS & DYNAMICS: TYPE SAFETY 19

• If the bottom inference is the rule for let
.... D1

• ` e1 : τ ′

.... D2
x : τ ′ ` e2 : τ

• ` let (e1;x.e2) : τ

then there is always the reduction step

let (e1;x.e2) 7→ e2[e1/x]

1.7.2 Preservation
Lemma 1.7 (Typed Substitution). If Γ, x : τ ′ ` e : τ and Γ ` e′ : τ ′ then
Γ ` e[e′/x] : τ .

Proof. By induction on the derivation D of Γ, x : τ ′ ` e : τ .

Lemma 1.8 (Preservation). If Γ ` e : τ and e 7→ e′ then Γ ` e′ : τ .

Proof. By induction on the derivation E of e 7→ e′ and inversion on the derivation
D of Γ ` e : τ . First we have the cases where E is one of the reduction step
axioms:

• If E = plus(num[n1]; num[n2]) 7→ num[n1 + n2] , then it must be that τ =
num, and observe that Γ ` num[n1 + n2] : num .

• If E = less(num[n1]; num[n2]) 7→ bool[n1 = n2] , then it must be that
τ = bool, and observe that Γ ` bool[n1 = n2] : bool .

• If E = if (bool[b]; e1; e2) 7→ e′ , where e′ = e1 or e′ = e2, then it must be
that the derivation D concludes with

Γ ` bool[b] : bool

.... D1
Γ ` e1 : τ

.... D2
Γ ` e2 : τ

Γ ` if (bool[b]; e1; e2) : τ

In either case of e′ = ei, we get that
.... D〉

Γ ` ei : τ

• If E = let (e1;x.e2) 7→ e2[e1/x] , then it must be that the derivation D
concludes with

.... D1
Γ ` e1 : τ ′

.... D2
Γ, x : τ ′ ` e2 : τ

Γ ` let (e1;x.e2) : τ

By typed substitution, it follows that Γ ` e2[e1/x] : τ .

20CHAPTER 1. STATIC ANDDYNAMIC SEMANTICS OF A LITTLE LANGUAGE

The remaining cases are for where a reduction step is applied to a sub-expression
(i.e. within an evaluation context). These cases all follow from the inductive
hypothesis. For example, in the case where

E =

.... E
′

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

then the derivation D must conclude with

D =

.... D1
Γ ` e1 : num

.... D2
Γ ` e2 : num

Γ ` plus(e1; e2) : num

By applying the induction hypothesis to the derivations E ′ and D1, we learn
that there is a derivation D′1 of Γ ` e′1 : num, and so

.... D
′
1

Γ ` e′1 : num

.... D2
Γ ` e2 : num

Γ ` plus(e1; e2) : num

The other cases for evaluation inside of a plus, less, and if follow similarly.

Corollary 1.1 (Preservation∗). If Γ ` e : τ and e 7→∗ e′ then Γ ` e′ : τ .

Proof. Follows from the single-step preservation lemma by induction on the
derivation of e 7→∗ e′.

1.7.3 Type Safety
Definition 1.1 (Stuck). An expression e is stuck if e val is not derivable and
there is no e′ such that e 7→ e′ is derivable.

Theorem 1.3 (Type Safety). If • ` e : τ and e 7→∗ e′ then e′ is not stuck.

Proof. From preservation, we know that • ` e′ : τ . Then from progress we
know that either e′ val or e′ 7→ e′′ (for some e′′) is derivable. So e′ cannot be
stuck.

Chapter 2

Lambda Calculus

2.1 Syntax

e ∈ Expr ::= x | lam(x.e) | app(e1; e2)

e ∈ Expr ::= x | λx.e | e1 e2

λx.e = lam(x.e) e1 e2 = app(e1; e2)

Some syntactic sugar

letx = e1 in e2 = (λx.e2) e1

2.2 Substitution and Scope

BV (x) = {}
BV (λx.e) = BV (e) ∪ {x}
BV (e1 e2) = BV (e1) ∪ BV (e2)

FV (x) = {x}
FV (λx.e1) = FV (e1) \ {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)

x [e/x] = e

y [e/x] = x (x 6= y)
(λx.e′) [e/x] = λx.e′

(λy.e′) [e/x] = λy.(e′ [e/x]) (x 6= y) and y /∈ FV (e)
(e1 e2) [e/x] = (e1 [e/x]) (e2 [e/x])

Lemma 2.1. For all terms e′, e, if BV (e′)∩FV (e) = {} then e′ [e/x] is defined.

Proof. By induction on the syntax of the term e′.

21

22 CHAPTER 2. LAMBDA CALCULUS

2.3 Laws
2.3.1 Alpha

(α) λx.e =α λy.(e [y/x])

Lemma 2.2. For any term e and set of variables X, there exists a term e′ such
that e =α e

′ and X ∩ BV (e′) = {}.

Proof. By induction on the syntax of the term e.

Theorem 2.1. For all terms e1, e2, there exists a term e′1 such that e1 =α e
′
1

and e′1 [e2/x] is defined.

Theorem 2.2. If e1 =α e2 then e1[e/x] =α e2[e/x] when both are defined.

2.3.2 Beta

(β) (λx.e1) e2 =β e1 [e2/x]

2.3.3 Eta

(η) λx.(e x) =η e : τ1 → τ2 ifx /∈ FV (e)

2.4 Dynamic Semantics: Call-by-Name vs Call-
by-Value

2.4.1 Call-by-Name
Operational reduction rules (axioms):

(λx.e1) e2 7→ e1 [e2/x]

Evaluation context rules (inferences):

e1 7→ e′1
e1 e2 7→ e′1 e2

E ∈ EvalCxt ::= � | E e

e 7→ e′

E[e] 7→ E[e′]

2.5. SOME ENCODINGS 23

2.4.2 Call-by-Value

V ∈ Value ::= x | λx.e

(λx.e) V 7→ e [V/x]

E ∈ EvalCxt ::= � | E e | V E

e 7→ e′

E[e] 7→ E[e′]

e1 7→ e′2
e1 e2 7→ e′1 e2

e 7→ e′

V e 7→ V e′

2.5 Some Encodings

if e then e1 else e2 = (e e1) e2

true = λx.λy.x

false = λx.λy.y

if true then e1 else e2 = ((λx.λy.x) e1) e2

7→ (λy.e1) (E = � e2)
7→ e1 (E = �)

if false then e1 else e2 = ((λx.λy.y) e1) e2

7→ (λy.y) (E = � e2)
7→ e2 (E = �)

2.6 Intermezzo: Russel’s Paradox
An implementation of sets where

e ∈ e′ = e′ e

Example:

e ∪ e′ = λx.or (e x) (e′ x)
e ∩ e′ = λx.and (e x) (e′ x)

24 CHAPTER 2. LAMBDA CALCULUS

Russel’s set

R = {e | e /∈ e}

is then written as

R = λx.not (x x)

Is Russel’s set in Russel’s set? R ∈ R?

R R 7→ (not (x x))[R/x] = not (R R)
7→ not (not (R R)) 7→ . . .

7→ not (not (not . . .))

2.7 Untyped λ-Calculus: Recursion
Unlike the little language from Chapter 1, not every expression reaches an an-
swer. For example:

Ω = (λx.x x) (λx.x x)

Notice that

Ω = (λx.x x) (λx.x x) 7→ (x x)[(λx.x x)/x] = (λx.x x) (λx.x x) = Ω

That means

Ω 7→ Ω 7→ Ω 7→ . . .

In other words, not every expression in the λ-calculus actually leads to an an-
swer; sometimes you might spin forever without getting any closer to a result.

Ω isn’t very useful; a reduction step just regenerates the same Ω again. But
what happens if we have something like Ω that changes a bit every step.

Y f = (λx.f (x x)) (λx.f (x x))

Now what happens when Y f takes a step?

Y f = (λx.f (x x)) (λx.f (x x))
7→ (f (x x))[(λx.f (x x))/x]
= f ((λx.f (x x)) (λx.f (x x)))
= f (Y f)

That means

Y f =β f (Y f)

In other words, Y f is a fixed point of the function f .

2.8. STATIC SEMANTICS: “SIMPLE” TYPES 25

Why is a the fixed-point generator Y useful? Because it can be used to
implement recursion, even though there is no recursion in the λ-calculus to
begin with. For example, this recursive definition of multiplication

times = λx.λy. ifx ≤ 0 then 0 else y + (times (x− 1) y)

can instead be written non-recursively by using Y like so:

timesish = λnext.λx.λy. ifx ≤ 0 then 0 else y + (next (x− 1) y)
times = Y timesish

Now check that times does the same thing as the recursive definition above:

times 0 y = Y timesish 0 y
7→ timesish (Y timesish) 0 y
7→∗ if 0 ≤ 0 then 0 else y + (Y timesish (0− 1) y)
7→ 0

times (x+ 1) y = Y timesish (x+ 1) y
7→ timesish (Y timesish) (x+ 1) y
7→∗ if (x+ 1) ≤ 0 then 0 else y + (Y timesish (x+ 1− 1) y)
7→∗ y + (Y timesish (x+ 1− 1) y)
→∗ y + (times x y)

2.8 Static Semantics: “Simple” Types

α, β ∈ TypeVariable ::= . . .

τ ∈ Type ::= α | τ1 → τ2

Γ, x : τ ` x : τ Var

Γ, x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

→I Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2
Γ ` e1 e2 : τ1

→E

2.9 Simply-Typed λ-Calculus: Termination
Theorem 2.3 (Termination). If Γ ` e : τ then there is an expression e′ such
that e 7→∗ e′ 67→.

Corollary 2.1. If • ` e : num then there is a number n such that e 7→∗ num[n].

26 CHAPTER 2. LAMBDA CALCULUS

Chapter 3

Products and Sums

3.1 Syntax

e ∈ Expr ::= . . . | 〈e1, e2〉 | 〈〉 | e·π1 | e·π2

| ι1·e | ι2·e | case e of {ι1·x⇒ e1 | ι2·y ⇒ e2} | case e of {}
τ ∈ Type ::= . . . | τ1 × τ2 | unit | τ1 + τ2 | void

BV (〈e1, e2〉) = BV (e1) ∪ BV (e2)
BV (〈〉) = {}

BV (e·πi) = BV (e)

FV (〈e1, e2〉) = FV (e1) ∪ FV (e2)
FV (〈〉) = {}

FV (e·πi) = FV (e)

〈e1, e2〉 [e/x] = 〈e1 [e/x], e2 [e/x]〉
(e′·πi) [e/x] = (e′ [e/x])·πi

BV (ιi·e) = BV (e)
BV (case e {ι1·x⇒ e1 | ι2·y ⇒ e2}) = BV (e) ∪ (BV (e′1) ∪ {x}) ∪ (BV (e′2) ∪ {y})

BV (case e {}) = BV (e)

27

28 CHAPTER 3. PRODUCTS AND SUMS

FV (ιi·e) = FV (e)
FV (case e {ι1·x⇒ e1 | ι2·y ⇒ e2}) = FV (e) ∪ (FV (e1) \ {x}) ∪ (FV (e2) \ {y})

FV (case e {}) = FV (e)

(ιi·e′) [e/x] = ιi·(e′ [e/x]) case e′ of

ι1·y1 ⇒ e1

ι2·y2 ⇒ e2

 [e/x] =

 case (e′ [e/x]) of

ι1·y1 ⇒ e′1

ι2·y2 ⇒ e′2

where e′1 = e1 ifx = y1

e′1 = e1 [e/x] ifx 6= y1 and y1 /∈ FV (e)
e′2 = e2 ifx = y2

e′2 = e2 [e/x] ifx 6= y2 and y2 /∈ FV (e)
(case e′ of {})[e/x] = case e′[e/x] of {}

3.2 Laws
3.2.1 Product Laws

(β) 〈e1, e2〉·π1 =β e1 〈e1, e2〉·π2 =β e2

(η) 〈e·π1, e·π2〉 =η e : τ1 × τ2

(η) 〈〉 =η e : unit

3.2.2 Sum Laws

(α)
case e of

ι1·x1 ⇒ e1

ι2·x2 ⇒ e2

=α

case e of

ι1·y1 ⇒ (e1 [y1/x1])
ι2·y2 ⇒ (e2 [y2/x2])

(β)
case ι1·e of

ι1·x⇒ e1

ι2·y ⇒ e2

=β e1 [e/x]
case ι2·e of

ι1·x⇒ e1

ι2·y ⇒ e2

=β e2 [e/y]

(η)
case e of

ι1·x⇒ ι1·x
ι2·y ⇒ ι1·x

=η e : τ1 + τ2

(η) case e of {} =η e : void

3.3. STATIC SEMANTICS 29

3.3 Static Semantics

τ ∈ Type ::= . . . | τ1 × τ2 | unit | τ1 + τ2 | void

3.3.1 Product Types

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` 〈e1, e2〉 : τ1 × τ2

×I

Γ ` e : τ1 × τ2
Γ ` e·π1 : τ1

×E1
Γ ` e : τ1 × τ2
Γ ` e·π2 : τ2

×E2

Γ ` 〈〉 : unit
1I

3.3.2 Sum Types

Γ ` e : τ1
Γ ` ι1·e : τ1 + τ2

+I1
Γ ` e : τ2

Γ ` ι2·e : τ1 + τ2
+I2

Γ ` e : τ1 + τ2 Γ, x : τ1 ` e1 : τ Γ, y : τ2 ` e2 : τ
Γ ` case e of ι1·x⇒ e1 | ι2·y ⇒ e2 : τ +E

Γ ` e : void
Γ ` case e of {} : τ 0E

3.4 Dynamic Semantics
3.4.1 Call-by-Name

E ∈ EvalCxt ::= � | . . . | E·πi | caseE of {ι1·x⇒ e1 | ι2·y ⇒ e2}

〈e1, e2〉·πi 7→ ei

case ιi·e of {ι1·x⇒ e1 | ι2·y ⇒ e2} 7→ ei[e/x]

3.4.2 Call-by-Value

V ∈ Value ::= . . . | 〈V1, V2〉 | 〈〉 | ιi·V
E ∈ EvalCxt ::= � | . . . | E·πi | 〈E, e2〉 | 〈V1, E〉 | caseE of {ι1·x⇒ e1 | ι2·y ⇒ e2} | ιi·E

30 CHAPTER 3. PRODUCTS AND SUMS

〈V1, V2〉·πi 7→ Vi

case ιi·V of {ι1·x⇒ e1 | ι2·y ⇒ e2} 7→ ei[V/x]

Chapter 4

Primitive Recursion

4.1 Syntax

e ∈ Expr ::= . . . | Z | S(e) | rec (e; e0;x, y.e1)

e ∈ Expr ::= . . . | Z | S e | rec e as {Z⇒ e0 | Sx with y ⇒ e1}

4.2 Examples

add Z n = n

add (Sm) n = S(add m n)

add = λm: nat.λn: nat. recm as

Z ⇒ n

Sm′ with r ⇒ S r

mult Z n = Z

mult (Sm) n = add n (mult m n)

mult = λm: nat.λn: nat. recm as

Z ⇒ Z

Sm′ with r ⇒ add n r

pred Z = Z

pred (Sn) = n

31

32 CHAPTER 4. PRIMITIVE RECURSION

pred = λn: nat. recn as

Z ⇒ Z

Sn′ with r ⇒ n′

4.3 Laws

(α)
rec e as

Z ⇒ e0

Sx with y ⇒ e1

=α

rec e as

Z ⇒ e0

Sx′ with y′ ⇒ (e1 [x′/x, y′/y])

(β)
rec Z as

Z ⇒ e0

Sx with y ⇒ e1

=β e0

(β)
rec S e as

Z ⇒ e0

Sx with y ⇒ e1

=β e1

e/x,
 rec e as

Z ⇒ e0

Sx with y ⇒ e1

/y

(η)
rec e as

Z ⇒ Z

Sx with y ⇒ Sx
=η e : nat

(η)
rec e as

Z ⇒ Z

Sx with y ⇒ S y
=η e : nat

4.4 Static Semantics

τ ∈ Type ::= . . . nat

Γ ` Z : nat
natI1

Γ ` e : nat
Γ ` S e : nat

natI2

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ
Γ ` rec e as {Z⇒ e0 | Sx with y ⇒ e1} : τ natE

4.5 Dynamic Semantics

E ∈ EvalCxt ::= . . . | recE as {Z⇒ e0 | Sx with y ⇒ e1}

4.5. DYNAMIC SEMANTICS 33

rec Z as

Z ⇒ e0

Sx with y ⇒ e1

7→ e0

rec S e as

Z ⇒ e0

Sx with y ⇒ e1

7→ e1

e/x,
 rec e as

Z ⇒ e0

Sx with y ⇒ e1

/y

34 CHAPTER 4. PRIMITIVE RECURSION

Chapter 5

General Recursion

5.1 Untyped Recursion
Recall

Ω = (λx.(x x)) (λx.(x x))

Y = λf.((λx.(f (x x))) (λx.(f (x x))))

Some syntactic sugar:

recx = e = Y (λx.e)
let recx = e in e′ = (λx.e′) (Y (λx.e))

But remember, Y is not well-typed in the simply typed lambda calculus!
Solution: If you wanted recursion in the STLC, then add it explicitly as part

of your language.

e ∈ Expr ::= . . . | recx = e

(α) (recx = e) =α (rec y = e[y/x]) (y /∈ FV (e))
(β) (recx = e) 7→β e[(recx = e)/x]

Γ, x : τ ` e : τ
Γ ` recx = e : τ

5.2 Recursive Types

τ ∈ Type ::= . . . | µα.τ

35

36 CHAPTER 5. GENERAL RECURSION

Equi-recursive: µα.τ = τ [(µα.τ)/α].
Iso-recursive: µα.τ ≈ τ [(µα.τ)/α]. Need these rules.

Γ ` e : τ [µα.τ/α]
Γ ` fold e : µα.τ µI

Γ ` e : µα.τ
Γ ` unfold e : τ [µα.τ/α]

µE

5.3 Syntax

e ∈ Expr ::= . . . | fold e | unfold e

BV (fold e) = BV (e) = BV (unfold e)
FV (fold e) = FV (e) = FV (unfold e)

(fold e′) [e/x] = fold (e′ [e/x])
(unfold e′) [e/x] = unfold (e′ [e/x])

5.4 Laws

(β) unfold (fold e) 7→β e

(η) fold (unfold e) =η e : µα.τ

5.5 Encodings

nat ≈ unit + nat

nat = µα. unit +α
Z = fold(left 〈〉)

S e = fold(right e)

list τ ≈ unit +(τ × list τ)
list τ = µα. unit +(τ × α)

nil = fold(left 〈〉)
cons e e′ = fold(right(e, e′))

tree τ ≈ τ + (tree τ × tree τ)
tree τ = µα.τ + (α× α)
leaf e = fold(left e)

branch e1 e2 = fold(right(e1, e2))

5.6. TYPED RECURSION 37

5.6 Typed Recursion

ω : (µα.(α→ τ))→ τ

ω = λx.(unfoldx) x

Ω : τ
Ω = ω (foldω)

x : µα.α→ A ` x : µα.α→ A
Var

x : µα.α→ A ` unfoldx : (µα.α→ A)→ A
µE

x : µα.α→ A ` x : µα.α→ A
Var

x : µα.α→ A ` (unfoldx) x : A →E

• ` λx.(unfoldx) x : (µα.α→ A)→ A
→I

....
• ` ω : (µα.α→ A)→ A

....
• ` ω : (µα.α→ A)→ A

• ` foldω : µα.α→ A
µI

• ` ω (foldω) : A →E

Y : (τ → τ)→ τ

Y = λf.(λx.f (unfoldx x)) (fold (λx.f (unfoldx x)))

Γ ` e : τ Γ, x : τ ` e′ : τ ′

Γ ` letx = e in e′ : τ ′ Let
Γ, x : τ ` e : τ Γ, x : τ ` e′ : τ ′

Γ ` let recx = e in e′ : τ ′ LetRec

Γ, x : τ ` e′ : τ ′

Γ ` λx.e′ : τ → τ ′
→I Γ ` e : τ

Γ ` (λx.e′) e : τ ′ →E

Γ, x : τ ` e′ : τ ′

Γ ` λx.e′ : τ → τ ′
→I

....
Γ ` Y : (τ → τ)→ τ

Γ, x : τ ` e : τ
Γ ` λx.e : τ → τ

→I

Γ ` Y (λx.e) : τ →E

Γ ` (λx.e′) (Y (λx.e)) : τ ′ →E

38 CHAPTER 5. GENERAL RECURSION

Chapter 6

Polymorphism

6.1 Polymorphic Types

τ ∈ Type ::= . . . | ∀α.τ | ∃α.τ

Hypothetical judgements are generalized to also include an environment of
free type variables Θ = α, β, . . . , and are written as Θ; Γ ` e : τ . ∆ is a set (an
unordered list, with at most one copy of any given type variable). We also have
a judgement for checking that types are well-formed, where Θ; Γ ` τ : ? means
FV (τ) ⊆ Θ.

Θ, α ` α : ? Var
Θ ` τ1 : ? Θ ` τ2 : ?

Θ ` τ1 → τ2 : ? →T

Θ, α ` τ : ?
Θ ` ∀α.τ : ? ∀T

Θ, α ` τ : ?
Θ ` ∃α.τ : ? ∃T

Θ, α; Γ ` e : τ
Θ; Γ ` Λα.e : ∀α.τ ∀I

Θ; Γ ` e : ∀α.τ Θ ` τ ′ : ?
Θ; Γ ` e τ ′ : τ [τ ′/α] ∀E

Θ ` τ ′ : ? Θ; Γ ` e : τ [τ ′/α]
Θ; Γ ` 〈τ ′, e〉 : ∃α.τ ∃I

Θ; Γ ` e : ∃α.τ Θ, α; Γ, x : τ ` e′ : τ ′ Θ ` τ ′ : ?
Γ ` open e as 〈α, x〉 ⇒ e′ : τ ′ ∃E

39

40 CHAPTER 6. POLYMORPHISM

Θ ` Γ, x : τ
Θ; Γ, x : τ ` x : τ Var

Θ ` •
Θ ` Γ Θ ` τ : ?

Θ ` Γ, x : τ

Lemma 6.1 (Scope of Types). If Θ ` τ : ? is derivable, then FV (τ) ⊆ Θ. If
Θ; Γ ` e : τ is derivable then both Θ ` Γ and Θ ` τ : ? are, too.

Lemma 6.2. By induction on the derivations of Θ; Γ ` e : τ and Θ ` τ : ?,
respectively.

6.2 Syntax

e ∈ Expr ::= . . .

| Λα.e | e τ
| 〈τ, e〉 | open e as 〈α, x〉 ⇒ e′

6.3 Laws

(α) ∀α.τ =α ∀β.(τ [beta/α]) (β /∈ FV (τ))
(α) ∃α.τ =α ∃β.(τ [β/α]) (β /∈ FV (τ))

(α) Λα.e =α Λβ.(e [β/α]) (β /∈ FV (e))
(β) (Λα.e) τ =β e [τ/α]
(η) Λα.(e α) =η e : ∀α.τ ifα /∈ FV (e)

(α) open e as 〈α, x〉 ⇒ e′ =α open e as 〈α′, x′〉 ⇒ (e′ [α′/α] [x′/x])
(β) open 〈τ, e〉 as 〈α, x〉 ⇒ e′ =β e

′ [τ/α] [e/x]
(η) open e as 〈α, x〉 ⇒ 〈α, x〉 =η e : ∃α.τ

6.4 Operational Semantics
For functions, foralls, and exists.

6.4. OPERATIONAL SEMANTICS 41

6.4.1 Call-by-Name

E ∈ EvalCxt ::= � | E e | E τ | openE as (α, x)⇒ e

(λx.e) e′ 7→ e[e′/x]
(Λα.e) τ 7→ e[τ/α]

open 〈τ, e〉′ as (α, x)⇒ e 7→ e[τ/α][e′/x]

6.4.2 Call-by-Value

V ∈ Value ::= x | λx.e | Λα.e | 〈τ, V 〉
E ∈ EvalCxt ::= � | E e | V E | E τ | openE as (α, x)⇒ e | 〈τ, E〉

(λx.e) V 7→ e[V/x]
(Λα.e) τ 7→ e[τ/α]

open 〈τ, V 〉 as (α, x)⇒ e 7→ e[τ/α][V/x]

42 CHAPTER 6. POLYMORPHISM

Chapter 7

Encodings

7.1 Untyped Encodings
7.1.1 Booleans

IfThenElse = λx.λt.λf.x t f

True = λt.λf.t

False = λt.λf.f

And = λx.λy.IfThenElse x y False
Or = λx.λy.IfThenElse x True y

Not = λx.IfThenElse x False True

7.1.2 Sums

Case = λi.λl.λr.i l r

Inl = λx.λl.λr.l x

Inr = λx.λl.λr.r x

7.1.3 Products

Pair = λx.λy.λp.p x y

43

44 CHAPTER 7. ENCODINGS

Fst = λx.λy.x

Snd = λx.λy.y

7.1.4 Numbers

Iter = λn.λz.λs.n z s

Zero = λz.λs.z

Suc = λn.λz.λs.s (n z s)

One = Suc Zero =β λz.λs.s z

Two = Suc One =β λz.λs.s (s z)
Three = Suc Two =β λz.λs.s (s (s z))
Four = Suc Three =β λz.λs.s (s (s (s z)))
Five = Suc Four =β λz.λs.s (s (s (s (s z))))

7.1.5 Lists

Fold = λl.λn.λc.l n c

Nil = λn.λc.n

Cons = λx.λl.λn.λc.c x (l n c)

7.2 Typed Encodings

7.2.1 Booleans

Bool = ∀δ.δ → δ → δ

IfThenElse : ∀δ.Bool → δ → δ → δ

IfThenElse = Λδ.λx:Bool.λt:δ.λf :δ.x δ t f

7.2. TYPED ENCODINGS 45

True,False : Bool
True = Λδ.λt:δ.λf :δ.t
False = Λδ.λt:δ.λf :δ.f

And,Or : Bool → Bool → Bool
And = λx.λy.IfThenElse Bool x y False
Or = λx.λy.IfThenElse Bool x True y

Not : Bool → Bool
Not = λx.IfThenElse Bool x False True

7.2.2 Sums

Sum τ1 τ2 = ∀δ.(τ1 → δ)→ (τ2 → δ)→ δ

Case : ∀α.∀β.∀δ.Sum α β → (α→ δ)→ (β → δ)→ δ

Case = Λα.Λβ.Λδ.λi:Sum α β.λl:α→ δ.λr:β → δ.i δ l r

Inl : ∀α.∀β.α→ Sum α β

Inl = Λα.Λβ.λx:α.Λδ.λl:α→ δ.λr:β → δ.l x

Inr : ∀α.∀β.β → Sum α β

Inr = Λα.Λβ.λx:β.Λδ.λl:α→ δ.λr:β → δ.r x

7.2.3 Products

Prod τ1 τ2 = ∀δ.(τ1 → τ2 → δ)→ δ

Pair : ∀α.∀β.α→ β → Prod α β

Pair = Λα.Λβ.λx:α.λy:β.Λδ.λp:α→ β → δ.p x y

Fst : ∀α.∀β.α→ β → α

Fst = λx:α.λy:β.x
Snd : ∀α.∀β.α→ β → β

Snd = λx:α.λy:β.y

46 CHAPTER 7. ENCODINGS

7.2.4 Existentials

To properly encode existential types with universal types, we should use type
functions which, which is like pushing a second level of λ-calculus (λs and ap-
plications) into types:

τ ∈ Type ::= . . . | λα.τ | τ1 τ2

k ∈ Kind ::= ? | k → k′

Note that this means we now have other kinds of “types” that do different things
that types did before. There are the old ? kind of types that classify terms, but
also function (k → k′) kinds of types. For example, a type A : ? → ? does
not classify a term, instead it transforms one ? into another ?, so that τ1 τ2 : ?
(when τ1 : ?) can classify terms but not just τ . This is the difference between
List Bool (a list of booleans) versus just List (the list type constructor).

Because there are different kinds of types serving different roles (like different
kinds of terms serving different roles), the well-formedness rules for types are
more serious, and look like “type-checking the types.” For type functions, we
have the inference rules:

Γ, α : k ` τ : k′

Γ ` λα.τ : k → k′
→I2 Γ ` τ1 : k → k′ Γ ` τ2 : k

Γ ` τ1 τ2 : k′ →E2

The addition of type-level λs and applications makes deciding the equality
of to types (for the purpose of type-checking and unification) tricky. When we
just had simple types built from→, ×, and +, type equality was strict syntactic
equality. When we added type variable binders like µα.τ , ∀α.τ and ∃α.τ then
type equality incorporates α-equivalence which is easily decidable. When λα.τ
and τ1 τ2 then type equality should incorporate at least β-equivalence (and
possibly η-equivalence) which requires more care and effort than just α.

Because there are now several kinds of types, it makes sense to annotate the
bound type variables (introduced by the ∀s) with their kind as in the following
encoding of existential types.

Exists α:?.τ = ∀δ:?.(∀α:?.τ → δ)→ δ

Open : ∀φ:?→ ?.∀δ:?.(Exists α:?.φ δ)→ (∀α:?.φ α→ δ)→ δ

Open = Λφ:?→ ?.Λδ:?.λp:Exists α : ?.φ α.λf :∀α : ?.φ α→ δ.p δ f

Pack : ∀φ:?→ ?.∀α:?.φ α→ Exists α:?.φ α
Pack = Λφ:?→ ?.Λα:?.λy:φ α.Λδ:?.λf :∀α:?.φ α→ δ.f α y

7.2. TYPED ENCODINGS 47

7.2.5 Numbers

Nat = ∀δ.δ → (δ → δ)→ δ

Iter : ∀δ.Nat → δ → (δ → δ)→ δ

Iter = λn:Nat.Λδ.λz:δ.λs:δ → δ.n δ z s

Zero : Nat
Zero = Λδ.λz:δ.λs:δ → δ.z

Suc : Nat → Nat
Suc = λn:Nat.Λδ.λz:δ.λs:δ → δ.s (n δ z s)

7.2.6 Lists

List τ = ∀δ.δ → (τ → δ → δ)→ δ

Fold : ∀α.∀δ.List α→ δ → (α→ δ → δ)→ δ

Fold = Λα.Λδ.λl:List α.λn:δ.λc:α→ δ → δ.l δ n c

Nil : ∀α.List α
Nil = Λα.Λδ.λn:δ.λc:α→ δ → δ.n

Cons : ∀α.α→ List α→ List α
Cons = Λα.λx:α.λl:List α.Λδ.λn:δ.λc:α→ δ → δ.c x (l δ n c)

48 CHAPTER 7. ENCODINGS

Chapter 8

Linear Logic

8.1 Connectives

α, β ∈ PropVariable ::= . . .

τ ∈ Proposition ::= τ1 ⊗ τ2 | τ1 ⊕ τ2 | 1 | 0 | τ1 & τ2 | τ1 ` τ2 | > | ⊥ | !τ | ?τ

8.2 Classification
The non-exponential connectives for building propositions can be divided into
two different ways.

• Additive vs. Multiplicative

– Additive connectives (⊕, 0, &, >) “share” their environment among
multiple premises.

– Multiplicative connectives (⊗, 1, `, ⊥) “divide” their environment
between multiple premises.

• Positive vs. Negative

– Positive connectives (⊗, ⊕, 0, 1) have reversible left rules.
– Negative connectives (&, `, >, ⊥) have reversible right rules.

8.3 Inference Rules
The judgements are of the form τ1, τ2, . . . , τn ` τ ′1, τ ′2 . . . , τ ′m, which can be read
as “if ALL of τ1 AND τ2 AND . . . τn are true then ONE of τ ′1 OR τ ′2 OR . . . τ ′m
is true”. Both lists to the left and right of ` are unordered. I’ll write Γ to the
left of ` and ∆ to the right.

49

50 CHAPTER 8. LINEAR LOGIC

8.3.1 Core Identity Rules

τ ` τ Id
Γ ` τ,∆ Γ′, τ ` ∆′

Γ′,Γ ` ∆′,∆ Cut

8.3.2 Additive Conjunction

Γ ` τ1,∆ Γ ` τ2,∆
Γ ` τ1 & τ2,∆

&R
Γ, τi ` ∆ (i ∈ {1, 2})

Γ, τ1 & τ2 ` ∆ &L

Γ ` >,∆ >R no >L rule

8.3.3 Multiplicative Conjunction

Γ1 ` τ1,∆1 Γ2 ` τ2,∆2
Γ1,Γ2 ` τ1 ⊗ τ2,∆1,∆2

⊗R
Γ, τ1, τ2 ` ∆

Γ, τ1 ⊗ τ2 ` ∆ ⊗L

• ` 1 1R Γ ` ∆
Γ, 1 ` ∆ 1L

8.3.4 Additive Disjunction

Γ ` τi,∆ (i ∈ {1, 2})
Γ ` τ1 ⊕ τ2,∆

⊕R
Γ ` τ1,∆ Γ ` τ2,∆

Γ ` τ1 & τ2,∆
⊕L

no 0R rule Γ, 0 ` ∆ 0L

8.3.5 Multiplicative Disjunction

Γ ` τ1, τ2,∆
Γ ` τ1 ` τ2,∆

`R Γ1 ` τ1,∆1 Γ2 ` τ2,∆2
Γ1,Γ2, τ1 ` τ2 ` ∆1,∆2

`L
Γ ` ∆

Γ ` ⊥,∆ ⊥R ⊥ ` • ⊥L

8.3.6 Exponentials

!Γ ` τ, ?∆
!Γ ` !τ, ?∆ !R

Γ, τ ` ∆
Γ, !τ ` ∆ !L (a.k.a. !Dereliction)

Γ, !τ ` ∆
Γ ` ∆ !W

Γ, !τ, !τ ` ∆
Γ, !τ ` ∆ !C

8.4. EXAMPLES 51

!Γ, τ ` ?∆
!Γ, ?τ ` ?∆ ?L

Γ ` τ,∆
Γ ` ?τ,∆ ?R (a.k.a. ?Dereliction)

Γ ` ?τ,∆
Γ ` ∆ ?W

Γ ` ?τ, ?τ,∆
Γ ` ?τ,∆ ?C

8.4 Examples
All great linear logic introductions talk about food, so here are some culinary
allegories for remembering the difference between linear connectives.

Suppose I’m a cook at a diner, and for lunch we’re making burgers and fries.
I know how to make a burger out of beef and a bun, written beef, bun ` burger.
I know how to make fries out of potatoes and oil, written potato, oil ` fries.
So, I can make a single burger and fries meal by cooking both and putting them
together on the same plate. Clearly, to make a burger and fries plate, I need all
the ingredients for both parts, so

beef, bun ` burger potato, oil ` fries
beef, bun, potato, oil ` burger ⊗ fries ⊗R

A customer who orders a burger ⊗ fries receives both a burger and a pile of
fries, and I expect them to eat it all or I will be very cross at the waste.

For the side, I’ll make a soup of the day, which is usually either tomato or
chicken noodle soup. Tomato soup is made from tomatoes and cream, writ-
ten tomato, cream ` tomato soup. Chicken noodle is made from chicken and
noodles, written chicken, noodle ` chicken noodle soup. As the cook, I get
to pick which soup to make, depending on the ingredients at hand. Today, I
happen to have tomato and cream, so tomato soup it is

tomato, cream ` tomato soup
tomato, cream ` tomato soup⊕ chicken noodle soup ⊕R

The customer doesn’t get any choice of the soup of the day, they just have to
take what they get and be happy with whichever one it happens to be that day.

For dessert, I can make one of two fruit-based treats. I can make a fruit salad
out of strawberries and bananas, written strawberry, banana ` fruit salad. I
can also make a smoothie out of the same ingredients, written strawberry, banana `
smoothie. As a flexible cook, I’ll give the customer the choice of which of the
two desserts they want. But no matter which they choose, I use the same stock
of ingredients, so

strawberry, banana ` fruit salad strawberry, banana ` smoothie
strawberry, banana ` fruit salad& smoothie

&R

I am offering the potential of a fruit salad and a smoothing, and the customer
has to choose only one of the two options. If they choose to get a fruit salad, then

52 CHAPTER 8. LINEAR LOGIC

I’ve used all my ingredients and they pass up the opportunity of a smoothie,
and vice versa.

Cooking for a single customer, including a main dish, side, and desert, can
then be written all together with one big ⊗,

main = burger ⊗ fries
soup = tomato soup⊕ chicken noodle soup

dessert = fruit salad& smoothie

lunch = main⊗ soup⊗ dessert
ingredients = beef, bun, potato, oil, tomato, cream, strawberry, banana

ingredients ` lunch

What about par (`)? That represents a cook serving multiple customers at
once during the same lunch hour. In order to cook one lunch order, I need
a single set of the ingredients. If I need to cook up two, then I’d need two
sets of the same ingredients, and three for three, and so on. So, if I have two
customers both wanting a lunch, I can serve them “in parallel” with two sets of
the standard ingredients,

....
ingredients ` lunch

....
ingredients ` lunch

ingredients, ingredients, ingredients ` lunch, lunch Mix

ingredients, ingredients ` lunch` lunch
`R

That extra rule,

Γ ` ∆ Γ′ ` ∆′
Γ,Γ′ ` ∆,∆′ Mix

is like a Cut without the proposition being cut out. It lets us separate out two
independent derivations from each other, doing them both in parallel with one
another, within a single umbrella derivation. Whereas a Cut corresponds to
connecting a lemma with a proof that uses that lemma, or connecting an imple-
mentation of a library function with a program that uses that library function,
a Mix just puts together two independent proofs into one common collection
of results, or runs two non-interacting/non-communicating subroutines in the
same program.

Some extra properties differentiating the two versions of conjunction and
disjunction:

• τ a` τ & τ but τ 6a` τ ⊗ τ .

• τ, τ a` τ ⊗ τ (using Mix for τ ⊗ τ ` τ, τ) but τ, τ 6a` τ & τ .

• τ ⊕ τ a` τ but τ ` τ 6a` τ .

• τ ` τ a` τ, τ (using Mix for τ, τ ` τ ` τ) but τ ⊕ τ 6a` τ .

8.5. NEGATION AND DUALITY 53

8.5 Negation and Duality
The negation operation (not connective!) in linear logic is defined by induction
on proposition, following familiar De Morgan-like rules:

(τ1 ⊕ τ2)⊥ = τ⊥1 & τ⊥2 (τ1 & τ2)⊥ = τ⊥1 ⊕ τ⊥2
(τ1 ⊗ τ2)⊥ = τ⊥1 ` τ⊥2 (τ1 ` τ2)⊥ = τ⊥1 ⊗ τ⊥2

0⊥ = > >⊥ = 0
1⊥ = ⊥ ⊥⊥ = 1

(!τ)⊥ = ?τ⊥ (?τ)⊥ = !τ⊥

Linear implication can be defined in terms of the negation operation and mul-
tiplicative disjunction:

τ1 (τ2 = τ⊥1 ` τ2

This negation operation is involutive by definition.

Theorem 8.1. For all propositions τ , τ⊥⊥ = τ .

Proof. By induction on the syntax of τ .

Combined with nice symmetries, this gives linear logic a deep sense of duality.

Corollary 8.1 (Logical duality). Γ ` ∆ is provable if and only if ∆⊥ ` Γ⊥ is
provable.

Duality means that the following two inversion rules should be included in
linear logic:

Γ, τ ` ∆
Γ ` τ⊥,∆

InvR
Γ ` τ,∆

Γ, τ⊥ ` ∆
InvL

You need these inversion rules in order for the encoding of linear implication(
in terms of multiplicative disjunction ` to mean what you want it to mean. For
example, it should be the case that the identity map • ` τ (τ is derivable.
This is because the linear implication τ (τ is defined as τ⊥ ` τ , and the
following derivation proves this proposition using an inversion rule along with
the right rule for `:

τ ` τ Id

• ` τ⊥, τ
InvR

• ` τ⊥ ` τ
`R

Because of this duality, and to cut down on some of the extra repetition
caused by duplicating all the connectives, you sometimes see linear logic presen-
ted in a one-sided style. Instead of putting propositions on both sides of the

54 CHAPTER 8. LINEAR LOGIC

turnstyle like Γ ` ∆, they can all be lumped together on the right like ` Γ⊥,∆
(or dually on the left like Γ,∆⊥ ` , but this is not common). Doing so means
you only need to write down half as many logical rules for the connectives by
only using the right-hand ones. The only thing that needs to change are the cut
and identity rules whose presentation was inherently two-sided. The one-sided
version of the cut and identity rules are:

` τ, τ⊥
Id

` τ,Γ ` τ⊥,∆
` Γ,∆ Cut

Chapter 9

A Linear Lambda Calculus

9.1 Asymmetrical, Intuitionistic, Linear Logic

τ ∈ Proposition ::= > | 0 | 1 | > | τ1 (τ2 | τ1 & τ2 | τ1 ⊕ τ2 | τ1 ⊗ τ2 | !τ

Judgements will have the asymmetric form τ1, τ2, . . . τn; τ ′1, τ ′2, . . . , τ ′m ` τ ′′
where the outer τ1 . . . τn are non-linear propositions and the inner τ ′1 . . . τ ′m are
linear resources. We will write this judgement as Γ; ∆ ` τ .

Γ; τ ` τ Id1
Γ, τ ; • ` τ Id∗

Γ; ∆ ` τ Γ; ∆′, τ ` τ ′

Γ; ∆,∆′ ` τ ′ Cut

Γ; ∆, τ1 ` τ2
Γ; ∆ ` τ1 (τ2

(I
Γ; ∆1 ` τ1 (τ2 Γ; ∆2 ` τ1

Γ; ∆1,∆2 ` τ2
(E

Γ; ∆ ` τ1 Γ; ∆ ` τ2
Γ; ∆ ` τ1 & τ2

&I
Γ; ∆ ` τ1 & τ2

Γ; ∆ ` τi
&E

Γ; ∆ ` τi
Γ; ∆ ` τ1 ⊕ τ2

⊕I
Γ; ∆ ` τ1 ⊕ τ2 Γ; ∆′, τ1 ` τ ′ Γ; ∆′, τ2 ` τ ′

Γ; ∆,∆′ ` τ ′ ⊕E

Γ; ∆1 ` τ1 Γ; ∆1 ` τ2
Γ; ∆1,∆2 ` τ1 ⊗ τ2

⊗I
Γ; ∆ ` τ1 ⊗ τ2 Γ; ∆′, τ1, τ2 ` τ ′

Γ; ∆,∆′ ` τ ′ ⊗E

Γ; ∆ ` > >I
Γ; ∆ ` 0
Γ; ∆ ` τ 0E Γ; • ` 1 1I

Γ; ∆ ` 1 Γ; ∆′ ` τ ′

Γ; ∆,∆′ ` τ ′ 1E

Γ; • ` τ
Γ; • ` !τ !I

Γ; ∆ ` !τ Γ, τ ; ∆′ ` τ ′

Γ; ∆,∆′ ` τ ′ !E

Admissible rules:
Γ; ∆ ` τ ′

Γ, τ ; ∆ ` τ ′ !W
Γ, τ, τ ; ∆ ` τ ′

Γ, τ ; ∆ ` τ ′ !C

55

56 CHAPTER 9. A LINEAR LAMBDA CALCULUS

9.2 A Resource-Sensitive Lambda Calculus

e ∈ Expr ::= x | letx = e in e′

| λx.e | e e′

| {π1 ⇒ e1 | π2 ⇒ e2} | e·πi
| ιi·e | case e of {ι1·x⇒ e′1 | ι2·y ⇒ e′2}
| 〈e1, e2〉 | case e of 〈x, y〉 ⇒ e′

| {} | case e {} | 〈〉 | case e of 〈〉 ⇒ e′

| many (e) | case e of many (x)⇒ e′

Γ;x : τ ` x : τ Id1
Γ, x : τ ; • ` x : τ Id∗

Γ; ∆ ` e : τ Γ; ∆, x : τ ` e′ : τ ′

Γ; ∆,∆′ ` letx = e in e′ : τ ′ Cut

Γ; ∆, x : τ1 ` e : τ2
Γ; ∆ ` λx.e : τ1 (τ2

(I
Γ; ∆1 ` e : τ1 (τ2 Γ; ∆2 ` e1 : τ1

Γ; ∆1,∆2 ` e e1 : τ2
(E

Γ; ∆ ` e1 : τ1 Γ; ∆ ` e2 : τ2

Γ; ∆ ` {π1 ⇒ e1 | π2 ⇒ e2} : τ1 & τ2
&I

Γ; ∆ ` e : τ1 & τ2
Γ; ∆ ` e·πi : τi

&E

Γ; ∆ ` e : τi
Γ; ∆ ` ιi·e : τ1 ⊕ τ2

⊕I
Γ; ∆ ` e : τ1 ⊕ τ2 Γ; ∆′, x : τ1 ` e′1 : τ ′ Γ; ∆′, y : τ2 ` e′2 : τ ′

Γ; ∆,∆′ ` case e of {ι1·x⇒ e′1 | ι2·y ⇒ e′2} : τ ′ ⊕E

Γ; ∆1 ` e1 : τ1 Γ; ∆2 ` e2 : τ2

Γ; ∆1,∆2 ` 〈e1, e2〉 : τ1 ⊗ τ2
⊗I

Γ; ∆ ` e : τ1 ⊗ τ2 Γ; ∆′, x : τ1, y : τ2 ` e′ : τ ′

Γ; ∆,∆′ ` case e of 〈x, y〉 ⇒ e′ : τ ′ ⊗E

∆ ` {} : > >I
Γ; ∆ ` e : 0

Γ; ∆ ` case e of {} : τ ′ 0E

Γ; • ` 〈〉 : 1 1I
Γ; ∆ ` e : 1 Γ; ∆′ ` e′ : τ ′

Γ; ∆,∆′ ` case e of 〈〉 ⇒ e′ : τ ′ 1E

Γ; • ` e : τ
Γ; • ` many (e) : !τ !I

Γ; ∆ ` e : !τ Γ, x : τ ; ∆′ ` e′ : τ ′

Γ; ∆,∆′ ` case e of many (x)→ e′ : τ ′ !E

9.3 Operational Semantics

V ∈ Value ::= x | λx.e | {π1 ⇒ e1 | π2 ⇒ e2} | ιi·V | 〈V1, V2〉 | {} | 〈〉 | many (V)
E ∈ EvalCxt ::= � | letx = E in e′ | E e′ | V E | E·πi

| caseE {. . . } | ιi·E | 〈E, e2〉 | 〈V1, E〉 | many (E)

Note that the instance of case stands for any of the possible case expressions
for the different positive types.

9.4. TYPE SAFETY: RESOURCE SAFETY 57

letx = V in e 7→ e[V/x]
(λx.e) V 7→ e[V/x]

{π1 ⇒ e1 | π2 ⇒ e2}·πi 7→ ei

case ιi·V of {ι1·x⇒ e1 | ι2·y ⇒ e2} 7→ ei[V/x]
case 〈V1, V2〉 of 〈x, y〉 ⇒ e 7→ e[V1/x, V2/y]

case 〈〉 of 〈〉 ⇒ e 7→ e

case many (V) of many (x) in e 7→ e[V/x]

e 7→ e′

E[e] 7→ E[e′]

9.4 Type Safety: Resource Safety
Lemma 9.1 (Structural rules). The following typing rules are admissible:

Γ; ∆ ` e′ : τ ′

Γ, x : τ ; ∆ ` e′ : τ ′ !W
Γ, x : τ, y : τ ; ∆ ` e′ : τ ′

Γ, z : τ ; ∆ ` e′[z/x, z/y] : τ ′ !C

Proof. By induction on the premise of both rules.

Lemma 9.2 (Unique Use). If Γ; ∆, x : τ ` E[x] : τ ′ is derivable, then x is not
a free variable of E.

Proof. By induction on the typing derivation of Γ; ∆, x : τ ` E[x] : τ ′.

Lemma 9.3 (Linear Substitution). If Γ; ∆ ` e : τ and Γ; ∆′, x : τ ` e′ : τ ′ then
Γ; ∆′,∆ ` e′[e/x] : τ ′.

Proof. By induction on the typing derivation of Γ; ∆, x : τ ` e′ : τ ′.

Lemma 9.4 (Non-linear substitution). If Γ; • ` e : τ and Γ, x : τ ; ∆ ` e′ : τ ′
then Γ; ∆ ` e′[e/x] : τ ′

Proof. By induction on the typing derivation of Γ, x : τ ; ∆ ` e′ : τ ′, using
weakening and contraction as necessary.

Lemma 9.5 (Progress). If •; • ` e : τ then either e is an answer A or there
exists an expression e′ such that e 7→ e′.

Proof. By induction on the typing derivation of •; • ` e : τ .

Lemma 9.6 (Preservation). If Γ; ∆ ` e : τ and e 7→ e′ then Γ; ∆ ` e′ : τ .

Proof. For e to take a step, it must be that e = E[e1], e1 7→ e′1 by one of
the operational rules, and E[e′1] = e′. Preservation follows by induction on the
typing derivation of Γ; ∆ ` E[e1] : τ , using the above two substitution lemmas
in the base case (E = �) where an operational rule applies.

58 CHAPTER 9. A LINEAR LAMBDA CALCULUS

Chapter 10

Reducibility

Definition 10.1 (Closed). An expression e is closed if FV (e) = {}.

Definition 10.2 (Well-typed). An expression e is well-typed if there exists an
environment Γ and type τ such that Γ ` e : τ is derivable.

Definition 10.3 (Termination). An expression e is terminating if there exists
another expression e′ such that e 7→∗ e′ and e′ 67→. The set of all terminating
expressions is

Termin = {e ∈ Expr | ∃e′ ∈ Expr .e 7→∗ e′ 67→}

For this chapter, let’s take the simply typed λ-calculus with booleans as our
language. That is, the language

τ ∈ Type ::= bool | τ1 → τ2

b ∈ Bool ::= true | false

e ∈ Expr ::= x | λx.e | e1 e2 | b | if e then e1 else e2

along with the associated static and dynamic semantics described above. The
goal is to show that all closed and well-typed expressions of this language are
terminating.

10.1 A False Start on Termination
Theorem 10.1. If • ` e : τ then e is terminating.

Proof. By induction on the derivation D of • ` e : τ .

• D = • ` b : bool

Then b 7→∗ b 67→, so b is terminating.

59

60 CHAPTER 10. REDUCIBILITY

• D =

.... D
′

• ` e : bool

.... D1
• ` e1 : τ

.... D2
• ` e2 : τ

• ` if e then e1 else e2 : τ

Inductive Hypothesis. e, e1, and e2 are all terminating.

Since e is terminating, we know there is an e′ such that e 7→∗ e′ 67→. By
type safety, we know that e′ is not stuck, so it must be that e′ is some
value, and furthermore by preservation and canonical forms, it must be
that e′ is some boolean b. In either case (b = true or b = false), we have

if e then e1 else e2 7→∗ if b then e1 else e2 7→ ei

where ei is one of e1 or e2. Since both e1 and e2 are terminating, then
there must be some e′′ such that ei 7→∗ e′′ 67→. Therefore,

if e then e1 else e2 7→∗ if b then e1 else e2 7→ ei 7→∗ e′ 67→

• D =

.... D
′

x : τ1 ` e : τ2
• ` λx.e : τ1 → τ2

Note that there is no useful inductive hypothesis, because in the premise,
the environment used to type check e is not empty.
But that’s fine, since λ-abstractions are already results,

λx.e 7→∗ λx.e 67→

so λx.e is terminating already.

• D =
• ` e1 : τ2 → τ1 • ` e2 : τ2

• ` e1 e2 : τ1

Inductive Hypothesis. e1 and e2 are both terminating.

Since e1 is terminating, there must be some e′1 such that e1 7→∗ e′1 67→.
By type safety, we know that e′1 is not stuck so it must be some value,
and furthermore by preservation and canonical forms, it must be that e′1
is some λ-abstraction λx.e′. So we have

e1 e2 7→∗ (λx.e′) e2 7→ e′[e2/x]

But neither inductive hypothesis says anything about e′[e2/x]! So we are
stuck. �

We can’t complete the proof because the inductive hypothesis is too weak to
say anything useful about function application. So lets try again by strengthen-
ing the inductive hypothesis to make application the easy case.

10.2. REDUCIBILITY MODEL OF TYPES 61

10.2 Reducibility Model of Types
Trick: define an interpretation of type as a set of expressions (i.e. a unary
relation on expressions) that they describe. Make sure that each such set only
contains terminating expressions by definition. Then show that all well-typed
expressions are in the appropriate set based on their type.

For describing booleans, it’s not just enough to say that bool = {true, false}.
Why? Because you might have other expressions that are not simple boolean
values yet like

if true then false else true 7→ false

• ` if true then false else true : bool, so it should be considered a bool
too! So we’ll need to consider the expansion of some set of values to include
expressions which reduce to one of those values.

C∗ = {e ∈ Expr | ∃e′ ∈ C, e 7→∗ e′}

In other words, for a set C, C∗ is the closure of C under expansion. Some
properties about this closure:

• C∗∗ = C∗

• C ⊆ C∗

• If C ⊆ Termin then C∗ ⊆ Termin

We can now interpret each type as a set of terms:

JboolK = {true, false}∗ = {e ∈ Expr | ∃b.e 7→∗ b}
Jτ1 → τ2K = {e ∈ Termin | ∀e1 ∈ Jτ1K.e e1 ∈ Jτ2K}

Lemma 10.1. For all types τ , if e ∈ JτK then e is terminating. That is to say,
JτK ⊆ Termin for any τ .

Proof. By cases on τ . JboolK ⊆ Termin because {true, false} ⊆ Termin.
Jτ1 → τ2K ⊆ Termin by definition.

10.3 Termination
Now, we must extend the interpretation of types to the interpretation of hypo-
thetical judgements. That way, we won’t get stuck in a rule that extends the
environment.

JΓK = {σ ∈ Subst | ∀(x : τ) ∈ Γ.x[σ] ∈ JτK}
JΓ ` e : τK = ∀σ ∈ JΓK.e[σ] ∈ JτK

Lemma 10.2 (Adequacy, a.k.a. the Fundamental Lemma). If Γ ` e : τ is
derivable, then JΓ ` e : τK is true.

62 CHAPTER 10. REDUCIBILITY

Proof. By induction on the derivation D of Γ ` e : τ .

• D = Γ, x : τ ` x : τ
We must show JΓ, x : τ ` x : τK is true, i.e. , for all σ ∈ JΓ, x : τK, x[σ] ∈
JτK. This follows by definition of JΓ, x : τK since (x : τ) ∈ (Γ, x : τ).

• D = Γ ` b : bool

We must show JΓ ` b : boolK is true, i.e. , for all σ ∈ JΓK, b[σ] = b ∈
JboolK. Note that b ∈ {true, false}, so b ∈ JboolK = {true, false}∗
since b 7→∗ b.

• D =
Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e then e1 else e2 : τ

Inductive Hypothesis. JΓ ` e : boolK, JΓ ` e1 : τK, and JΓ ` e2 : τK are
both true.

We must show JΓ ` if e then e1 else e2 : τK is true, i.e. , for all σ ∈ JΓK,

(if e then e1 else e2)[σ] = if e[σ] then e1[σ] else e2[σ] ∈ JτK

Suppose σ ∈ JΓK. From the inductive hypothesis, we learn that

e[σ] ∈ JboolK e1[σ] ∈ JτK e2[σ] ∈ JτK

Because e[σ] ∈ JboolK, then by definition of JboolK, there must be some
b such that e[σ] 7→∗ b. Therefore,

if e[σ] then e1[σ] else e2[σ] 7→∗ if b then e1[σ] else e2[σ] 7→ ei[σ]

where ei is either e1 (when b = true) or e2 (when b = false). In either
case, ei[σ] ∈ JτK. So, since JτK is closed under expansion (PENDING), it
must be that

if e[σ] then e1[σ] else e2[σ] ∈ JτK

• D =

.... D
′

Γ ` e : τ1 → τ2

.... D1
Γ ` e1 : τ1

Γ ` e e1 : τ2

Inductive Hypothesis. Both JΓ ` e : τ1 → τ2K and JΓ ` e1 : τ1K are true.

We must show that JΓ ` e e1 : τ2K is true, i.e. , for all σ ∈ JΓK,

(e e1)[σ] = e[σ] e1[σ] ∈ Jτ2K

Suppose σ ∈ JΓK. From the inductive hypothesis, we learn that e[σ] ∈
Jτ1 → τ2K and e1[σ] ∈ Jτ1K. So by definition of Jτ1 → τ2K, e[σ] e1[σ] ∈ Jτ2K.

10.3. TERMINATION 63

• D =

.... D
′

Γ, x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

Inductive Hypothesis. JΓ, x : τ1 ` e : τ2K is true.

We must show that JΓ ` λx.e : τ1 → τ2K is true, i.e. , for all σ ∈ JΓK,1

(λx.e)[σ] = λx.(e[σ]) ∈ Jτ1 → τ2K

By definition of Jτ1 → τ2K, λx.e[σ] ∈ Jτ1 → τ2K exactly when (λx.e[σ]) e1 ∈
Jτ2K for all e1 ∈ Jτ1K, so suppose some arbitrary e1 ∈ Jτ1K. Observe that

(λx.e[σ]) e1 7→ e[σ, e1/x]

Since e1 ∈ Jτ1K and σ ∈ JΓK, σ, e1/x ∈ JΓ, x : τ1K. And from the inductive
hypothesis, we learn that e[σ, e1/x] ∈ Jτ2K, which means that by closure
under expansion (PENDING), (λx.e[σ]) e1 ∈ Jτ2K as well. Therefore,
λx.e[σ] ∈ Jτ1 → τ2K for any σ.

Lemma 10.3 (Closure under expansion). For all types τ , if e 7→∗ e′ and e′ ∈
JτK then e ∈ JτK as well. That is to say, JτK∗ ⊆ JτK for any τ .

Proof. By induction on the syntax of the type τ .

• τ = bool: JboolK = {true, false}∗ = {true, false}∗∗ = JboolK∗

• τ = τ1 → τ2: We must show that if e 7→∗ e′ and e′ ∈ Jτ1 → τ2K, then
e ∈ Jτ1 → τ2K.

Inductive Hypothesis. Jτ1K = Jτ1K
∗ and Jτ2K = Jτ2K

∗.

Suppose e and e′ are arbitrary expressions such that e 7→∗ e′ ∈ Jτ1 → τ2K.
Showing that e ∈ Jτ1 → τ2K is the same as showing that for all e1 ∈
Jτ1 → τ2K, e e1 ∈ Jτ2K. So also let e1 be an arbitrary expression in Jτ1K.
Now observe that

e e1 7→∗ e′ e1 ∈ Jτ2K

because e′ ∈ Jτ1 → τ2K. Therefore, we learn from the inductive hypothesis
Jτ2K = Jτ2K

∗ that e e1 ∈ Jτ2K as well, and so e ∈ Jτ1 → τ2K by definition.

Corollary 10.1 (Closed Reducibility). If • ` e : τ is derivable then e ∈ JτK.
1Up to α equivalence, we may assume that this substitution is defined, meaning that x

does not appear in the domain of σ (there is no x/e′ ∈ σ) and is not free in any of the
expressions in the codomain of σ (for every y/e′ ∈ σ, x /∈ FV (e′)). This is because we can
always pick a fresh name that does not appear anywhere else to rename the bound variable
of the λ-abstraction if either of these conditions is not met.

64 CHAPTER 10. REDUCIBILITY

Corollary 10.2 (Termination). If • ` e : τ is derivable then e is terminating.

Proof. From the above, we know that e ∈ JτK ⊆ Termin.

Corollary 10.3 (Boolean Evaluation). If • ` e : bool is derivable, then there
is a boolean b such that e 7→∗ b.

Proof. From the above, we know that e ∈ JboolK = {true, false}∗.

Chapter 11

Parametricity

What happens if we want to generalize the reducibility relation to quantifiers
(universal and existential polymorphism)? This

J∀α.τK = {e ∈ Termin | ∀τ ′ ∈ Type.e τ ′ ∈ Jτ [τ ′/α]K}

doesn’t make sense! The definition doesn’t follow by induction on the type in
J K because τ [τ ′/α] is not a sub-term of the type ∀α.τ . Consider J∀α.αK. One of
the types that τ ′ ranges over is again ∀α.α! That means to understand J∀α.αK,
we must first understand Jα[(∀α.α)/α]K = J∀α.αK, so we’ve gotten nowhere.

11.1 Reducibility Candidates
We’ll need to say what to do for a type variable α. What’s the meaning of a
type variable? Substitution!

JαKθ = θ(α)

The “substitution environment” θ is a function from type variables to. . . what?
Something that looks like the interpretation of a type. That is, a candidate for
a sensible reducibility predicate.

Definition 11.1 (Reducibility Candidate). A reducibility candidate C is a set
of expressions (i.e. a unary predicate on expressions) satisfying the following
two properties:

• termination: all expressions in C are terminating.

• expansion: if e 7→∗ e′ ∈ C then e ∈ C.

In other words, a reducibility candidate is any set of expressions C such that

C∗ ⊆ C ⊆ Termin

The set of all reducibility candidates is

CR = {C ∈ ℘(Termin) | C∗ ⊆ C}

65

66 CHAPTER 11. PARAMETRICITY

Lemma 11.1. For any A ⊆ Termin, A∗ is a reducibility candidate.

Proof. First, note that from A ⊆ Termin we know that A∗ ⊆ Termin. Further-
more, A∗∗ = A∗, so

A∗∗ ⊆ A∗ ⊆ Termin

So the substitution environment θ in JαKθ is a function TypeVar → CR.

11.2 Logical Relations
We can now define the interpretation of the quantifiers by deception! For uni-
versal quantifier, pick whatever reducibility candidate you want (the domain of
reducibility candidates are now a fully-defined entity, independent of this inter-
pretation), and then completely lie by telling the polymorphic expression you’re
using it at some other unrelated type. For existential quantifier, the packing
operation can completely lie to its client by saying it used one abstract type,
but actually used any arbitrary candidate of its liking.

JαKθ = θ(α)
Jτ1 → τ2Kθ = {e ∈ Termin | ∀e′ ∈ Jτ1Kθ. e e

′ ∈ Jτ2Kθ}
J∀α.τKθ = {e ∈ Termin | ∀τ ∈ Type,C ∈ CR. e τ ∈ JτKθ,C/α}

J∃α.τKθ = {〈τ, e〉 | ∃C ∈ CR. e ∈ JτKθ,C/α}
∗

This deception makes the definition well-formed by induction on the syntax of
types. But also is a strong model of parametricity: the program cannot rely
on the type annotations (in packing and specialization) to decide what to do,
because those annotations are allowed to be completely bogus nonsense.

11.3 Termination
Now, we must extend the interpretation of types to the interpretation of hypo-
thetical judgements. That way, we won’t get stuck in a rule that extends the
environment.

JΘK = {Θ} → CR
JΘ; ΓKθ = {σ ∈ Subst | (∀(x : τ) ∈ Γ.x[σ] ∈ JτKθ) ∧ (∀α ∈ ∆.α[σ] ∈ Type)}

JΘ ` τ : ?K = ∀θ ∈ JΘK.JτKθ ∈ CR
JΘ; Γ ` e : τK = ∀θ ∈ JΘK.σ ∈ JΘ; ΓKθ.e[σ] ∈ JτKθ

Lemma 11.2 (Semantic substitution). Jτ [τ ′/α]Kθ = JτKθ,Jτ ′Kθ/α

Proof. By induction on the syntax of the type τ (assume renaming so that the
bound type variables of τ are distinct from α and the free variables of τ ′).

11.3. TERMINATION 67

• α: Jα[τ ′/α]Kθ = Jτ ′Kθ = (θ, Jτ ′Kθ/α)(α) = JαKθ,Jτ ′Kθ/α

• β where β 6= α: Jβ[τ ′/α]Kθ = JβKθ = θ(β) = (θ, Jτ ′Kθ/α)(β) = JβKθ,Jτ ′Kθ/α

• τ1 → τ2: J(τ1 → τ2)[τ ′/α]Kθ = Jτ1[τ ′/α]→ τ2[τ ′/α]Kθ =IH Jτ1 → τ2Kθ,Jτ ′Kθ/α

• ∀β.τ : J(∀β.τ)[τ ′/α]Kθ = J∀β.(τ [τ ′/α])Kθ =IH J∀β.τKθ,Jτ ′Kθ/α

• ∃β.τ : J(∃β.τ)[τ ′/α]Kθ = J∃β.(τ [τ ′/α])Kθ =IH J∃β.τKθ,Jτ ′Kθ/α

Lemma 11.3 (Semantic weakening). If α /∈ FV (τ) then for any C ∈ CR,
JτKθ,C/α = JτKθ.

Proof. By induction on the syntax of the type τ .

Lemma 11.4 (Adequacy of Types). If Θ ` τ : ? is derivable then JΘ ` τ : ?K
is true.

Proof. By induction on the derivation of Θ ` τ : ?:

• Θ, α ` α : ?
Suppose θ ∈ JΘ, αK. Then JαKθ = θ(α) ∈ CR

•
Θ ` τ1 : ? Θ ` τ2 : ?

Θ ` τ1 → τ2 : ?

Inductive Hypothesis. Both JΘ ` τ1 : ?K and JΘ ` τ2 : ?K are true.

Suppose θ ∈ JΘK. We must then show that Jτ1 → τ2Kθ ∈ CR, i.e. the set
of expressions has the termination and expansion properties. First, every
expression in Jτ1 → τ2Kθ is terminating by definition. Second, suppose that
e 7→∗ e′ ∈ Jτ1 → τ2Kθ and some arbitrary e1 ∈ Jτ1Kθ so that e′ e1 ∈ Jτ2Kθ
by definition. Observe that

e e1 7→∗ e′ e1 ∈ Jτ2Kθ

We learn from the inductive hypothesis that Jτ2Kθ ∈ CR, so e e1 ∈ Jτ2Kθ
by expansion. Therefore, e ∈ Jτ1 → τ2Kθ.

•
Θ, α ` τ : ?
Θ ` ∀α.τ : ?

Inductive Hypothesis. JΘ, α ` τ : ?K is true.

Suppose θ ∈ JΘK. We must show that J∀α.τKθ ∈ CR. First, every ex-
pression in J∀α.τKθ is terminating by definition. Second, suppose that
e 7→∗ e′ ∈ J∀α.τKθ, and suppose some arbitrary type τ and candidate C
so that e′ τ ∈ JτKθ,C/α by definition. Observe that

e τ 7→∗ e′ τ ∈ JτKθ,C/α

Since θ,C/α ∈ JΘK, we learn from the inductive hypothesis that JτKθ,C/α ∈
CR, so e τ ∈ JτKθ,C/α by expansion. Therefore, e ∈ J∀α.τKθ.

68 CHAPTER 11. PARAMETRICITY

•
Θ, α ` τ : ?
Θ ` ∃α.τ : ?

Inductive Hypothesis. JΘ, α ` τ : ?K is true.

Suppose θ ∈ JΘK. We must show that J∃α.τKθ ∈ CR. Since J∃α.τKθ is
defined as the ·∗-closure of a set of non-reducing expressions, it has the
termination and expansion properties by definition.

Lemma 11.5 (Adequacy of Programs). If Θ; Γ ` e : τ is derivable, then
JΘ; Γ ` e : τK is true.

Proof. By induction on the derivation of Θ; Γ ` e : τ . In each case, note
that since Θ; Γ ` e : τ is derivable, so too is Θ ` τ : ?, which means that
JΘ ` τ : ?K by adequacy of types. The cases for variables (x), functions (λx.e),
and applications (e1 e2) are analogous to the proof for the simply typed lambda
calculus. The new cases for the quantifiers are:

•
Θ; Γ ` e : ∀α.τ Θ ` τ ′ : ?

Θ; Γ ` e τ ′ : τ [τ ′/α] ∀E

Inductive Hypothesis. Both JΘ; Γ ` e : ∀α.τK and JΘ ` τ ′ : ?K are true.

Suppose that θ ∈ JΘK and σ ∈ JΘ; ΓKθ. We must show that

(e τ ′)[σ] = e[σ] τ [σ] ∈ Jτ [τ ′/α]Kθ = JτKθ,Jτ ′Kθ/α

But from the inductive hypothesis, we learn that e[σ] ∈ J∀α.τKθ and
Jτ ′Kθ ∈ CR. So e[σ] τ ′ ∈ JτKθ,Jτ ′Kθ/α

by definition of e[σ] ∈ J∀α.τKθ.

•
Θ, α; Γ ` e : τ

Θ; Γ ` Λα.e : ∀α.τ ∀I

Inductive Hypothesis. JΘ, α; Γ ` e : τK is true.

Suppose that θ ∈ JΘK and σ ∈ JΘ; ΓKθ. We must show that

(Λα.e)[σ] = Λα.(e[σ]) ∈ J∀α.τKθ

i.e. , that for an arbitrary type τ ′ ∈ Type and candidate C ∈ CR,

(Λα.e[σ]) τ ′ ∈ JτKθ,C/α

Since θ,C/α ∈ {Θ, α} → CR and σ, τ ′/α ∈ JΘ, α; ΓKθ, we learn from the
inductive hypothesis that

(Λα.e[σ]) τ ′ 7→ e[σ, τ ′/α] ∈ JτKθ,C/α

Furthermore, since JτKθ,C/α ∈ CR (derived from adequacy of types and the
fact that Θ, α ` τ : ?), the expansion property ensures that (Λα.e[σ]) τ ′ ∈
JτKθ,C/α as well. Therefore, Λα.e[σ] ∈ J∀α.τKθ.

11.3. TERMINATION 69

•
Θ ` τ ′ : ? Θ; Γ ` e : τ [τ ′/α]

Θ; Γ ` 〈τ ′, e〉 : ∃α.τ ∃I

Inductive Hypothesis. Both JΘ ` τ ′ : ?K and JΘ; Γ ` e : τ [τ ′/α]K are
true.

Suppose that θ ∈ JΘK and σ ∈ JΘ; ΓKθ. We must show that

〈τ ′, e〉 [σ] = 〈τ ′[σ], e[σ]〉 ∈ J∃α.τKθ
We learn from the inductive hypothesis that Jτ ′Kθ ∈ CR and

e[σ] ∈ Jτ [τ ′/α]Kθ = JτKθ,Jτ ′Kθ/α

Therefore, 〈τ ′[σ], e[σ]〉 ∈ J∃α.τKθ by definition.

•
Θ; Γ ` e : ∃α.τ Θ, α; Γ, x : τ ` e′ : τ ′ Θ ` τ ′ : ?

Θ; Γ ` open e as 〈α, x〉 ⇒ e′ : τ ′ ∃E

Inductive Hypothesis. JΘ; Γ ` e : ∃α.τK, JΘ, α; Γ, x : τ ` e′ : τ ′K, and
JΘ ` τ ′ : ?K are all true.

Suppose that θ ∈ JΘK and σ ∈ JΘ; ΓKθ. We must show that

(open e as 〈α, x〉 ⇒ e′)[σ] = open e[σ] as 〈α, x〉 ⇒ e′[σ] ∈ Jτ ′Kθ

From the inductive hypothesis, we learn that e[σ] ∈ J∃α.τKθ, which means
that

e[σ] 7→∗ 〈τ1, e1〉

for some arbitrary type τ1 ∈ Type, candidate C ∈ CR, and expression
e1 ∈ JτKθ,C/α. And because the extended θ,C ∈ {Θ, α} and σ, τ1/α, e1/x ∈
JΘ, α; Γ, x : τKθ,C/α, we learn again from the inductive hypothesis that

e′[σ, τ1/α, e1/x] ∈ Jτ ′Kθ,C/α

Now observe that

open e[σ] as 〈α, x〉 ⇒ e′[σ] 7→∗ open 〈τ1, e1〉 as 〈α, x〉 ⇒ e′[σ]
7→ e′[σ, τ1/α, e1/x]
∈ Jτ ′Kθ,C/α = Jτ ′Kθ ∈ CR

by semantic weakening because α /∈ FV (τ ′) which is a consequence of
the premise Θ ` τ ′ : τ . Therefore, by the expansion property of Jτ ′Kθ
(derived from Θ ` τ ′ : ? and the adequacy of types), it must be that
open e[σ] as 〈α, x〉 ⇒ e′[σ] ∈ Jτ ′Kθ.

Corollary 11.1 (Closed Reducibility). If •; • ` e : τ is derivable, then e ∈ JτK•.

Corollary 11.2 (Termination). If •; • ` e : τ is derivable, then e is terminating.

Proof. From the above, we know that e ∈ JτK• ⊆ Termin.

70 CHAPTER 11. PARAMETRICITY

Chapter 12

Free Theorems

12.1 Logical Operators
As useful shorthand, define some “logical” operations on reducibility candidates.

(⇒) : CR × CR→ CR
A⇒ B = {e ∈ Termin | ∀e′ ∈ A. e e′ ∈ B}

\∀ : (CR→ CR)→ CR
\∀(F) = {e ∈ Termin | ∀τ ∈ Type,C ∈ CR. e τ ∈ F(C)}
|∃ : (CR→ CR)→ CR

|∃(F) = {〈τ, e〉 | ∃C ∈ CR. e ∈ F(C)}∗

And notice that these operators are the essential meaning of the reducibility
interpretation of types:

JαKθ = θ(α)
Jτ1 → τ2Kθ = Jτ1Kθ ⇒ Jτ2Kθ

J∀α.τKθ = \∀(C. JτKθ,C/α)
J∃α.τKθ = |∃(C. JτKθ,C/α)

12.2 Polymorphic Absurdity (Void Type)
Theorem 12.1. There is no expression e such that •; • ` e : ∀α.α is derivable.

Proof. Suppose that we had some e and a derivation of • ` e : ∀α.α. From
Corollary 11.1, we would know that e ∈ J∀α.αK = \∀(C. C). In other words, for
any type τ and reducibility candidate C ∈ CR, it must be that e τ ∈ C. So let’s
choose the empty reducibility candidate

C = {}

71

72 CHAPTER 12. FREE THEOREMS

which vacuously has the termination and expansion properties. It follows that
e τ ∈ C = {} which is a contradiction. Therefore, there is no such • ` e :
∀α.α.

12.3 Polymorphic Identity (Unit Type)
Theorem 12.2. If •; • ` e : ∀α.α→ α then e =βη Λα.λx:α.x.

Proof. From Corollary 11.1, we know that e ∈ J∀α.α→ αK = \∀(C. C ⇒ C)
In other words, for any type τ , reducibility candidate C ∈ CR, and expression
e1 ∈ C, it must be that e τ e1 ∈ C. So let’s choose the reducibility candidate

C = {x}∗

where the variable x is in C by definition. It follows that e α x ∈ C as well,
meaning e α x 7→∗ x which implies e α x =β x. Therefore

e =η Λα.e α =η Λα.λx:α.e α x =β Λα.λx:α.x

12.4 Encodings
12.4.1 Booleans
Recall that

Bool = ∀δ.δ → δ → δ

True : Bool
True = Λδ.λx:δ.λy:δ.x
False : Bool
False = Λδ.λx:δ.λy:δ.y

Theorem 12.3 (Canonicity). If •; • ` e : Bool then e =βη True or e =βη False.

Proof. From Corollary 11.1, we know that

e ∈ JBoolK = J∀δ.δ → δ → δK = \∀(C. C⇒ C⇒ C)

In other words, for any type τ , reducibility candidate C ∈ CR, and terms
e1, e2 ∈ C, it must be that e τ e1 e2 ∈ C. So let’s choose the reducibility
candidate

C = {x, y}∗

where the variables x and y are in C. It follows that e δ x y ∈ C as well, meaning
that either e δ x y 7→∗ x or e δ x y 7→∗ y. Therefore, we have the two possible
cases:

e =η Λδ.λx:δ.λy:δ.e δ x y =β Λδ.λx:δ.λy:δ.x = True
e =η Λδ.λx:δ.λy:δ.e δ x y =β Λδ.λx:δ.λy:δ.y = False

12.4. ENCODINGS 73

12.4.2 Sums
Recall that

Sum τ1 τ2 = ∀δ.(τ1 → δ)→ (τ2 → δ)→ δ

Left : ∀α.∀β.α→ Sum α β

Left = Λα.Λβ.λx:α.Λδ.λl:α→ δ.λr:β → δ.l x

Right : ∀α.∀β.β → Sum α β

Right = Λα.Λβ.λx:β.Λδ.λl:α→ δ.λr:β → δ.r x

Theorem 12.4 (Canonicity). If •; • ` e : Sum τ1 τ2 then either e =βη

Left τ1 τ2 e1 for some e1 ∈ Jτ1K or e =βη Right τ1 τ2 e2 for some e2 ∈ Jτ2K.

Proof. From Corollary 11.1, we know that

e ∈ JSum τ1 τ2KJ∀δ.(τ1 → δ)→ (τ2 → δ)→ δK = \∀(C.(Jτ1K• ⇒ C)⇒ (Jτ2K• ⇒ C)⇒ C)

In other words, for any type τ , reducibility candidate C ∈ CR, and expressions
e1 ∈ Jτ1K• ⇒ C and e2 ∈ Jτ2K• ⇒ C, it must be that e τ e1 e2 ∈ C. So let’s
choose the reducibility candidate

C = ({l e1 | e1 ∈ Jτ1K•} ∪ {r e2 | e2 ∈ Jτ2K•})
∗

where l and r are variables so that l ∈ Jτ1K• ⇒ C and r ∈ Jτ2K• ⇒ C by
definition. It follows that e δ l r ∈ C as well, meaning that either e δ l r 7→∗ l e1
for some e1 ∈ Jτ1K or e δ l r 7→∗ r e2 for some e2 ∈ Jτ2K. Therefore, we have the
two possible cases:

e =η Λδ.λl:τ1 → δ.λr:τ2 → δ.e δ l r =β Λδ.λl:τ1 → δ.λr:τ2 → δ.l e1 =β Left τ1 τ2 e1

e =η Λδ.λl:τ1 → δ.λr:τ2 → δ.e δ l r =β Λδ.λl:τ1 → δ.λr:τ2 → δ.r e2 =β Right τ1 τ2 e2

where e1 ∈ Jτ1K and e2 ∈ Jτ2K.

12.4.3 Products
Recall that

Prod τ1 τ2 = ∀δ.(τ1 → τ2 → δ)→ δ

Pair : ∀α.∀β.α→ β → Prod α β

Pair = Λα.Λβ.λx:α.λy:β.Λδ.λp:α→ β → δ.p x y

Theorem 12.5 (Canonicity). If •; • ` e : Prod τ1 τ2 then e =βη Pair τ1 τ2 e1 e2
for some e1 ∈ Jτ1K and e2 ∈ Jτ2K.

Proof. From Corollary 11.1, we know that

e ∈ JProd τ1 τ2K = J∀δ.(τ1 → τ2 → δ)→ δK = \∀(C.(Jτ1K• ⇒ Jτ2K• ⇒ C)⇒ C)

74 CHAPTER 12. FREE THEOREMS

In other words, for any type τ , reducibility candidate C ∈ CR, and expression
e′ ∈ (Jτ1K• ⇒ Jτ2K• ⇒ C), it must be that e τ e′ ∈ C. So let’s choose the
reducibility candidate

C = {p e1 e2 | e1 ∈ Jτ1K•, e2 ∈ Jτ2K•}
∗

where p is a variable so that p ∈ (Jτ1K• ⇒ Jτ2K• ⇒ C) by definition. It follows
that e τ p ∈ C as well, meaning that e τ p 7→∗ p e1 e2 for some e1 ∈ Jτ1K• and
e2 ∈ Jτ2K•. Therefore

e =η Λδ.λp:τ1 → τ2 → δ.e δ p =β Λδ.λp:τ1 → τ2 → δ.p e1 e2 =β Pair τ1 τ2 e1 e2

where e1 ∈ Jτ1K• and e2 ∈ Jτ2K•.

12.4.4 Numbers
Recall that

Nat = ∀δ.δ → (δ → δ)→ δ

Zero : Nat
Zero = Λδ.λz:δ.λs:δ → δ.z

Succ : Nat → Nat
Succ = λn:Nat.Λδ.λz:δ.λs:δ → δ.s (n δ z s)

Define the nth iteration of s as:

s0 z = z

sn+1 z = s (sn z)

Theorem 12.6 (Numericity). If •; • ` e : Nat then e δ z s =β s
n z for some

n ∈ N.
Proof. From Corollary 11.1, we know that

e ∈ JNatK = J∀δ.δ → (δ → δ)→ δK = \∀(C.C⇒ (C⇒ C)⇒ C)

In other words, for any type τ , reducibility candidate C ∈ CR, and terms e0 ∈ C
and e1 ∈ C⇒ C, it must be that e τ e0 e1 ∈ C. So let’s choose the inductively
defined reducibility candidate

C = ({z} ∪ {s e′ | e′ ∈ C})∗

where z and s are variables so that z ∈ C and s ∈ C ⇒ C by definition. Note
that, for every e ∈ C, e =β s

n z for some n ∈ N by induction on the definition of
C. It follows that e δ s z ∈ C, meaning that e δ s z =β s

n z for some n ∈ N.

Corollary 12.1 (Canonicity). If •; • ` e : Nat then either e =βη Zero or
e =βη Succ e′ for some •; • ` e′ : Nat.
Proof. From numericity, we know that e =βη Λδ.λz.λs.sn z for some n ∈ N. It
follows that either e =βη Zero or e =βη Succ e′ for some e′ for some •; • ` e′ : Nat
by induction on n.

12.5. RELATIONAL PARAMETRICITY 75

12.5 Relational parametricity
Notation: Expr2 = Expr × Expr is the cartesian product containing every pair
of expressions, which is also the maximal relation in which all expressions are
related.

We can generalize the closure under expansion to work on a binary relation
C ⊆ Expr2 as well as follows:

C∗ = {(e1, e
′
1) | ∃(e2, e

′
2) ∈ C.e1 7→∗ e2 ∧ e′1 7→∗ e′2}

This has analogous properties as the similar closure operation on sets of expres-
sions (i.e. unary relations).

Definition 12.1 (Relation candidates). A binary relation on expressions C is
a relation candidate when the following condition is met

• expansion: if e1 7→∗ e2 and e′1 7→∗ e′2 and (e2, e
′
2) ∈ C then (e1, e

′
1) ∈ C.

In other words, C is a relation candidate exactly when

C∗ ⊆ C ⊆ Expr2

We write the set of all relation candidates as

CR2 = {C ∈ ℘(Expr2) | C∗ ⊆ C}

Likewise, lets generalize the logical operators to work over binary relation
candidates.

(⇒2) : CR2 × CR2 → CR2

A⇒2 B = {(e1, e
′
1) ∈ Expr2 | ∀(e2, e

′
2) ∈ A. (e1 e2, e

′
1 e
′
2) ∈ B}

(××2) : CR2 × CR2 → CR2

A××2 B = {(e, e′) ∈ Expr2 | (e·π1, e
′·π1) ∈ A ∧ (e·π2, e

′·π2) ∈ B}

\∀2 : (CR2 → CR2)→ CR2

\∀2(F) = {(e, e′) ∈ Expr2 | ∀τ, τ ′ ∈ Type,C ∈ CR2. (e τ, e′ τ ′) ∈ F(C)}
|∃2 : (CR2 → CR2)→ CR2

|∃2(F) = {(〈τ, e〉 , 〈τ ′, e′〉) | ∃C ∈ CR2. (e, e′) ∈ F(C)}∗

Adding strings to the language.

s ∈ String ::= . . .

e ∈ Expr ::= . . . | “s”
τ ∈ Type ::= . . . | String

76 CHAPTER 12. FREE THEOREMS

Γ ` “s” : String

Using these binary versions of the logical operations, it is easy to define the
interpretation of types as binary relation candidates, where now θ : TypeVar ⇀
CR2.

JαK2
θ = θ(α)

JStringK2
θ = {(s, s)}∗

Jτ1 → τ2K
2
θ = Jτ1K

2
θ ⇒

2 Jτ2K
2
θ

Jτ1 × τ2K
2
θ = Jτ1K

2
θ ××

2 Jτ2K
2
θ

J∀α.τK2
θ = \∀2(C. JτK2

θ,C/α)

J∃α.τK2
θ = |∃2(C. JτK2

θ,C/α)

The interpretation of environments and judgements are generalized to binary
relations accordingly.

JΘK2 = {Θ} → CR2

JΘ; ΓK2
θ = {(σ, σ) ∈ Subst × Subst

| (∀(x : τ) ∈ Γ.(x[σ], x[σ′]) ∈ JτK2
θ)

∧ (∀α ∈ ∆.α[σ], α[σ′] ∈ Type)}
JΘ ` τ : ?K2 = ∀θ ∈ JΘK2

.JτK2
θ ∈ CR2

JΘ; Γ ` e : τK2 = ∀θ ∈ JΘK2
.(σ, σ′) ∈ JΘ; ΓK2

θ.(e[σ], e[σ′]) ∈ JτK2
θ

Theorem 12.7 (Parametricity). If Θ; Γ ` e : τ is derivable then JΘ; Γ ` e : τK2

is true. In other words, for any

• expression e such that Γ ` e : τ is derivable,

• mapping θ : {Θ} → CR2, and

• related substitutions (σ, σ′) such that α [σ] , α [σ′] ∈ Type for all α ∈ Θ and
(x [σ] , x [σ]) ∈ Jτ ′K2

θ for all (x : τ ′) ∈ Γ,

it follows that (e [σ] , e [σ′]) ∈ JτK2
θ.

Corollary 12.2. If •; • ` e : τ is derivable then (e, e) ∈ JτK2
•.

12.5.1 Red vs Blue

red v blue1 ,2 : ∃α.(α× α× (α→ String))
red v blue1 = 〈String, 〈“red”, “blue”, λx.x〉〉
red v blue2 = 〈String + String, 〈ι1·“”, ι2·“”, λx. casex of ι1·z ⇒ “red” | ι2·z ⇒ “blue”〉〉

Want to show that red v blue1 ∼= red v blue2 in some appropriate sense.

12.5. RELATIONAL PARAMETRICITY 77

Theorem 12.8. (red v blue1 , red v blue2) ∈ J∃α.(α× α× (α→ String))K2

Proof. By Corollary 12.2. We must choose some relation A such that red v blue1
and red v blue2 are related when α is instantiated with A. So consider the fol-
lowing relation A:

A = {(“red”, ι1·“”), (“blue”, ι2·“”)}∗

To show

(red v blue1 , red v blue2) ∈ J∃α.(α× α× (α→ String))K
= |∃2(C.C××2 C××2 (C⇒2 JStringK2))

it suffices to show that

(〈“red”, “blue”, e〉 , 〈ι1·“”, ι2·“”, e′〉) ∈ A××2 A××2 (A⇒2 JStringK2)
where e = λx.x

e′ = λx. casex of ι1·z ⇒ “red” | ι2·z ⇒ “blue”

In other words, we may show that (“red”, ι1·“”) ∈ A, (“blue”, ι2·“”) ∈ A,
and (e e1, e

′ e′1) ∈ JStringK2 for all (e1, e
′
1) ∈ A. The first two facts follow

immediately from the definition of A. For the third fact, consider an arbitrary
(e1, e

′
1) ∈ A, where it must be that either e1 7→∗ “red” and e′1 7→∗ ι1·“” or

e1 7→∗ “blue” and e′1 7→∗ ι2·“”. In the first case, we have the reduction

e e1 7→ e1 7→∗ “red”
e′ e′1 7→ case e′1 of ι1·z ⇒ “red” | ι2·z ⇒ “blue”

7→∗ case ι1·“” of ι1·z ⇒ “red” | ι2·z ⇒ “blue”
7→ “red”

and in the second case we have the reduction

e e1 7→ e1 7→∗ “blue”
e′ e′1 7→ case e′1 of ι1·z ⇒ “red” | ι2·z ⇒ “blue”

7→∗ case ι2·“” of ι1·z ⇒ “red” | ι2·z ⇒ “blue”
7→ “blue”

so in either case, (e e1, e
′ e′1) ∈ JStringK2.

	Static and Dynamic Semantics of a Little Language
	Syntax
	Static Scope
	Substitution
	Renaming: equivalence
	Static Semantics: Types
	Dynamic Semantics: Behavior
	Statics & Dynamics: Type Safety
	Progress
	Preservation
	Type Safety

	Lambda Calculus
	Syntax
	Substitution and Scope
	Laws
	Alpha
	Beta
	Eta

	Dynamic Semantics: Call-by-Name vs Call-by-Value
	Call-by-Name
	Call-by-Value

	Some Encodings
	Intermezzo: Russel's Paradox
	Untyped -Calculus: Recursion
	Static Semantics: ``Simple'' Types
	Simply-Typed -Calculus: Termination

	Products and Sums
	Syntax
	Laws
	Product Laws
	Sum Laws

	Static Semantics
	Product Types
	Sum Types

	Dynamic Semantics
	Call-by-Name
	Call-by-Value

	Primitive Recursion
	Syntax
	Examples
	Laws
	Static Semantics
	Dynamic Semantics

	General Recursion
	Untyped Recursion
	Recursive Types
	Syntax
	Laws
	Encodings
	Typed Recursion

	Polymorphism
	Polymorphic Types
	Syntax
	Laws
	Operational Semantics
	Call-by-Name
	Call-by-Value

	Encodings
	Untyped Encodings
	Booleans
	Sums
	Products
	Numbers
	Lists

	Typed Encodings
	Booleans
	Sums
	Products
	Existentials
	Numbers
	Lists

	Linear Logic
	Connectives
	Classification
	Inference Rules
	Core Identity Rules
	Additive Conjunction
	Multiplicative Conjunction
	Additive Disjunction
	Multiplicative Disjunction
	Exponentials

	Examples
	Negation and Duality

	A Linear Lambda Calculus
	Asymmetrical, Intuitionistic, Linear Logic
	A Resource-Sensitive Lambda Calculus
	Operational Semantics
	Type Safety: Resource Safety

	Reducibility
	A False Start on Termination
	Reducibility Model of Types
	Termination

	Parametricity
	Reducibility Candidates
	Logical Relations
	Termination

	Free Theorems
	Logical Operators
	Polymorphic Absurdity (Void Type)
	Polymorphic Identity (Unit Type)
	Encodings
	Booleans
	Sums
	Products
	Numbers

	Relational parametricity
	Red vs Blue

