
DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Game Semantics
An elementary approach

Game semantics is a denotational semantics for programming

languages which interprets a term as an interaction between itself and

its context. In this tutorial introduction we give an elementary

introduction to the area which should be accessible to a reader

acquainted with operational semantics. A passing awareness of

category theory would enhance the appreciation of game semantics but

it is not mandated. Starting with a general introduction to the ideas and

concepts of game semantics, we focus on a particular language

(Idealised Concurrent Algol) which although expressive enjoys a

reasonably simple game model. The second part of the tutorial looks at

a closely related formalism, that of trace semantics. If in the case of

game semantics the context is best understood syntactically, in the case

of trace semantics it can be generalised to an unrestricted

computational environment. In both cases, of game and trace

semantics, particular emphasis is placed on compositionality, the

property of larger models to be constructed mathematically out of

interpretations of smaller models. To enhance motivation and to seed

potential research ideas a list of known applications of game and trace

semantics is discussed.

This material was �rst presented at:

Oregon Programming Langauges Summer School (OPLSS)

July 9-21, 2018

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Dan R. Ghica
University of Birmingham

2

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Contents

1 Introduction 4

1.1 Denotational semantics . 4

1.1.1 Technical properties . 6

1.1.2 Reading list . 8

1.2 Game semantics . 8

2 Game semantics, an interaction semantics 10

2.1 Arenas, plays, strategies . 10

2.2 Examples of strategies . 17

2.2.1 Arithmetic . 17

2.2.2 Non-determinism . 18

2.2.3 State . 18

2.2.4 Control . 19

2.3 Composing strategies . 19

2.4 Categories of games . 23

2.4.1 Associativity . 23

2.4.2 Identity . 25

2.5 Annotated further reading list . 26

3 Idealised Concurrent Algol 30

3.1 Syntax . 30

3.2 Operational semantics . 31

3.3 Game semantics . 34

3.4 Model of the (applied) lambda calculus . 37

3.4.1 Examples . 39

3.5 Soundness, Adequacy, and Full Abstraction . 40

3.5.1 Examples . 44

3.6 Annotated further reading list . 44

3.7 Applications of game semantics . 46

4 Trace semantics, another interaction semantics 49

4.1 Trace semantics . 54

4.2 Compositionality . 56

2

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

4.3 A system-level attack: violating secrecy . 60

4.4 Equivalence . 62

4.5 Annotated further reading . 64

5 References 66

3

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

1 Introduction

1.1 Denotational semantics

Game semantics (GS) is a way to mathematically specify the behaviour of programming languages

(PL); it is a so-called denotational semantics (DS). One way to understand denotational semantics is by

contrast with operational semantics (OS), which is a di�erent mathematical speci�cation of programming

languages.1

OS is syntactic and self-contained. It de�nes the PL via a set of transformation rules of the form

t, c −→ t′, c′

where t, t′ are terms and c, c′ additional con�guration information.

This relation is interpreted as follows: when program t runs, in some con�guration c, after one symbolic

step of computation it becomes “like program t′” in some updated con�guration c′. This is a common

and useful way of specifying PLs. It is �exible and elementary, and it can work as a basis for compiler

development and veri�cation.

DS is not self-contained, but it requires a “meta-language”. Unlike the object language (the PL) the

meta-language is supposed to be well understood or, in some sense, “more fundamental” than the PL.

The meta-language is called the “semantic domain” (SD), and the DS is de�ned by translating PL terms

into the semantic domain, inductively, either on the syntax or, very commonly, on the typing derivation.

J−K : PL→ SD

JK t0 · · · tkK = f(Jt0K, . . . JtkK),

where K is a syntactic term construction with sub-terms ti, and f a function in the semantic domain.

Example 1. Regular expressions are a syntax for regular languages. Regular expressions can be given a

syntactic, OS-like, interpretation known as Kleene Algebras, or a semantic, denotational interpretation by

translating them into �nite state automata.

The connection between OS and DS is akin to, and insipired by, the connection between proof theory

and model theory in logic.

A DS is a more ambitious theoretical undertaking than an OS. We need to �nd an appropriate semantic
1The comparison in this section contains signi�cant oversimpli�cations for pedagogical reasons.

4

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

domain. Once we de�ne it, we need to interpret all programming language constructs translationally,

and it is not as obvious as in the case of the OS that a de�nition in the DS actually captures the behaviour

it aims to. But once this more solid foundation is laid, working with a DS can be easier than with the

OS, especially when it comes to equivalence. Consider regular languages: which semantics is more

convenient for proving regular-language equivalence? Finite state automata are more convenient than

syntactic manipulation in the Kleene Algebra. Or what is easier, constructing a proof in propositional

logic or �lling out its truth table? A DS requires more of an upfront investment, but it can pay greater

dividends.

In the case of PLs the equivalence problem is mathematically challenging. Consider for example OS

rules in which the con�guration does not change:

t, c −→ t′, c.

Obviously, program t′ is a slightly evolved version of t but it should be otherwise equivalent – and it is.

However, there is nothing in the OS to guarantee that this equivalence is a congruence, i.e. if we stick t,

t′ in the same program context C[−] we still get equivalent programs, i.e.

t ≡ t′ ⇒ ∀C[−].C[t] ≡ C[t′].

Equivalences which are not congruences are virtually useless, since they cannot be used in compiler

optimisations, which always apply to sub-programs rather than whole programs. Why would an equiv-

alence not be a congruence? This can happen in two ways, one very common and one less so, at least

in reasonable PLs. The common failure of congruence is if the hole contains side-e�ects, which means

that a mathematical congruence such as x + y = y + x is not a programming language congruence

x+y 6≡ y+x because in the presence of side-e�ects their order matters. The uncommon source of fail-

ure is for the language to contain primitives which “inspect” a term intensionally (LISP’s quote operator

is an example).

By contrast to OS, in DS the equivalence of two terms reduces to equality in the semantic domain, which

is always a congruence. In a DS,

JC[t]K = JtK ◦ JCK

where JCK is the interpretation of the context and − ◦ − is a notion of composition speci�c to the

DS, which should be well behaved (associative, have identity, monotonic, etc.), which means that the

5

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

equivalence below always holds:

JtK = Jt′K⇔ ∀C[−].JtK ◦ JCK = Jt′K ◦ JCK,

As an aside, this is one reason why Category Theory is attractive to DS as a more general framework,

because properties such as the one above follow from abstract, general principles rather than from the

detailed properties. This means that we can work with speci�cations for models, rather than detailed

concrete models which can be complicated, fragile, and too speci�c.

1.1.1 Technical properties

Because DS is not as “obvious” as the OS, it is common for an OS to also be given, as a more basic form

of PL speci�cation. The idea is that DS provides a basis for equational reasoning whereas the OS more

plausibly captures intended behaviour. With two semantics at hand, it is obviously necessary to relate

them, much like in logic proof theory and model theory are related.

The following are some of the key technical properties relating the two.

Termination. It is common to use termination vs. non-termination as the ultimate observational

distinction between programs, that is unit-typed closed terms. Since virtually all languages have an if-

then-else construct and equality testing, termination vs. non-termination subsumes program-equality

at all ground types. We say that a program t terminates in any admissible initial con�guration c if

and only if t, c −→∗ v, c′ where v is a special class of programs called “values” which need no further

evaluation. Let us write this as t ⇓ and t ⇑ as its negation. If a program is of ground type and it diverges

(e.g. while true do ()) it is common to write it as Ω, i.e. Ω ⇑. It is common to write JΩK = ⊥ 6= >

where > is the meaning of terminating unit-type programs.

De�nition 1 (Observational equivalence). We say that two terms are observationally equivalent t0 ≡ t1

if and only if for any context C[−] such that C[ti] is a well-formed program, C[t0]⇓ if and only if C[t1]⇓.

Soundness. Two terms that are semantically equal should also be observationally equivalent, i.e. if

Jt0K = Jt1K then t0 ≡ t1. This is a minimum expectation for a DS. The alternative is nonsense.

Adequacy. A program is semantically identi�ed as terminating JtK = > if and only if terminates t ⇓.

This is also minimally expected of a DS, but generally more di�cult to establish.

6

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

De�nability. Ideally, the semantic domain should contain no “garbage”, i.e. for any element τ of the

semantic domain which is in some sense “�nite”, there exists a PL term t such that JtK = τ . Generally

speaking, de�nability has proved to be the most challenging problem in DS. It was �rst famously noticed

for PCF, in the case of which the domains-based denotational semantics fails de�nability, requiring a

preemptive parallel-or operator in the PL. Trying to solve the de�nability problem for PCF eventually

led to game semantics.

Full abstraction. When soundness, adequacy, and de�nability all hold then we are in a “fully abstract”

situation in which the DS and the OS coincide, i.e. Jt0K = Jt1K if and only if t0 ≡ t1. For a programming

language this is a very happy place to be!

Theorem 1. Soundness, adequacy and de�nability imply full abstraction.

Proof. One direction of the full-abstraction equivalence is soundness. Let us prove that t ≡ t′ implies

JtK = Jt′K. We prove this by contradiction, assuming that JtK 6= Jt′K. Then there must be2 some τ ∈ SD

such that JtK ◦ τ = > 6= ⊥ = Jt′K ◦ τ . From de�nability we know that there must be some term C such

that JCK = τ , so JtK ◦ JCK = > 6= ⊥ = Jt′K ◦ JCK which, from the compositionality of the DS means

JC[t]K = > 6= ⊥ = JC[t′]K. Using adequacy on both sides it follows that C[t] ⇓ and C[t] ⇑, which is a

contradiction.

Coherence. DS can be de�ned inductively on the typing derivation rather than the syntax of the

term. Some languages, such as PCF, admit (essentially) unique typing derivation, which makes a term-

based interpretation well de�ned, so it makes sense to write JtK. However, for complex type systems

it is often the case that the same judgement may have multiple derivations. Yet, we would expect all

these derivation to produce equal interpretations. Let us write ∆[t] as shortcut for term t has a typing

judgement with derivation ∆, then for any ∆i, we want that J∆0[t]K = J∆1[t]K, which we then just

write as JtK. This property is ignored suprisingly often, being just presumed. But proving it can be di�-

cult. Coherence is another property where the categorical setting is helpful because, not coincidentally,

the coherence equations in a category correspond to legal manipulations of a derivation trees which

preserve its validity.
2The reason why depends on the SD.

7

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

1.1.2 Reading list

There are many excellent books on denotational semantics, but here are two that I have a personal

a�nity for as they are generally programmer-friendly:

Tennent, Robert D. Semantics of programming languages. Vol. 199. No. 1. Hemel Hemp-

stead: Prentice-Hall, 1991.

O’Hearn, Peter, and Robert Tennent. ALGOL-like Languages. Springer Science & Business

Media, 2013.

The OS-DS connection has been studied in the classic

Plotkin, Gordon D. "LCF considered as a programming language." Theoretical computer

science 5.3 (1977): 223-255.

As an entry point to categorical semantics one of the early seminar papers is

Joachim Lambek, From lambda calculus to Cartesian closed categories, in To H. B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism, eds. J. P. Seldin and J.

Hindley, Academic Press, 1980, pp. 376-402.

But a variety of formal and informal tutorials can be found3.

1.2 Game semantics

Out of the quest for solving the de�nability problem for PCF, i.e. trying to �nd a semantic domain in

which behaviour such as that of parallel-or is mathematically ruled out, a new kind of denotational

semantics emerged, game semantics. What makes GS distinctive is the fact that its semantic domain

abandons the sets-and-functions paradigm which dominates early denotational semantics. It is a gen-

uinely new idea, using concrete combinatorial structures of actions called “games” and “strategies”. It

is perhaps easy to overlook how important this shift was, since it did away with any pretense that a

programming language function is somehow like a mathematical function.

The GS approach has been extraordinarily successful, solving not just the longstanding de�nability

problem for PCF but also providing fully abstract models for more expressive languages such as ALGOL

or (various fragments of) ML. Beyond this theoretical success, the concrete formulation of GS made it

more suitable for applications than sets-and-functions-style DS. In a sense to be elaborated later, we

will see that GS is not only denotational but also operational. It can give the same kind of step-by-step
3Including blog posts such as https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html

8

https://golem.ph.utexas.edu/category/2006/08/cartesian_closed_categories_an_1.html

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

behavioural model that OS can give. The aim of this presentation is to emphasise both the elementary

nature of GS and its close link to OS.

9

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

2 Game semantics, an interaction semantics

2.1 Arenas, plays, strategies

The terminology of “game semantics” guides the intuition towards the realm of game theory. Indeed,

there are methodological and especially historical connections between game semantics and game the-

ory, but they are neither direct nor immediate. The games involved are rooted in logic and reach pro-

gramming languages via the Curry-Howard nexus. They are not essential for a working understanding

of game semantics as a model of programming languages, so we will not describe them here. But if we

were to be pushed hard to give a game-theoretic analogy, the one to keep in mind are not the quantitative

games of economics but rather last-player-wins games such as Nim.

It is more helpful to think of game semantics as a more general interaction, or dialogue, between two

agents, rather than a game. This interaction is asymmetric. One agent (P) represents the term and the

other (O) represents an abstract and general context in which the term can operate.4 The interaction

consists of sequences of events called moves, which can be seen as either calls, called questions, or

returns, called answers. A sequence of events, with some extra structure to be discussed later, is called a

play and it corresponds to the sequence of interactions between the term and the context in a program

run. The set of all such possible plays is called a strategy and it gives the interpretation of the term.

The strategy of a term can be constructed inductively on its syntax, from basic strategies for the atomic

elements and a suitable notion of composition.

Before we proceed, a warning. The structure of a game semantics is dictated by the evaluation strategy

of the language. Call-by-name games are quite di�erently structured than call-by-value games. In this

section and the next we will assume a call-by-name evaluation strategy. The reason is didactic, as these

games are easier to present. Having understood GS in the context of CBN, learning CBV games should

come easy enough.

Let us consider a trivial example, the term consisting of the constant 0. The way this term can interact

with any context is via two moves: a question (q) corresponding to the event interrogating the term,

and an answer (0) corresponding to the term communicating its value to the context. The sequence

q · 0 is the only possible play, therefore the strategy corresponding to the set of plays {q · 0} is the

interpretation of the term 0.

Let us consider a slightly less trivial example, the identity function over natural numbers λx.x : nat→
4The names stand for ‘Proponent’ and ‘Opponent’ even though there is nothing being proposed, and there is no opposition

to it. The names are historical artefacts. We might as well call them ‘Popeye’ and ‘Olive’. Same applies to “move”, “play”, and
“strategy”.

10

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

nat. The context can call this function, but also the function will enquire about the value of x. Lets call

these questions q and q′. The context can answer to q′ with some value n and the term will answer to q

with the same value n. Even though the answers carry the same value they are di�erent moves, so we

will write n and n′ to distinguish them, where then prime is a syntactic tag. All the plays in the strategy

interpreting the identity over natural numbers have shape q · q′ · n′ · n.

Let us now de�ne the concepts more rigorously.

De�nition 2 (Arena). An arena is a tuple 〈M,Q, I,O,`〉 where

• M is a set of moves.

• Q ⊆M is a set of questions; A = M \Q is the set of answers.

• O ⊆M is a set of O-moves; P = M \O is the set of P-moves.

• I ⊆ Q ∩O is a set of initial moves;

• ` ⊆M ×M is an enabling relation such that ifm ` n then

(e1) m ∈ Q

(e2) m ∈ O if and only if n ∈ P

(e3) n 6∈ I .

An arena represents the set of moves associated with a type, along with the structure discussed above

(questions, answers, opponent, proponent). Additionally, the arena introduces the concept of enabling

relation, which records the fact that certain moves are causally related to other moves. Enabling satis�es

certain well-formedness conditions:

(e1) Only questions can enable other moves, which could be interpreted as all computations happen

because a call.

(e2) P-moves enable O-moves and vice versa. Game semantics records behaviour at the interface so

any action from the context enables an action of the term, and the other way around.

(e3) There is a special class of opponent questions called initial moves. These are the moves that start

the computation, and do not need to be enabled.

The informal discussion above can be made more rigorous now.

Example 2. Let 1 = {?}. The arena of natural numbers is N = 〈1] N,1,1,1,1× N〉.

An equivalent and perhaps simpler formulation is

De�nition 3 (Arena). An arena is a tuple 〈OQ ,OA,PQ ,PA,`〉 where ` ⊆ OQ × P ∪ PQ ×O .

11

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

We write P-moves as P = PQ ∪ PA, O-moves as O = OQ ∪OA, questions as Q = OQ ∪ PQ and

answers as A = OA ∪ PA.

De�nition 4 (Initial move). The set of initial moves of an arenaA is IA = {m ∈ OQ | ∀n ∈ P,m 6` n}.

More complex arenas can be created using product × and arrow→ constructs. Let

inl : MA →MA +MB

inr : MB →MA +MB

where + is the co-product of the two sets of moves. We lift the notation to relations, R + R′ ⊆ (A +

A′)× (B +B′):

inl(R) = {(inl(m), inl(n)) | (m,n) ∈ R}

inr(R′) = {(inr(m), inr(n)) | (m,n) ∈ R′}.

De�nition 5 (Arena product and arrow). Given arenasA = 〈MA, QA, OA, IA,`A〉 andB = 〈MB , QB , OB , IB ,`B〉

we construct the product arena as

A×B =
〈
MA +MB , QA +QB , OA +OB , IA + IB ,`A + `B

〉
and the arrow arena as

A→ B =
〈
MA +MB , QA +QB , PA +OB , inr(IB),`A + `B ∪ inr(IB)× inl(IA)

〉
.

If we visualise the two arenas as DAGs, with the initial moves as sources and with the enabling relation

de�ning the edges, then the product arena is the disjoint union of the two DAGs and the arrow arena is

the grafting of the A arena at the roots of the B arena, but with the O-P polarities reversed.

Since arenas will be used to interpret types we can anticipate by noting that

Theorem 2 (Currying). For any arenasA,B,C the arenasA×B → C andA→ B → C are isomorphic.

Proof. Both arena constructions correspond to the dag below.

12

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

B

C

A

The isomorphism is a node-relabelling isomorphism induced by the associativity of the co-product.

We also note that

Theorem 3 (Unit). The arena I = 〈∅, ∅, ∅, ∅〉 is a unit for product, i.e. for any arena A, A× I , I ×A are

isomorphic to A.

The isomorphism is a re-tagging of moves.

Example 3. We talked earlier about the arena for the type nat→ nat. Let inl(m) = m′ and inr(m) =

m′′, where ′ and ′′ are syntactic tags. The arena Nat → Nat is represented by the DAG below

q”

q’

n’

n”

We already mentioned that for the identity all plays have the shape q′q′′n′′n′. We note that in this

particular play all move occurrences are preceded by an enabling move. The move corresponding to the

term returning a value n′ can happen because the context initiated a play q′. The term can ask for the

value of the argument q′′ also because q has happened earlier. Each move occurrence is justi�ed by an

enabling move, according to `, occurring earlier. The enabling relation de�nes the causal skeleton of

the play.

Let us further consider another term in the same arena λx.x+ x. How does this term interact with its

context?

1. the context initiates the computation

2. the term asks for the value of x

13

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

3. the contest returns some m

4. the term asks again for the value of x

5. the context returns some n

6. the term returns to the context m+ n.

The reader familiar with call-by-value may be rather confused as to why the context returns �rst an

m and then an n. This is because in call-by-name argument are thunks, and the thunks may contain

side-e�ects, which means that repeat evaluations may yield di�erent values.

Looking at the arena, this interaction corresponds to the play q′q′′m′′q′′n′′p′, where p = m + n. The

causal structure of this play is a little confusing. There are two occurrences of q′′, the �rst one preceding

bothm′′ and n′′ and the second one only n′′. It should be that the �rst occurrence of q′′ enablesm′′ and

the second enablesn′′, to re�ect the proper call-and-return we might expect in a programming language.

In order to do that the plays will be further instrumented with names called pointers. Each question has

a symbolic address, and is paired with the address of the enabling move. The fully instrumented play is

called a justi�ed sequence

q′a〈b〉 · q′′b〈c〉 ·m′′c〈_〉 · q′′b〈d〉 · n′′d〈_〉 · p′b〈_〉,

noting that a is the only name without a previous binder, and is used by the initial question which

needs no justi�cation. The addresses a, b, c, . . . ∈ A are just names, and the notation 〈a〉 means that

the name a is “fresh”. In general we will employ the Barendregt name convention that if two names a, b

are denoted by distinct variables they are distinct a 6= b. Answers never justify (in these games) so we

write their useless name as _ or we may omit the whole 〈_〉 altogether.

In a justi�ed sequence, by a move occurrence we mean the move along with the justi�er a and, if it is the

case, the pointer 〈b〉, taken as a whole. No operations on justi�ed sequences (e.g. sub-sequence) may

break this granularity.

If we were to represent the pointers graphically, the sequence above would be:

q’ q” m” q” n” p’

It represents not only the actions, that is the calls and returns, but also what calls correspond to what

returns and even what calls are cause by other calls. In a pure language, for terms up to order three the

pointers can be actually uniquely reconstructed from the sequence itself. Otherwise the justi�cation

14

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

pointers are necessary.

The standard example in the literature for this phenomenon are the so-called “Kierstead terms”

λf.f(λx.f(λy.y)) vs. λf.f(λx.f(λy.x))

in arena ((Nat → Nat) → Nat) → Nat . The P-questions corresponding to red underlined variable

and the enabling O-questions corresponding to the blue over-lined binder are the same, but the move

occurrences which justify them are actually distinct and the plays are di�erent, even though they consist

of the same raw sequence of moves.

In general, we are concerned only with well-justi�ed sequences, which we call plays. They represent

computations which are causally sensible. Let us usev for sequence pre�x and @− for the sub-sequence

relation.

De�nition 6 (Play). A justi�ed sequence p in an arena A is a play when

• for any p′ ·ma v p with m ∈ MA a move and a a pointer, there exists a question q ∈ QA and a

pointer b such that qb〈a〉@− p′ and q `A m.

• if qa〈b〉 v p then q ∈ IA, a, b ∈ A.

We denote the set of plays over arena A as PA and the set of possibly ill-formed justi�ed sequences

over a set of moves M as JM .

A strategy in an arenaA is any set of plays which is pre�x closed, closed under choices of pointer names

(“equivariant”), and closed over O-moves.

Let π : A → A be bijections representing name permutations, and de�ne renaming actions of a name

permutation on a justi�ed sequence over arena A as

π • ε = ε

π • (p · a) = (π • p) · (π(a)) a ∈ A

π • (p · 〈a〉) = (π • p) · 〈π(a)〉 a ∈ A

π • (p ·m) = (π • p) ·m m ∈MA.

Lemma 1. If p ∈ PA then π • p ∈ PA, for any bijection π : A→ A.

The proofs are in general elementary and will often leave them as exercise.

De�nition 7 (Strategy). A strategy over an arena σ : A is a set of plays such that for any p ∈ σ

15

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

pre�x-closed If p′ v p then p′ ∈ σ

O-closed If p ·m ∈ PA for somem ∈ OA then p ·m ∈ σ

equivariance For any permutation π, π • p ∈ σ.

The conditions above have intuitive explanations. Since a strategy must capture all behaviours of a

term, it makes sense for it to be pre�x closed since any pre�x represents a shorter interaction. The

O-closure re�ects the fact that a term has no control over which one of a range of possible next moves

the context might chose to play. Finally, pointer equivariance is akin to an alpha-equivalence on plays,

motivated by the fact that pointer names are not observable, so the choice of particular names in a play

is immaterial.

Note that it is equivalently possible to present strategies as a next-move function from a play ending

in an O-move to a P-move (or set of P-moves) along with the justi�cation infrastructure, indicating the

“next move” in the strategy.

σ̂ : POA → P(PA)× A2

Above, P is the power-set, P is the set of plays, P is the set of P-moves.

In this case the corresponding strategy is the smallest set σ such that

ε ∈ σ ∧ p ∈ σ implies p · σ̂(p) ⊆ σ.

Sometimes it is easier to present a strategy directly and some other times via the next-move function.

De�nition 8. Given a set of plays over an arena A, σ ⊆ PA, let us write strat(σ) for the least strategy

including σ.

We will sometimes abuse the notation above by applying it to a set of sequences of moves, in the case

that the pointer structure can be unambiguously reconstructed.

Example 4. In arena Nat ,

σ = strat(q · 0) = strat(qa〈b〉 · 0b) = {ε, qa〈b〉, qa〈b〉 · 0b | a, b ∈ A}.

The next-move function is

σ̂(qa〈b〉) = 0a.

16

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Now let us consider a variety of strategies denoting common programming language features.

2.2 Examples of strategies

2.2.1 Arithmetic

Any arithmetic operator ~ : nat → nat → nat is interpreted by a strategy over the arena Nat →

Nat → Nat . Let us tag the moves of the �rst Nat arena with −1, the moves of the second with −2 and

leave the third un-tagged (the trivial tag). Then the interpretation of the operator is in most cases

σ~ = strat ({qq1m1q2n2p | m,n, p ∈ N ∧ p = m~ n})

Note that in the case of division, or any other operation with unde�ned values, the strategy must include

those cases explicitly:

σ÷ = strat ({qq1m1q2nnp | m,n 6= 0, p ∈ N ∧ p = m÷ n} ∪ {qq1m1q202 | m ∈ N)

Following the 0 O-answer, there is no way P can continue.5

From this point of view sequencing can be seen as a degenerate operator which evaluates then forgets

the �rst argument, then evaluates and return the second

σseq = strat ({qq1m1q2n2n | m,n ∈ N})

Of course, sequencing commonly involves commands com which are degenerate, single-value, data

types which are constructed just like the natural numbers but using a singleton set instead of N.

The �exibility of the strategic approach also gives an easy interpretation to shortcut (lazy) arithmetic

operations:

σ× = strat ({qq1m1q2n2p | m 6= 0, n, p ∈ N ∧ p = m× n} ∪ {qq1010})

This comes in handy when implementing an if-then-else operator (over natural numbers), in arena

Bool → Nat → Nat → Nat :

σif = strat ({qq1tt1q2n2n | n ∈ N} ∪ {qq1ff 1q3n3n | n ∈ N})
5Although not common in the GS literature, we can consider this as a defeat of P in the game.

17

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

2.2.2 Non-determinism

A non-deterministic Boolean choice operator chooseb : B is interpreted by the strategy

σchooseb = strat({q · tt, q · ff })

where two P-answers are allowed. This can be extended to probabilistic choice by adding a probability

distribution over the strategy.

Note that the �exibility of the strategic approach would allow the de�nition of computationally prob-

lematic operations such as unbounded non-determinism choosen : N,

σchoosen = strat({qn | n ∈ N})

2.2.3 State

In order to model state we �rst need to �nd an appropriate arena to model assignable variables. In the

context of call-by-name it is particularly easy to model local (bloc) variables (new x in t, where x is

the variable name and t the term representing the variable block). It turns out that new needs not be a

term-former but it can be simply a higher order language constant new : (var → T)→ T where T is

some language ground type.

The type of variables var can be deconstructed following an “object oriented” approach. A variable

must be readable der : var → nat and assignable asg : var → nat → nat. Since no other operations

are applicable, we can simply de�ne var = nat×(nat→ nat) which means der = proj1, asg = proj2

and the assignment behaves C-style, returning the assigned value. We will see later how projections are

uniformly interpreted by strategies.

What is interesting is the interpretation of the new operation in arena Var = Nat1× (Nat2 → Nat3).

We used the tags directly (and informally) in the type itself in order to identify the moves.

18

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

We de�ne this strategy using the next-move function:

σ̂new(p · q3) = q2

σ̂new(p · n2) = n3

σ̂new(p · n3 · q1) = n1

σ̂new(p · n1 · q1) = n1

σ̂new(q) = q′

σ̂new(p ·m′) = m.

The �rst two moves are just a copy-cat corresponding to assignment (a write requesting q3 necessitates

a value to be written q2, and when the value is provided n2 it is written n3). The thrid and fourthe

rules are the stateful behaviour, returning the most recently written n3 or, respectively read n1 when a

read requesting question q1 is answered to. Incidentally, this means that P has no move if an initial read

request is made. The last two copy-cat rules embed the strategy for variables into (Var → T ′)→ T to

interpret the binder.

2.2.4 Control

If-then-else is a very simple control operator, but more complex ones can be de�ned. The family of

control operators is large, so let us look at a simple one, catch : (com1 → nat2) → option nat where

the type option nat is interpreted in an arena constructed just like Nat but using N + 1 instead of N.

The extra value indicates an error result (�). Just like in the case of state, the construct catch(λx.t)

can be sugared as escape x in t. If x is used in t then the enclosing catch returns immediately with �,

otherwise in returns whatever t returns.

The strategy is

σcatch = strat ({qq2n2n | n ∈ N}) ∪ {qq2q1�})

2.3 Composing strategies

In the previous section we looked at strategies interpreting selected language constants. In order to

construct an interpretation of terms, denotationally, strategies need to compose.

The intuition of composing a strategy σ : A → B with a strategy τ : B → C is to use arena B as an

19

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

interface on which in a �rst instance σ and τ will synchronise their moves. After that, the moves of B

will be hidden, resulting in a strategy τ ◦ σ : A → C . In order to preserved the good justi�cation of

plays all pointers that factor through hidden moves will be “extended” so that the hiding of the move

will not leave them dangling.

In order to de�ne composition some auxiliary operations are required.

The �rst one is deleting move while extending the justi�cation pointers “through” the deleted moves.

De�nition 9 (Deletion). For an arena A, letX ⊆MA. For a play p ∈ PA we de�ne deletion inductively

as follows, where we take (p′, π) = p � X :

ε � X = (ε, id)

(p ·ma〈b〉) � X = (p′ ·m · π(a)〈b〉, π) ifm 6∈ X

(p ·ma〈b〉) � X = (p′, (π | b 7→ π(a))) ifm ∈ X

The result of a deletion is a pointer sequence along with a function π : A → A which represents the

chain of pointers associated with deleted moves. Informally, by p � A we will understand the �rst

projection applied to the resulting pair.

For example, the removal of the greyed-out moves in the diagrammatic representation of the play below

results in a sequence with reassigned pointers:

Note that in general the deletion of an arbitrary set of moves from a legal play does not result in another

legal play, but in important special cases it does.

Lemma 2. Given arenas A,B,C if p ∈ PA×B→C then p � A ∈ PB→C .

The second operation is the selection of “hereditary” sub-plays, i.e. all the moves that can be reached

from an initial set of moves following the justi�cation pointers.

De�nition 10 (Hereditary justi�cation). Suppose p ∈ PA and X ⊆ A. We de�ne the hereditarily

20

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

justi�ed sequence p � X recursively as below, where we take p � X = (p′, X ′):

ε � X = (ε,X)

(p ·ma〈b〉) � X = (p′ ·ma〈b〉, X ∪ {b}) if a ∈ X

(p ·ma〈b〉) � X = (p′, X) if a 6∈ X

The result of a hereditary justi�cation is a pointer sequence along with a set of namesX ⊆ Awhich rep-

resents the addresses of selected questions. Informally, by p � A we will understand the �rst projection

applied to the resulting pair.

For example, the hereditary justi�cation of the greyed-out moves in the diagrammatic representation

of the play below results in the sequence below:

Note that in general the hereditary justi�cation of an arbitrary set of moves from a legal play does not

result in another legal play, but in important special cases it does.

Lemma 3. Given arenas A,B,C if p ∈ PA×B→C , withma〈b〉@− p,m ∈ IA then p � {b} ∈ PA.

Lemmas 2 and 3 are not just technical curiosities, but they have clear intuitions. The former says that

if we hide all moves from A in a play over arena A×B → C , we we obtain a legal play. Moreover, the

removed plays themselves are legal.

We now have the requisite operations to de�ne the interaction and, �nally, the composition of strategies.

De�nition 11 (Interaction). Given sets of justi�ed sequences σ ⊆ JM , τ ⊆ JN their interaction is de�ned

as

σ ||
M,N

τ = {p ∈ JM∪N | p � (M \N) ∈ τ ∧ p � (N \M) ∈ σ}.

A good intuition for interaction is of two strategies synchronising their actions on the shared moves

M ∩N .

Observation. This de�nition will be used to compute the interaction of strategies σ : A → B and

τ : B → C , but we will ignore the issue of tagging of moves as they participate in the de�nition of

21

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

composite arenas, and we will just assume the underlying sets of are disjoint. This is not technically

correct because the arenas can be equal, case in which the tagging is essential to disambiguate the co-

products. But the formalisation of tagging, de-tagging and re-tagging is tedious and may obscure the

main points. We are sacri�cing some formality for clarity.

Example 5. Let τ = strat(qq′m′(m + 1)) denote a function that increments its argument and σ =

strat(q′q′′n′′(2n)′) a function that doubles its argument, σ, τ : Nat → Nat . Their interaction σ || τ is a

set of sequences of the form qq′q′′m′′(2m)′(2m+ 1).

De�nition 12 (Iteration). Given a set of justi�ed sequences σ ∈ JM its iteration on N ⊆M is the set of

justi�ed sequences

!Nσ = {p ∈ JM | ∀ma〈b〉@− p.m ∈ N ⇒ p � {b} ∈ σ}

A good intuition of iteration is a strategy interleaving its plays. The de�nition says that if we select

moves form an identi�ed subset N and we trace the hereditarily justi�ed plays, they are all in the

original set. We can think of each p � {b} as untangling the “thread of computation” associated with

move ma〈b〉 from the interleaved sequence.

Example 6. In the absence of iteration a strategy can interact with another strategy only once. Let τ =

strat(qq′m′q′n′(m + n)) denote a function that evaluates its argument twice and returns the sum of

received values, and let σ = strat(q′0′) be the strategy for constant 0. The interaction σ || τ cannot proceed

successfully because removing the untagged moves representing the result of τ leaves sequences of the shape

q′m′q′n′ which are not in σ no matter what values m,n take. However, the interaction with iterated 0 is

!σ || τ = qq′0′q′0′0.

Composition is iterated interaction with the synchronisation moves internalised and hidden.

De�nition 13 (Composition). Given strategies σ : A→ B, τ : B → C we de�ned their composition as

σ; τ = (!IBσ ||
MA→B ,MB→C

τ) �MB .

Theorem 4. Given strategies σ : A→ B, τ : B → C their composition is also a strategy σ; τ : A→ C .

Proof. We need to show that σ; τ is a set of well-justi�ed plays, and that pre�x-closure, O-closure,

and equivariance, hold. This is immediate because both � and � when applied to a justi�ed sequence

produce a justi�ed sequence, directly from de�nition. They also preserve pre�x-closure and O-closure.

Equivarience holds from general principles, as studied in the theory of nominal sets.

22

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

2.4 Categories of games

2.4.1 Associativity

Composition is well de�ned, but we do not know whether it also has good mathematical properties.

Primarily, is composition associative? And does it have an identity at every type?

Theorem 5 (Associativity). For any three strategies σ : A → B, τ : B → C, υ : C → D, (σ; τ); υ =

σ; (τ ; υ).

Proof. Elaborating the de�nitions, the LHS is

(!C((!Bσ ||
AB,BC

� B) ||
ABC,CD

(ν � B)) � C = (!C((!Bσ ||
AB,BC

τ) ||
ABC,CS

ν) � BC (1)

There are no B-moves in (!C((!Bσ ||
AB,BC

� B), so we can extend the scope of � B.

Elaborating the de�nitions, the RHS is

(!Bσ ||
AB,BD

(!Cτ ||
BC,CD

ν) � C) � B (2)

= (!B(σ � C) ||
AB,BD

(!Cτ ||
BC,CD

ν) � C) � B (3)

= (!Bσ ||
AB,BD

(!Cτ ||
BC,CD

ν) � C) � BC (4)

Eq. 3 is true because there are no C-moves in σ, so σ � C = σ.

Eqn. 4 is true because � C distributes over concatenation.

Therefore, it is su�cient to show the expressions in Eqns. 1 and 3 are equal.

Let p ∈ !C((!Bσ ||
AB,BC

τ) ||
ABC,CS

ν is equivalent, by de�nition with

p � D ∈ !C(!Bσ ||
AB,BC

τ) (5)

∧ p � AB ∈ ν (6)

23

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

By elaborating the de�nitions:

Prop. 5 ⇔ ∀ma〈b〉.m ∈ IC ⇒ p � D � {b} ∈ !Bσ ||
AB,BC

τ (7)

⇔ p � D � {b} � C ∈ !Bσ (8)

∧ p � D � {b} � A ∈ τ ⇔ p � {b} � A ∈ τ (9)

The equivalence in Eqn. 9 holds because once we restrict to moves hereditarily justi�ed by a C-move

(m ∈ IC), the removal of D-moves has no e�ect since the hereditarily justi�ed play is restricted to

arenas ABC.

Elaborating the de�nition yet again,

Prop. 8⇔ ∀nc〈d〉@− p � D � {b} � C.n ∈ IB (10)

⇒ p � D � {b} � C � {d} ∈ σ ⇔ p � {d} ∈ σ (11)

Because restricting to the hereditarily justi�ed play of a B-move (n ∈ IB) makes the other restrictions

irrelevant.

To summarise,

p ∈ !C((!Bσ ||
AB,BC

τ) ||
ABC,CS

ν ⇔

∀ma〈b〉.m ∈ IC ⇒ p � {b} ∈ τ ∧ ∀nc〈d〉@− p � {b}.n ∈ IB ⇒ p � {d} ∈ σ, (12)

This was the more di�cult case.

p ∈ !Bσ ||
AB,BD

(!Cτ ||
BC,CD

ν) is equivalent to the same conditions as in Eqn. 12 simply by elaborating

the de�nitions, except that Prop. 9 appears as p � A � {b} ∈ τ , but �, � commute in this case.

We show this proof in detail, because it is generally considered to be one of the most challenging proofs

of game semantics. However, with the encoding of justi�cation pointers as names the proof is an un-

folding of complex de�nitions, but it is ultimately elementary, boiling down to some basic properties of

� and �.

Composition is not only associative but also monotonic with respect to the inclusion ordering:

Theorem 6 (Monotonicity). If σ ⊆ σ′ then for any τ, υ, σ; τ ⊆ σ′; τ and υ;σ ⊆ υ;σ′.

24

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

2.4.2 Identity

A candidate for identity κA : A0 → A1 is a strategy which immediately replicates O-moves from A0 to

A1 and vice versa – a copy-cat strategy.

De�nition 14 (Copy-cat). For any arena A we de�ned κA as

κ̂A(q1a〈b〉) = q0b〈c〉

κ̂A (p ·mia〈b〉 ·m1−ic〈d〉 · p′ · njd〈e〉) = n1−jb〈f〉

κ̂A (p ·mia〈b〉 ·m1−ic〈d〉 · p′ · njd) = n1−jb.

where i, j = 1, 2.

A copy-cat strategy has “the same behaviour” in both components:

Lemma 4. κA � A0 = κA � A1, up to a relabelling of moves.

Theorem 7. κA : A0 → A1 is a strategy.

However, κA is not a unit for composition. Consider the strategyσ : unit0 → unit1, σbad = strat(q1q0a1a0).

When composed with κunit the resulting strategy is σbad;κ = strat{q1q0a1a0, q1q0a0a1} 6= σbad. The

problem is the lack of synchronisation between the plays happening in the three arenas participating

in composition.

One solution is to notice that the strategy κ∗A = κA;κA is idempotent relative to composition, i.e.

κ∗A;κ∗A = κ∗A, which allows the construction of a category via the Karoubi envelope where every strat-

egy σ : A→ B is “saturated” σ∗ = κ∗A;σ;κ∗B . Indeed these strategies now form a category.

However, by saturating the strategies we have sacri�ced a great deal of expressiveness which is essential

in programming language design: the ability to control the sequencing of moves! For example, the

sequencing strategy σ = strat(qq1a1q2a2a) by saturation includes all plays in which q precedes qi, a

and qi precedes ai but any other reordering is allowed. This is no longer sequencing, but parallelism

without the possibility for synchronisation. This may not be what we want.

In the sequel we will see that the solution is to restrict the shape of plays to so-called “legal plays” in

which problematic sequences such as those in σbad are no longer possible, and in which some degree of

control over sequencing can be expressed. One such condition is alternation a condition that requires

that O-moves and P-moves alternate, and it is conceptually connected to sequentiality. Intuitively it

means that P cannot trigger consecutive actions without O responding, and vice-versa. In σbad the

moves are OPPO, which is non-alternating so that strategy is ruled out.

25

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Subject to alternation we �nd plays inunit0 → unit1 which are quite reasonable, such as q1q0a0q0 · · · q0a0a1

which correspond to a function interrogating its argument sequentially a number of times, as we would

�nd in λx.x;x; · · ·x. But we also �nd plays such as q1a1q0a0 which correspond to a rather unusual

function that is described by the following set of actions: the function is called, the function returns,

the function calls its argument (!), the function argument returns. This is reminiscent of a (sequential)

fork() operator which returns before executing its argument. If this behaviour is not possible in a

given language it must be ruled out too.

With these considerations in mind we are beginning to understand and appreciate the art and science

of game semantics, which can be roughly summarised as

1. Start in the setting of justi�ed sets of sequences – plays and strategies.

2. Discover combinatorial constraints on plays and strategies which rule out undesired

behaviour (e.g. ‘alternation’).

3. Ensure that the constraints are preserved by composition.

4. Discover closure conditions on strategies which ensure strategy composition is asso-

ciative and has an identity, i.e. they form a category.

5. Ensure that the closure conditions do not ruin expressiveness by introducing undesired

behaviour in strategies.

In the next section we shall see such a model, for Concurrent Idealised Algol, a language with higher-

order functions, recursion, concurrency, and local state and synchronisation primitives.

2.5 Annotated further reading list

This is one of several tutorial introductions to game semantics. For a fuller picture the reader is also

recommended

Abramsky, Samson, and Guy McCusker. "Game semantics." Computational logic. Springer,

Berlin, Heidelberg, 1999.

Murawski, Andrzej S., and Nikos Tzevelekos. "Nominal game semantics." Foundations and

Trends in Programming Languages 2.4 (2016): 191-269.

These notes are meant to be a hands-on introduction rather than a scholarly survey. For a broader

survey the reader is referred to

Ghica, Dan R. "Applications of game semantics: From program analysis to hardware syn-

thesis." Logic In Computer Science, 2009. LICS’09. 24th Annual IEEE Symposium on. IEEE,

26

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

2009.

The two papers that �rmly put game semantics on the map are the ones that solved (independently) the

de�nability problem for PCF, i.e. for a higher-order, pure, sequential language:

Abramsky, Samson, Radha Jagadeesan, and Pasquale Malacaria. "Full abstraction for PCF."

Information and Computation 163.2 (2000): 409-470.

Hyland, J. Martin E., and C-HL Ong. "On full abstraction for PCF: I, II, and III." Information

and computation 163.2 (2000): 285-408.

The second paper (Hyland-Ong) introduced the concept of ‘justi�cation pointer’ which proved to be

popular in subsequent development.

Both papers achieved their main result by restricting strategies to so-called innocent strategies, a sophis-

ticated and somewhat mysterious version of history-freeness which generated a signi�cant amount of

research on its own:

Danos, Vincent, and Russell Harmer. "The anatomy of innocence." International Workshop

on Computer Science Logic. Springer, Berlin, Heidelberg, 2001.

Harmer, Russ, and Olivier Laurent. "The anatomy of innocence revisited." International

Conference on Foundations of Software Technology and Theoretical Computer Science.

Springer, Berlin, Heidelberg, 2006.

Harmer, Russ, Martin Hyland, and Paul-André Mellies. "Categorical combinatorics for inno-

cent strategies." Logic in Computer Science, 2007. LICS 2007. 22nd Annual IEEE Symposium

on. IEEE, 2007.

The particular formalisation of justi�cation pointers in this presentation relies on the mathematical

concept of ‘name’ and its theory, which ensures that inductive or recursive de�nitions relying on names

are well-de�ned and hold up to alpha-equivalence (i.e. name permutations). For details the reader is

referred to

Pitts, Andrew M. Nominal sets: Names and symmetry in computer science. Cambridge

University Press, 2013.

The original presentation of this nominal formalisation of game semantics is

Gabbay, Murdoch, and Dan Ghica. "Game semantics in the nominal model." Electronic Notes

in Theoretical Computer Science 286 (2012): 173-189.

27

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

The problem of copy-cat not being an identity for composition emerged out of the game-semantic study

of linear logic. In fact, linear logic provided an important conceptual nexus between games and program-

ming languages. More on game semantics and linear logic can be studied in

Blass, Andreas. "A game semantics for linear logic." Annals of Pure and Applied logic 56.1-3

(1992): 183-220.

Girard, Jean-Yves. "Linear logic: its syntax and semantics." London Mathematical Society

Lecture Note Series (1995): 1-42.

Abramsky, Samson, and Radha Jagadeesan. "Games and full completeness for multiplicative

linear logic." The Journal of Symbolic Logic 59.2 (1994): 543-574.

Note that the problem of identity is not speci�c to game semantics, but it is a thorny one in trace

semantics of concurrent processes, both synchronous and asynchronous.

Ghica, Dan R. "Diagrammatic reasoning for delay-insensitive asynchronous circuits." Com-

putation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky.

Springer, Berlin, Heidelberg, 2013. 52-68.

Ghica, Dan R., and Mohamed N. Menaa. "Synchronous game semantics via round abstrac-

tion." International Conference on Foundations of Software Science and Computational

Structures. Springer, Berlin, Heidelberg, 2011.

The de�nition of composition via ‘synchronisation and hiding’ is inspired by the trace semantics of CSP

Hoare, Charles Antony Richard. "Communicating sequential processes." Communications

of the ACM 21.8 (1978): 666-677.

Brookes, Stephen D., Charles AR Hoare, and Andrew W. Roscoe. "A theory of communicat-

ing sequential processes." Journal of the ACM (JACM) 31.3 (1984): 560-599.

Roscoe, Bill. "The theory and practice of concurrency." (1998). (http://www.cs.ox.ac.

uk/people/bill.roscoe/publications/68b.pdf)

Finally, other connections between computation and interaction, inspired by linear logic, are the encod-

ing of the lambda calculus into process calculus and the Geometry of Interaction:

Milner, Robin. "Functions as processes." Mathematical structures in computer science 2.2

(1992): 119-141.

Mackie, Ian. "The geometry of interaction machine." Proceedings of the 22nd ACM SIGPLAN-

28

http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

SIGACT symposium on Principles of programming languages. ACM, 1995.

29

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

3 Idealised Concurrent Algol

3.1 Syntax

The base types of the language are β ::= exp | com, i.e. integer expressions and commands. Assignable

variables, and semaphores are the other ground types γ ::= β | var | sem. The types are θ ::= γ | θ →

θ. The language is an applied lambda calculus with a simple type system. The judgements of the type

system are x0 : θ0, . . . , xk : θk ` M : θ where xi : θi are variable type assignments, M is a term, and

θ its type. The set of variable-type assignments is denoted by Γ.

x : θ ∈ Γ
Γ ` x : θ

Γ, x : θ `M : θ′

Γ ` λx : θ.M : θ → θ′
Γ `M : θ → θ′ Γ ` N : θ

Γ `MN : θ′

The constants of the language are:

k : exp integer constants

skip : com null command

? : exp→ exp→ exp integer operations

ifz : exp→ θ → θ → θ branching on zero ifz_then_else

seq : com→ β → β sequential composition ;

par : com→ com→ com parallel composition ||

asg : var → exp→ com assignment :=

der : var → exp dereferencing !

grab, release : sem→ sem binary semaphore operations

newvar : exp→ (var → β)→ β variable binder int x := k in M

newsem : exp→ (sem→ β)→ β semaphore binder sem x := k in M

To avoid the complications of un-initialised local variables and semaphore we give the initial value as

an extra parameter.

To illustrate the syntax of the language (sugared or desugared) consider a term with a race condition:

Example 7. Sugared syntax

30

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

int x := 0 in

(x := 1 + !x) || (!x := 2 * !x);

return x

versus unsugared syntax

newvar 0 (λx.seq (par (asg x (1 + der x)) (asg x (2 ∗ der x))) (der x))

We will use whichever version of the syntax is appropriate in particular contexts.

3.2 Operational semantics

The execution of the language is described by a small step operational semantics using a transition

relation

Σ `M, s −→M ′, s′.

where Σ is a set of names of memory cells and locks, s and s′ are states (functions s, s′ : Σ −→ N, and

M,M ′ terms. If it causes no confusion Σ, s can be elided to keep the rules simpler.

Let f ′ = (f | x0 7→ y) represent a function such that if f ′(x0) = y and for x 6= x0, f ′(x) = f(x).

31

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

The basic reduction rules are:

k0 ? k1 −→ k k = k0 ? k1 (13)

skip; skip −→ skip (14)

skip || skip −→ skip (15)

M(λx.N) −→ N M ∈ {newvar ,newsem}, N ∈ {k, skip} (16)

ifz 0 M N −→M (17)

ifz k M N −→ N k 6= 0 (18)

(λx.M)N −→M [N/x] (19)

Σ, l ` der l, s −→ k, s s(l) = k (20)

Σ, l ` asg l k, s −→ skip, s′ s′ = (s | l 7→ k) (21)

Σ, l ` grab l, s −→ skip, s′ s(l) = 0 ∧ s′ = (s | l 7→ 1) (22)

Σ, l ` release l, s −→ skip, s′ s(l) = 1 ∧ s′ = (s | l 7→ 0) (23)

M k (λx.M0), s −→M0, s M ∈ {newvar ,newsem},M0 ∈ {skip, k′} (24)

Let f ⊗ (x 7→ y) be a function which extends the domain of f with a new value x, mapped to y.

Other rules serve to de�ne the contexts in which reductions (eventually) happen:

Σ `M0, s −→M ′0, s
′

Σ `M0 M1, s −→M ′0 M1, s
′ (25)

Σ `M1, s −→M ′1, s
′

Σ `M0 M1, s −→M0 M
′
1, s
′ (M0 ∈ {der , grab, release})

(26)

Σ `M1, s −→M ′1, s
′

Σ `M0 M1 M2, s −→M0 M
′
1 M2, s

′ (M0 ∈ {?, seq, asg ,newvar ,newsem})
(27)

Σ `M2, s −→M ′2, s
′

Σ `M0 M1 M2, s −→M0 M1 M
′
2, s
′

M0 ∈ {?, seq, asg ,newvar ,newsem},

M1 ∈ Σ ∪ {k, skip}

 (28)

Σ `M1, s −→M ′1, s
′

Σ ` parM1 M2, s −→ parM ′1 M2, s
′ (29)

Σ `M2, s −→M ′2, s
′

Σ ` parM1 M2, s −→ parM1 M
′
2, s
′ (30)

Σ `M0, s −→M ′0, s
′

Σ ` ifz M ′0 M1 M2, s −→M ′0 M1 M2, s
′ (31)

32

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

The most complex rule combines reductions with guiding the context of further reductions, for local

variable and semaphore binders:

Σ, l `M [l/x], s⊗ (l 7→ k) −→M ′, s′ ⊗ (l 7→ k′)

Σ `M0 k (λx.M), s −→M0 k
′ (λx.M [x/l])

M0 ∈ {newvar ,newsem}
(32)

Some comments on the rules above:

• We have a CBN language so the function is reduced �rst (Rule 25) and the argument is substituted

as a thunk rather than be evaluated (Rule 16).

• Unary operators evaluate their argument (Rule 26) until they reach a value, which is then pro-

cessed (Rules 20, 22, 23).

• Most binary operators evaluate their �rst argument (Rule 27) until they reach a constant, then the

second argument (Rule 28) until they reach another value, which are then reduced (Rules 14, 13,

15) . . .

• . . . except parallel composition, which nondeterministically chooses one of the arguments as a

reduction context (Rule 29, 30).

• The branching operator evaluates the guard (Rule 31) then picks one of the branches lazily (Rules 17,

18).

• When the binders encounter a syntactically constant function such as λx.skip or λx.k they return

the constant value (Rule 24).

• Otherwise, when the binders encounter a function λx.M they instantiate the x to a fresh location

l, extending the state with its initialiser k. The initialiser is used to capture the current value of

the state for further evaluations (Rule 32).

De�nition 15 (Termination). If Σ ` M, s −→∗ M0, s
′ with s′ ∈ {k, skip} we say thatM terminates

in state s, written asM, s ⇓. Furthermore, we writeM ⇓ forM, ∅ ⇓.

Termination may fail because of ‘stuck’ illegal con�gurations such as newsem 1 (λx.grab x) or 1/0.

De�nition 16 (Approximation). Given Γ ` Mi : θ, i = 1, 2, if for any context C[−] : com.C[M1] ⇓

implies C[M2] ⇓ we write Γ `M1 vθ M2.

De�nition 17 (Equivalence). Given Γ ` Mi : θ, i = 1, 2, if Γ ` M1 vθ M2 and Γ ` M2 vθ M2 we

write Γ `M1
∼=θ M2.

The contextual equivalence of two terms ensures that two terms can be substituted for each other. In

a language with higher order functions and state reasoning about equivalences is a complex and subtle

33

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

undertaking.

Example 8.

x : var ` !x− !x 6∼= 0

Consider the context

int v := 0 in

int z := 0 in

z := (fun x -> -) v || v := !v + 1;

return z

Example 9.

newvar k (λx : var.!x− !x) ∼= 0

The di�erence between Ex. 8 and Ex. 9 is that variable x is free rather than local, allowing for hidden

interference. The intuitions are clear, but a direct argument from the operational semantics and the

de�nition of equivalence is very hard!

3.3 Game semantics

We use the arena structures and the justi�cation sequences from the previous section. Most of the strate-

gies involved have already been described. We only describe the only new one, parallel composition.

Let p | q denote the set of all the possible interleavings of two justi�ed sequences which have disjoint

sets of pointer-names6:

ε | q = {q}

p | ε = {p}

p0 · p | q0 · q = p0 · (p | q0 · q) ∪ q0 · (p0 · p | q)

with p0, q0 move occurrences.

σpar : com1 → com2 → com

6A technical observation: The equivariance condition on strategies means that if we want to interleave two plays and the
pointer-names clash we can simply pick the play which is the same except for the renaming of pointer-names so that there are
no clashes. Refreshing names is a generalisation of what happens in capture-avoiding substitution in the lambda calculus, and is
extensively studied in the theory of nominal sets.

34

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

σpar = strat(q · (q1a1 | q2a2) · a).

The question we must address now is:

What are the right combinatorial constraints (legality conditions) on plays and closure condi-

tions on strategies which a) are compositional, b) allow us to express all desired behaviours, c)

allow us to express only desired behaviours.

These conditions will come from understanding the essence of ICA as an asynchronous, concurrent

language in which all concurrency is “local”, as introduced by the parallel composition operator. This

means that all “threads” of computation must fork and join in a well-nested way. A “parent” thread

may not terminate before its “child” threads have also terminated. At the level of games, this is neatly

re�ected by the following principle:

If a question is answered then all questions justi�ed by had been answered.

It is formally easier to break this down into two simpler properties:

Fork: Only a question that has not been answered can justify.

Join: A question can be answered only when no questions it justi�es are still pending.

These can be seen as constraints on the scope of justi�ers.

De�nition 18 (Strict scoping). If p · ma〈_〉 · p′ ∈ PA, m ∈ AA we say that it is strictly scoped if

a 6@− p′.

This is the legality condition for forking: if a pointer name a is used as the justi�er of an answer m,

then it can never be used again, so that the question which introduces it cannot justify other questions,

or indeed answers.

De�nition 19 (Strict nesting). If p1 ·m1a〈b〉 · p2 ·m2b〈c〉 · p3 ·m′1b〈_〉 ∈ PA,m′1 ∈ AA, we say that it

is strictly nested ifm′2c〈_〉@− p3 for somem′2 ∈ AA.

This formalises the legality condition for joining: if a question m1 is answered, by some m′1, then any

other question m2 it justi�es must also be answered, by some m′2.

It can be veri�ed that

Theorem 8. If σ : A → B, τ : B → C are strategies consisting of strictly scoped, strictly nested plays

then their composition σ; τ : A→ C consists of strictly scoped, strictly nested plays.

The right closure condition for strategies is a staple of models of asynchronous concurrency: the only

possible synchronisation is that P (output) can synchronise on O (input). Every other synchronisation

35

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

is impossible. For example the order in which two P-moves are issued cannot be controlled. Even if P

can make the moves in a particular sequence it is no guarantee that, due to unknown delays, they will

be received in the same order.

De�nition 20. A strategy of strictly scoped, strictly nested plays σ : A is asynchronous if and only if for

any p · p0 · p1 ∈ σ with p0 = m0a0〈b0〉 and p1 = m1a1〈b1〉 andm0 ∈ PA orm1 ∈ OA then if p · p1 · p0

is strictly scoped and strictly nested then p · p1 · p0 ∈ σ .

From now one when we write strat(σ) we also will mean, additionally, asynchronous-closure.

Theorem 9. If σ : A→ B, τ : B → C are asynchronous strategies then their composition σ; τ : A→ C

is an asynchronous strategy.

Theorem 10. If σ : A→ B is an asynchronous strategy then strat(κA);σ = σ = σ; strat(κB)

In other words, the asynchronous-closure of the copy-cat strategy is an identity for composition.

Some of the strategies discussed above are already asynchronous. For example, σpar includes all the

relevant move permutations by de�nitions, whereas σseq does not gain any new plays by asynchronous

closure.

The only strategies that are not asynchronous by construction are σnewvar , σnewsem . Using the Karoubi

envelope we can “lift them” by composition with strat(κvar→β) and strat(κsem→β) respectively. They

are used to model newvar and newsem .

The lifted strategies for state and semaphores are rather di�cult to grasp directly. The following se-

quence of grabs and releases is present in the unlifted strategy for semaphores (we write g, r for the

questions and respectively a for the answer). We colour the moves so that we can track them through

permutations, and we spell out P or O as an index:

· · · gO · aP · rO · aP · · · (33)

The O-moves can be arbitrarily hurried and the P-moves delayed, which means that the following is an

equivalent play, which also corresponds to “grab then release”!

· · · rO · gO · aP · aP · · · (34)

However, since aP can synchronise on gO it means that the following play is impossible:

36

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

· · · rO · aP · gO · aP · · · (35)

Which is just what we want, since this is “release then grab”, which is clearly a di�erent way of se-

quencing grab and release. Also, no alternation of sequences · · · garagara · · · will contain in its asyn-

chronous closure sub-sequences of shape · · · gaga · · · , i.e. two successful grab operations. However,

Sequence (34) contains in its asynchronous completion both Sequence (33) and (35), which means that

in an unrestricted interleaving of grab and release operations one successful interleaving that can be

legally synchronised can be found. But more on this in Sec. 3.4.1.

3.4 Model of the (applied) lambda calculus

In order to establish soundness we �rst need to establish that the category of asynchronous strategies

is a model of the lambda calculus, i.e. a Cartesian Closed Category. Going via the categorical model is

more economical than making a direct syntactical argument.7

Theorem 11 (CCC). The category of asynchronous strategies is Cartesian Closed with

Terminal object is the arena I with no movesMI = ∅

The product of two arenas A1, A2 is the arena A1×A2 with projections πi : A1×A2 → A′i de�ned by

the copy-cat strategy between arenas Ai and A′i, πi = strat(κAi
).

The exponential of two arenas A,B is the arena A→ B with

Evaluation morphism ev : (A→ B)×A′ → B′ with ev = strat(κA) ∪ strat(κB)

Transpose of any strategy σ : A × B .→ C is the strategy λσ : A
.→ (B → C) where λ is the

appropriate move re-tagging operation.

Note that the strategy for πi, is on the arena Ai → A′i. However, since strategies are sets of sequences,

any strategy on arenaAmay also be a strategy onB ifMB ⊇MA, andMA1×A2→A′
i
⊇MAi→A′

i
. Same

for the evaluation morphism.

For the product, the product of strategies σi : A→ Ai, 〈σi, σ2〉 : A→ A1 ×A2 is their union.

To understand the re-tagging operation λ let us make the tags explicit in the arena constructions (′

and ′′):

(A′ ×B′′)′ → C ′′ = (A′)′ × (B′′)′ → C ′′

7The reader with no knowledge of category theory may ignore the categorical content of this section.

37

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

versus

A′ → (B′ → C ′′)′′ = A′ → (B′)′′ → (C ′′)′′

Modulo the tagging of the moves the two composite arenas above are the same. The re-tagging is the

bijection

λ(m′)′ = m′

λ(m′′)′ = (m′)′′

λ(m′′) = (m′′)′′.

In general we avoid diving into the details of the formalisation of the tags, but in the case of transposition

it is quite important.

The interpretation of the lambda-calculus is standard in a CCC. The interpretation is inductive on the

derivation of the type (which is unique). The interpretation of a judgement Γ ` M : θ is a strategy

written as JMK : JΓK→ JθK where JθK is the arena interpreting the type

JnatK = Nat

JcomK = Com

JvarK = Nat × (Nat → Com)

JsemK = Com × Com

Jθ → θ′K = JθK→ Jθ′K.

and JΓK = Jx0 : θ0, . . . , xk : θkK = Jθ0K× · · · × JθkK.

The lambda terms are interpreted by:

JΓ, xk : θk,Γ
′ ` xk : θkK = πk

JΓ `M N : θK =
〈
JΓ `M : θ′ → θK, JΓ ` N : θ′K

〉
; ev

JΓ ` λx : θ.M : θ → θ′K = λJΓ, x : θ `M : θ′K.

To make it more concrete we can spell out the categorical de�nitions:

JΓ, x : θ ` xk : θK = strat(κθ)

JΓ `M N : θK =
(
JMK ∪ JNK

)
;
(
strat(κθ) ∪ strat(κθ′)

)
38

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

JΓ ` λx : θ.M : θ → θ′K = λJMK.

For the language constants M0, we use the strategies already de�ned:

J `M0 : θK = σM0 .

This completes the de�nition of the game-semantic model of ICA.

3.4.1 Examples

For a closed program of command type the only observable behaviour is termination vs. non-termination.

It is useful to look at a non-terminating program.

Example 10 (Ω : com).

Ω = newsem 1 (λx.grab x)

The body of the command is Jλx.grab xK = strat(q′′g′a′a′′) : sem′ → com′′. This needs to compose to

σnewsem,1 : (sem′ → com′′) → com which has plays of the form qq′′r′a′g′a′ · · · . The only plays that

can be in the interaction sequence is qq′′ since g′ and r′ do not match.

Therefore, JΩK = strat(q), i.e. a strategy which does not respond to the initial O-move.

Example 11 (Test). A useful function is test : exp′ → com′′, test = λx.ifz x skip Ω, JtestK =

strat(q′′q′0′a, q′′q′n′) where n 6= 0.

Example 12 (Synchronisation).

Jnewsem 1 (λx.grab x || release x)K = strat(qa) = JskipK.

The strategy for grab x || release x has all the interleavings of ga and ra, which includes raga which will

compose successfully with newsem 1. It is interesting to note that it also has interleavings such as raga

which do not compose successfully. However, since strategies are pre�x-closed these failed compositions do

not contribute any interesting behaviour to the strategies, as they are pre�xes of successful compositions.

Example 13 (Choice).

Jnewvar1 (λx.(x := 1 ||x := 0); !x)K = strat(q0, q1)

As onemight expect, concurrency and race conditions can be used to implement non-deterministic behaviour.

39

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Example 14 (Angelic choice).

Jtest(newvar1 (λx.(x := 1 ||x := 0); !x))K = strat(q0) = J0K.

The same situation from Ex. 12 arises here, except the result is not maybe what one would expect. The term

being tested is 0 or 1, non-deterministically. If it produces 0 then we terminate, otherwise we get stuck.

Because a ‘stuck’ play is a sub-play of a successful play it contributes nothing to the strategy, which ends

up being equal to that for the constant 0.

While this is clearly indicative of a weakness in the model, it is consistent with the behaviour described by

our operational termination predicate, test(newvar1 (λx.(x := 1 ||x := 0); !x)) ⇓. We will discuss this

in the next section.

3.5 Soundness, Adequacy, and Full Abstraction

Ex. 14 suggests that incomplete plays do not matter, and indeed this intuition is correct.

There are two strategies for com, the stuck strategy σ⊥ = strat(q) and the un-stuck strategy > =

strat(qa). We can order strategies using the following test:

De�nition 21 (Preorder). For any strategies σi : A,

σ1 ≤ σ2 if and only if ∀σ : A→ com. if σ1;σ = > then σ2;σ = >.

Lemma 5. ≤ is a preorder.

The relation is ≤ is a pre-order because it is not symmetric, i.e. σ1 ≤ σ2 and σ2 ≤ σ1 does not imply

σ1 = σ2. This means that there are strategies which are distinct but the di�erence cannot be observed

by testing it by composition! This is generally not good, because rather then comparing strategies

directly we need to quotient them by the equivalence σ1 ∼ σ2 = σ1 ≤ σ2∧σ2 ≤ σ1. In some sense this

undermines our aim to replace an equivalence (contextual equality) by an equality, for ease of reasoning.

The quotient is not quite as bad as forcing observational equivalence to be a congruence by quantifying

over all contexts, but can we do better? It turns out that in ICA we can!

Let us denote by comp(σ) the set of complete plays in the strategy σ, that is, those plays in which the

opening question is answered, so that by strict nesting all questions are answered.

Theorem 12 (Characterisation). Let σ1, σ2 : A be strategies. σ1 ≤ σ2 if and only if comp(σ1) ⊆

comp(σ2). Consequently, σ1 ∼ σ2 if and only if comp(σ1) = comp(σ2).

40

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

This means that our game model truly is a denotational model, since we can use semantic equality as

we wanted all along.

Let us write λx = λx0 · · ·λxk . Let us interpret a state s as a strategy JsK consisting of suitably initialised

stateful variable plays and correctly synchronised locks, depending on the location type, so that for

any con�guration M, s JMK; JsK = Jnew(λx.M)K for the appropriately chosen and initialised binders

newvar ,newsem .

The main soundness result is

Theorem 13 (Soundness). For any term Σ `M : β,

• If Σ `M, s −→M ′, s′ then Jλx.MK; JsK ⊆ Jλx.M ′K; JsK′.

• If Σ `M, s −→∗ M ′, s′ then Jλx.MK; JsK ⊆ Jλx.M ′K; JsK′.

• If Σ `M, s ⇓ then Jλx.MK; JsK = >.

Unlike the previous results which have direct elementary proofs, the soundness result requires some

intermediate steps. The details are spelled out in Props. 29-31 in loc. cit.. The main proof is by induction

on the derivation of the M, s −→ M ′, s′ relation, noting that the only observable actions in JMK are

state actions (read/write, grab/release) and that any derivation correspond either to no change in these

observable actions (the “pure” operations) or precisely one question-answer pair of moves (the “stateful”

operations).

The same idea is used in the proof of adequacy:

Theorem 14 (Adequacy). For any Σ ` M : β and state s ∈ States(σ) if Jλx.MK; JσK = > then

Σ `M, s ⇓.

The di�erence between adequacy and soundness is that the induction proceeds on the types, using a

logical relation. The details are in Props. 34-36 in loc. cit..

Theorem 15 (Inequational soundness). For any Γ ` Mi : θ, if JΓ `Mi : θK ⊆ JΓ `M2 : θK then

Γ `M1 ⊆θ M2

This follows from soundness (Thm. 13), monotonicity of composition (Thm. 6) and adequacy (Thm. 14)

following a general argument.

Sound and adequate models for ICA can be obtained using other denotational techniques such as functor

categories. What sets game models apart is their de�nability property, i.e. there is no “garbage” in the

model. Every strategy corresponds to a term. For any play p : JθK will de�ne an algorithm Θ such that

Θ(p) is a term of type θ such that JΘ(p) = strat(p)K.

41

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

The idea of the algorithm is as described below. It will be illustrated with the play qq131q2427 ∈

PNat1→Nat2→Nat as a running example. This is quite obviously the complete play of Jλx.λy.x+ yK

when applied to 3, 4.

• First only consider the justi�cation structure of a play, ignoring the sequencing (O-moves in red):

q

7

q

3

q

4

Nat → Nat → Nat

• Interpret any Q-Q justi�cation as a function call (or thunk evaluation)

• Interpret multiple Q-moves with the same justi�cation as running in parallel

• Interpret any PA-moves as constants.

At this stage a candidate working solution is the term

λx1λx2.(x1 ||x2); 7

noting that it doesn’t quite type check. Note that the only interesting interaction, from a de�n-

ability point of view, is the evaluation of xi and the interleaving of the two plays on xi. We can

force that using an auxiliary variable:

λx1λx2.newvar 0 (λy.

(y := x1 || y := x2); 7)

• The next step is to ensure that the only O-moves are 31 and 42. We can do that using the test

function introduced in Sec. 3.4.1, blocking all plays starting with moves we don’t want. The

candidate term would be something like:

λx.newvar y := 0 in

(y := x1; test(x1 = 3) || y := x2; test(x2 = 4)); 7)

42

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

except that this would introduce new observable xi. So we use more auxiliary local variables to

cache the value of x:

λx.newvar y := 0 in

(y0 := x1; test(!y0 = 3) || y1 := x2; test(!y1 = 4)); 7

• The �nal step is to enforce the desired schedule. We remember that only P-moves can synchronise

on O-moves, so these are the only synchronisations we even attempt. Also, we only need to

identify those synchronisations which are not already implied by justi�cation structure or the

legal-play constraints (fork/join). We represent them as a red arrow in our running example:

q

7

q

3

q

4

Nat → Nat → Nat

We do that by using local semaphores, grabbed at the point of the O-move and released at the

point of the P-move:

λx.newvar y := 0 in.newsem z := 0 in

(y0 := x1; grab(z0); test(!y0 = 3) || release(z0); y1 := x2; test(!y1 = 4)); 7

The detailed algorithm is a little more intricate than that, but the basic idea is just as above. Create

un-scheduled, parallel plays, then restrict using testing and synchronisation. It is worth noting that the

“angelic” notion of termination, also known as “may-testing” we employ signi�cantly simpli�es the task

of re-constructing a desired play.

Using the choice operator introduced in Sec. 3.4.1 we can then show that

Theorem 16 (De�nability). For any �nite strategy σ : JθK there exists a closed term M : θ such that

JMK = σ.

The main result equating operational and game-semantic (in)equational reasoning

43

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Theorem 17 (Full abstraction). For any Γ `M,N : θ,

Γ `M1 vθ M2 if and only if JΓ `M1 : θK ⊆ JΓ `M2 : θK.

The left-to-right direction is inequational soundness (Thm. 15)

The right-to-left direction is an immediate and general consequence of de�nability (Thm. 16) and com-

putational adequacy (Thm. 14).

3.5.1 Examples

Now we can �nally address equations such as the ones in Ex. 8 by computing the strategies of the two

sides

x : var ` !x− !x 6∼= 0

J0K = strat(q0) but J!x− !xK = strat(qq′m′q′n′p) where p = m− n. The two are obviously distinct.

More subtle equivalences such as

p : com′ → com′′ ` newvar x := 0 in p(x := !x+ 1); test(!x = 0) ∼=com p(Ω)

can also be proved by computing the strategies and noticing that JLHSK = JRHSK = strat(qq′′a′′a)

i.e. only those p’s which do not evaluate their argument can terminate successfully. The reasons of

failure on LHS and RHS are di�erent, but the overall behaviour is the same.

3.6 Annotated further reading list

The main reference for this section is the journal paper

Ghica, Dan R., and Andrzej S. Murawski. "Angelic semantics of �ne-grained concurrency."

Annals of Pure and Applied Logic 151.2-3 (2008): 89-114.

A more concise version is that published in a conference proceedings:

Ghica, Dan R., and Andrzej S. Murawski. "Angelic semantics of �ne-grained concurrency."

International Conference on Foundations of Software Science and Computation Structures.

Springer, Berlin, Heidelberg, 2004.

44

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

The asynchronous closure conditions were introduced in the context of game semantics by

Laird, James. "A game semantics of idealized CSP." Electronic Notes in Theoretical Com-

puter Science 45 (2001): 232-257.

and in the general setting of asynchronous processes by

Jifeng, He, Mark B. Josephs, and C. A. R. Hoare. "A theory of synchrony and asynchrony."

Programming Concepts and Methods. Elsevier, 1990.

The soundness and adequacy proof uses a technique quite well illustrated in

Nygaard, Mikkel, and Glynn Winskel. "HOPLA—a higher-order process language." Interna-

tional Conference on Concurrency Theory. Springer, Berlin, Heidelberg, 2002.

For going beyond may-testing in the context of game semantics, by distinguishing between various

kinds of termination:

Harmer, Russell, and Guy McCusker. "A fully abstract game semantics for �nite nondeter-

minism." LICS. IEEE, 1999.

Non-termination distinguishing between deadlocks and livelocks, in trace semantics is discussed in the

context of CSP:

Brookes, Stephen D., Charles AR Hoare, and Andrew W. Roscoe. "A theory of communicat-

ing sequential processes." Journal of the ACM (JACM) 31.3 (1984): 560-599.

In pure languages an “intrinsic quotient” is required in order to compare strategies – this appears in the

loc. cit. papers on the full abstraction for PCF.

In this introduction we have not discussed recursion. Because strategy composition is monotonic w.r.t.

inclusion, the category of games is “CPO-enriched” and contains, therefore, a standard model of recur-

sion.

There is a wealth of fully abstract game semantic models in the literature, for any conceivable language

feature or combination theoreof. The �rst one, after the original PCF, was that of “Idealised Algol”

Abramsky, Samson, and Guy McCusker. "Linearity, sharing and state: a fully abstract game

semantics for Idealized Algol with active expressions." Algol-like languages. Birkhäuser,

Boston, MA, 1997. 297-329.

Other notable models:

45

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Abramsky, Samson, Kohei Honda, and Guy McCusker. "A fully abstract game semantics

for general references." Logic in Computer Science, 1998. Proceedings. Thirteenth Annual

IEEE Symposium on. IEEE, 1998.

Laird, James. "A fully abstract game semantics of local exceptions." LICS. IEEE, 2001.

Danos, Vincent, and Russell S. Harmer. "Probabilistic game semantics." ACM Transactions

on Computational Logic (TOCL) 3.3 (2002): 359-382.

Honda, Kohei, and Nobuko Yoshida. "Game-theoretic analysis of call-by-value computa-

tion." Theoretical Computer Science 221.1-2 (1999): 393-456.

Abramsky, Samson, Dan R. Ghica, Andrzej S. Murawski, C-HL Ong, and Ian David Bede

Stark. "Nominal games and full abstraction for the nu-calculus." In LICS, pp. 150-159. IEEE,

2004.

Finally, there is a long tradition of denotational semantics of Algol-like languages

O’Hearn, Peter, and Robert Tennent. Algol-like Languages. Springer Science & Business

Media, 2013.

3.7 Applications of game semantics

The concrete presentation of GS makes it more immediately applicable than the conventional sets-and-

functions DSs. The �rst paper that noticed that GS models can be concretely presented was:

Ghica, Dan R., and Guy McCusker. "Reasoning about Idealized Algol using regular lan-

guages." International Colloquium on Automata, Languages, and Programming. Springer,

Berlin, Heidelberg, 2000.

Model checking. The paper above opened the door to algorithmic reasoning about program equiv-

alence, which has been pursued both practically in terms of building tools

Abramsky, S., Ghica, D. R., Murawski, A. S., & Ong, C. H. L. (2004, March). Applying game

semantics to compositional software modeling and veri�cation. In International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems (pp. 421-435).

Springer, Berlin, Heidelberg.

and studying more advanced PL fragments for decidability and complexity properties, e.g.

46

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Ong, C. H. (2002). Observational equivalence of 3rd-order Idealized Algol is decidable. In

Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on (pp. 245-

256). IEEE.

Hopkins, D., Murawski, A. S., & Ong, C. H. L. (2011, July). A fragment of ML decidable

by visibly pushdown automata. In International Colloquium on Automata, Languages, and

Programming (pp. 149-161). Springer, Berlin, Heidelberg.

Games-based model checking is very similar to conventional model checking, and the usual tricks of

lazy model construction or counterexample-guided re�nement apply:

Bakewell, A., & Ghica, D. R. (2008, March). On-the-�y techniques for game-based software

model checking. In International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (pp. 78-92). Springer, Berlin, Heidelberg.

Dimovski, A., Ghica, D. R., & Lazić, R. (2006, March). A counterexample-guided re�nement

tool for open procedural programs. In International SPIN Workshop on Model Checking of

Software (pp. 288-292). Springer, Berlin, Heidelberg.

Note that the game-semantic paradigm allows the development of new abstraction methods for model

checking:

Ghica, Dan R., and Adam Bakewell. "Clipping: A semantics-directed syntactic approxima-

tion." In 2009 24th Annual IEEE Symposium on Logic In Computer Science, pp. 189-198.

IEEE, 2009.

High-level synthesis. The same paper (ICALP 2000) suggested that indeed via game-models certain

terms can be represented as �nite-state machines, which can be in turn compiled into digital circuits,

such as FPGAs, a process called The Geometry of Synthesis (GOS):

Ghica, Dan R. "Geometry of synthesis: a structured approach to VLSI design." In ACM SIG-

PLAN Notices, vol. 42, no. 1, pp. 363-375. ACM, 2007.

Ghica, Dan R., and Alex Smith. "Geometry of Synthesis II: From games to delay-insensitive

circuits." Electronic Notes in Theoretical Computer Science 265 (2010): 301-324.

Ghica, Dan R., and Alex Smith. "Geometry of synthesis III: resource management through

type inference." In ACM SIGPLAN Notices, vol. 46, no. 1, pp. 345-356. ACM, 2011.

Ghica, Dan R., Alex Smith, and Satnam Singh. "Geometry of synthesis IV: compiling a�ne

47

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

recursion into static hardware." In ACM SIGPLAN Notices, vol. 46, no. 9, pp. 221-233. ACM,

2011.

To date, GOS remains the only practical method that can compile higher-order, recursive languages

with e�ects into FPGA fabrics.

Heterogeneous compilation. Moreover, the fact that the same denotational model is used as an

intermediate composition protocol allows the seamless composition of software, independent of syntax

and the underlying architecture. This argument is made initially in

Ghica, Dan R. "Function interface models for hardware compilation." In Formal Methods

and Models for Codesign (MEMOCODE), 2011 9th IEEE/ACM International Conference on,

pp. 131-142. IEEE, 2011.

A games-based compiler for the heterogeneous (CPU and FPGA) Zinq architecture, supporting two

high-level languages (C and Verity8.) is described in

Fleming, Shane T., Ivan Beretta, David B. Thomas, George A. Constantinides, and Dan R.

Ghica. "PushPush: Seamless integration of hardware and software objects via function calls

over AXI." In Field Programmable Logic and Applications (FPL), 2015 25th International

Conference on, pp. 1-8. IEEE, 2015.

Fleming, Shane, David Thomas, George Constantinides, and Dan Ghica. "System-level link-

ing of synthesised hardware and compiled software using a higher-order type system." In

Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, pp. 214-217. ACM, 2015.

Thomas, David B., Shane T. Fleming, George A. Constantinides, and Dan R. Ghica. "Trans-

parent linking of compiled software and synthesized hardware." In Proceedings of the 2015

Design, Automation & Test in Europe Conference & Exhibition, pp. 1084-1089. EDA Con-

sortium, 2015.

8A modernised Algol

48

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

4 Trace semantics, another interaction semantics

The game semantic model of the previous section was based on the so-called “principles of polite con-

versation”, in which P, and most importantly O, behave according to pre-determined rules. What deter-

mines the rules? As we have seen, they come from an analysis of the operational semantics, which is a

syntax-directed speci�cation of the behaviour of programs.

However, de�ning semantics from the syntax (only) may be too great an idealisation from a practical

point of view: most real languages are not syntactically-closed. Real languages can interact with non-

syntactic contexts in several ways. The �rst one is via separate compilation and linking. When modules

are linked, the linker assumes that the object code behaves as if it is compiled in the same language, but

that is not the same thing as being actually compiled in the same language. The journey from source

code to object code is not necessarily reversible due to optimisations in the back end of a compiler. The

second one is via foreign function interfaces (FFI), which allow code to link explicitly against code written

in a di�erent language, usually C taken as a lowest common denominator. The third one is via extrinsic

functions, which are additions to the language not implemented in the language itself, conceptually

very similar to FFI but more tightly integrated syntactically. Finally, the fourth one is via system calls

which make binary code interact with other binary code at run-time. We will refer to all of the above,

generically, as “FFI.”

In all these situation we can use the game semantics of the language as a speci�cation for de�ning a

syntax-independent interaction protocol between a language and an FFI semantically. However, what

if the environment does not conform to the speci�cation? What if O plays impolitely? Or, indeed, what

if O plays maliciously?

Consider the code below, in a generic C-like syntax:

int read ();

int foo () {

int s = new ();

int k = new ();

int x = read ();

if (*x == *k) then return *s else return *k; }

We have local variables, s holding a “secret location” and k holding a “private location”. We use the non-

local, system-provided, function read to obtain a name from the system, which cannot be that stored

at s or k. A value is read into x using untrusted system call read. Can the secrecy of s be violated by

49

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

making the name stored into it public, i.e. “leaking” it? Even if the test *x == *k should always fail

because, isn’t that right?, the contents of k can never be guessed?

The point of attack is the procedure read and it involves the misbehaviour of O. It may not be syntac-

tically realisable but it is computationally feasible. Perhaps the simplest attack would be realised by

cloning the con�guration by running the program in a virtual machine, pausing at the point of read,

running the �rst copy to obtain k, then feeding k into the second copy to �nally obtain s.

Therefore in this section we will make a radical change of perspective, with O being treated as an

adversary rather than as a partner. In the tradition of security analysis we will only constrain O by

its knowledge rather than by its actions, the omnipotent but not omniscient Dolev-Yao model. This

adversary will collect all the information at its disposal and use it arbitrarily. Our only weapon is to

hide information from it, to have secrets.

The unomniscience of O means that the language is not entirely chaotic! For example, the following

three programs are equivalent:

export f; import g; int f() {int x; g(); return x;}

export f; import g; int x; int f() {g(); return x;}

export f; import g; decl f() {g(); return 0;}

In both �rst and second case, the untrusted, external function g cannot access the local variable or the

private module variable x, which ensures that its default value 0 is reliably returned by f .

An important observation must be made here emphatically. The equivalence above must not be inter-

preted as being preserved by all C compilers but rather that it is possible for a C compiler to be imple-

mented such that this equivalence is preserved. Indeed, a tamper-proof compiler in which variables are

“hidden” via memory layout randomisation can make x arbitrarily di�cult to guess, at the expense of

using more memory. In contrast, conventional C compilers will not preserve this equivalence if they

use simple deterministic stack allocation, since g can reach through the stack.

We will illustrate this approach with a simple C-like language, noting that this approach can be extended

to any concrete version of C.

Prog ::= Mod∗

Hdr ::= export x; import x;

50

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Mod ::= Hdr Dcl

Dcl ::= decl x = n; Dcl | decl Func; Dcl | ε

A program is a list of modules, consisting of a header and a list of function declarations. The header

Hdr is a list of names exported and imported by the program, with x an identi�er (or list of identi�ers

x) taken from an in�nite set N of names, and n ∈ Z.

As in C, functions are available only in global scope and in uncurried form:

Func ::= x(x){local x; Stm return Exp; }

A function has a name and a list of arguments. In the body of the function we have a list of local variable

declarations followed by a list of statements terminated by a return statement. We de�ne statements

and expressions as follows (with n ∈ Z).

Stm ::= ε | if(Exp)then{Stm}else{Stm}; Stm | Exp=Exp; Stm | Exp(Exp∗); Stm

Exp ::= Exp ? Exp | ∗Exp | Exp(Exp∗) | (Exp,Exp) | new() | n | x

Statements are branching, assignment and function call. For simplicity, iteration is not included as we

allow recursive calls. Expressions are arithmetic and logical operators, variable dereferencing (∗), pair-

ing, variable allocation and integer and variable constants. A function call can be either an expression

or a statement. Because the language is type-free the distinction between statement and expression is

arbitrary and only used for convenience.

If decl f(x){e} is a declaration in module M we de�ne f @M = e[x], interpreted as “the de�nition

of f in M is e, with arguments x.”

We will give a Felleisen-style operational semantics for this language.

A frame is given by the grammar below, with op ∈ {=, ?, ;}, op′ ∈ {∗,−}.

t ::= if (�) then {e} else {e} | � op e | v op � | op′ � | � e | v � | (�, e) | (v,�)

We denote the “hole” of the frame by�. We denote by Fs the set of lists of frames, the frame stacks. By

v we denote values, de�ned below.

Let N = Nλ] Nφ] Nκ be a many-sorted set of names, where each of the three components is a

51

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

countably in�nite set of location names, function names and function continuation names respectively. We

range over names by a, b, etc. Speci�cally for function names we may use f , etc.; and for continuation

names k, etc. For each set of names X we write λ(X), φ(X) and κ(X) for its restriction to location,

function and continuation names respectively.

De�nition 22 (Store). A store is de�ned as a pair of partial functions with �nite domain:

s ∈ Sto = (Nλ ⇀fn (Z]Nλ]Nφ))× (Nκ ⇀fn Fs×Nκ).

The �rst component of the store assigns integer values (data), other locations (pointers) or function

names (pointers to functions) to locations. The second stores continuations, used by the system to resume

a suspended function call.

We write λ(s), κ(s) for the two projections of a store s. By abuse of notation, we may write s(a) instead

of λ(s)(a) or κ(s)(a). Since names are sorted, this is unambiguous. The support ν(s) of s is the set of

names appearing in its domain or value set. For all stores s, s′ and set of namesX , we use the notations:

(restrict-to) the sub-store of s de�ned on X : s � X = {(a, y) ∈ s | a ∈ X};

(restrict-from) the sub-store of s that is not de�ned on X : s \ X = s � (dom(s)\X);

(update) change the values in s: s[a 7→ x] = {(a, x)} ∪ (s \ {a}) and, more generally: s[s′] =

s′ ∪ (s \ dom(s′));

(extension) s v s′ if dom(s) ⊆ dom(s′);

(closure) Cl(s,X) is the least set of names containing X and all names reachable from X through s

in a transitively closed manner, i.e. X ⊆ Cl(s,X) and if (a, y) ∈ s with a ∈ Cl(s,X) then

ν(y) ∈ Cl(s,X).

We de�ne a value to be a name, an integer, or a tuple of values: v ::= () | a | n | (v, v). The value

() is the unit for the tuple operation. Tupling is associative and for simplicity we identify tuples up to

associativity and unit isomorphisms, so (v, (v, v)) = ((v, v), v) = (v, v, v) and (v, ()) = v, etc.

We give a semantics for the language using a frame-stack abstract machine. It is convenient to take

identi�ers to be names, as it gives a simple way to handle pointers to functions in a way much like that

of the C language. The Program con�gurations of the abstract machine are of the form:

〈N | P ` s, t, e, k〉 ∈ N ×N × Sto ×Fs× Exp ×Nκ

52

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Case e = v is a value.

〈N | P ` s, t ◦ (if (�) then {e1} else {e2}), v, k〉 −→ 〈N | P ` s, t, e1, k〉, if v ∈ Z \ {0}
〈N | P ` s, t ◦ (if (�) then {e1} else {e2}), v, k〉 −→ 〈N | P ` s, t, e2, k〉, if v = 0

〈N | P ` s, t ◦ (� op e), v, k〉 −→ 〈N | P ` s, t ◦ (v op �), e, k〉 for op ∈ {=, ?, ; }
〈N | P ` s, t ◦ (v ?�), v′, k〉 −→ 〈N | P ` s, t, v′′, k〉, and v′′ = v ? v′

〈N | P ` s, t ◦ (v;�), v′, k〉 −→ 〈N | P ` s, t, v′, k〉
〈N | P ` s, t ◦ (a = �), v, k〉 −→ 〈N | P ` s[a 7→ v], t, (), k〉
〈N | P ` s, t ◦ (∗�), v, k〉 −→ 〈N | P ` s, t, s(v), k〉
〈N | P ` s, t ◦ (�; e), local x, k〉 −→ 〈N ∪ {a} | P ` s[a 7→ 0], t, e[a/x], k〉, if a 6∈ N
〈N | P ` s, t ◦ (�(e)), v, k〉 −→ 〈N | P ` s, t ◦ (v(�)), e, k〉
〈N | P ` s, t ◦ ((�, e)), v, k〉 −→ 〈N | P ` s, t ◦ ((v,�)), e, k〉
〈N | P ` s, t ◦ ((v,�)), v′, k〉 −→ 〈N | P ` s, t, (v, v′), k〉
〈N | P ` s, t ◦ (f(�)), v′, k〉 −→ 〈N | P ` s, t, e[v′/x], k〉, if f @M = e[x] (F)

Case e is not a value.

〈N | P ` s, t, if (e) then {e1} else {e2}, k〉 −→ 〈N | P ` s, t ◦ (if (�) then {e1} else {e2}), e, k〉
〈N | P ` s, t, e op e′, k〉 −→ 〈N | P ` s, t ◦ (� op e′), e, k〉, if op ∈ {=, ?, ; }
〈N | P ` s, t, ∗e, k〉 −→ 〈N | P ` s, t ◦ (∗�), e, k〉
〈N | P ` s, t, return(e), k〉 −→ 〈N | P ` s, t, e, k〉
〈N | P ` s, t, new(), k〉 −→ 〈N ∪ {a} | P ` s[a 7→ 0], t, a, k〉, if a ∈ Nλ \N
〈N | P ` s, t, e(e′), k〉 −→ 〈N | P ` s, t ◦ (�(e′)), e, k〉
〈N | P ` s, t, (e, e′), k〉 −→ 〈N | P ` s, t ◦ ((�, e′)), e, k〉

Figure 1: Operational semantics

N is a set of used names; P ⊆ N is the set of public names; s is the program state; t is a list of frames

called the frame stack; e is the expression being evaluated; and k is a continuation name, which for now

will stay unchanged.

The transitions of the abstract machine are a relation on the set of con�gurations. They are de�ned

by case analysis on the structure of e then t in a standard fashion, as in Fig. 1. Branching is as in C,

identifying non-zero values with true and zero with false. Binary operators are evaluated left-to-right,

also as in C. Arithmetic and logic operators (?) have the obvious evaluation. Dereferencing is given the

usual evaluation, with a note that in order for the rule to apply it is implied that v is a location and s(v)

is de�ned. Local-variable allocation extends the domain of s with a fresh secret name. Local variables

are created fresh, locally for the scope of a function body. The new() operator allocates a secret and fresh

location name, initialises it to zero and returns its location. The return statement is used as a syntactic

marker for an end of function but it has no semantic role.

Structural rules, such as function application and tuples are as usual in call-by-value languages, i.e. left-

to-right. Function call also has a standard evaluation. The body of the function replaces the function call

53

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

and its formal arguments x are substituted by the tuple of arguments v′ in point-wise fashion. Finally,

non-canonical forms also have standard left-to-right evaluations.

4.1 Trace semantics

The conventional function-call rule (F) is only applicable if there is a function de�nition in the module.

If the name used for the call is not the name of a known function then the normal operational semantics

rules no longer apply. We now extend our semantics so that calls and returns of locally unde�ned

functions become a mechanism for interaction between the program and the ambient system. We call

the resulting semantics the System Level (Trace) Semantics (SLS). The name emphasises the intuition that

now O represents a (run-time) system rather than a (syntactic) context.

Given a module M we will write as JMK the transition system de�ning its SLS. Its states are SJMK =

SysJMK ∪ ProgJMK, where ProgJMK is the set of abstract-machine con�gurations of the previous

section and SysJMK is the set of system con�gurations, which are of the form:

〈〈N | P ` s〉〉 ∈ N ×N × Sto.

The SLS is de�ned at the level of modules, that is programs with missing functions, similarly to what

is usually deemed a compilation unit in most programming languages. The transition relation δJMK of

the SLS operates on a set of labels L] {ε} and is of the following type.

δJMK ⊆ (ProgJMK× {ε} × ProgJMK) ∪ (ProgJMK× L× SysJMK) ∪ (SysJMK× L× ProgJMK)

L = {(s, call f, v, k) | s ∈ Sto, κ(s) = ∅, f ∈ Nλ, k ∈ Nκ, v a value}

∪ {(s, ret v, k) | s ∈ Sto, κ(s) = ∅, k ∈ Nκ, v a value}

Thus, at the system level, program and system con�gurations may call and return functions in alterna-

tion, in very much the same way that P and O make moves in game semantics. We write X α−→
s
X ′ for

(X, (s, α), X ′) ∈ δJMK, and X → X ′ for (X, ε,X ′) ∈ δJMK.

In transferring control between Program and System the continuation pointers ensure that upon return

the right execution context can be recovered. We impose several hygiene conditions on how contin-

uations can be used. We distinguish between P- and S-continuation names. The former are created

by the Program and stored for subsequent use, when a function returns. The latter are created by the

54

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

System and are not stored. The reason for this distinction is both technical and intuitive. Technically it

will simplify proving that composition is well-de�ned. Mixing S and P continuations would not create

any interesting behaviour: if P receives a continuation it does not know then the abstract machine of P

cannot evaluate it, which can be interpreted as a crash. But S always has ample opportunities to crash

the execution, so allowing it seems uninteresting. However, this is in some sense a design decision and

an alternative semantics, with slightly di�erent properties, can be allowed to mix S and P continuations

in a promiscuous way.

The �rst new rule, called Program-to-System call is:

〈N | P ` s, t ◦ (f(�)), v, k〉 call f,v,k′−−−−−−→
s�λ(P ′)

〈〈N ∪ {k′} | P ′ ∪ {k′} ` s[k′ 7→ (t, k)]〉〉

if f @M not de�ned, k′ /∈ N,P ′ = Cl(s, P ∪ ν(v))

When a non-local function is called, control is transferred to the system. In game semantics this cor-

responds to a Proponent question, and is an observable action. Following it, all the names that can be

transitively reached from public names in the store also become public, so it gives both control and in-

formation to the System. Its observability is marked by a label on the transition arrow, which includes:

a tag call, indicating that a function is called, the name of the function (f), its arguments (v) and a

fresh continuation (k′), which stores the code pointer; the transition also marks that part of the store

which is observable because it uses publicly known names.

The counterpart rule is the System-to-Program return, corresponding to a return from a non-local

function.

〈〈N | P ` s〉〉 ret v,k′−−−−−→
s′

〈N ∪ ν(v, s′) | P ∪ ν(v, s′) ` s[s′], f, v, k〉

if s(k′) = (f, k), ν(v, s′) ∩N ⊆ P, λ(ν(v)) ⊆ ν(s′), s � λ(P) v s′

This is akin to the game-semantic Opponent answer. Operationally it corresponds to S returning from

a function. Note here that the only constraints on what S can do in this situation are epistemic, i.e.

determined by what it knows:

1. it can return with any value v so long as it only contains public names or fresh names (but not

private ones);

2. it can update any public location with any value;

3. it can return to any (public) continuation k′.

However, the part of the store which is private (i.e. with domain in N \ P) cannot be modi�ed by S. So

S has no restrictions over what it can do with known names and to known names, but it cannot guess

55

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

private names. Therefore it cannot do anything with or to names it does not know. The restriction on

the continuation are just hygienic, as explained earlier.

There are two converse transfer rules System-to-Program call and Program-to-System return, cor-

responding to the program returning and the system initiating a function call:

〈〈N | P ` s〉〉 call f,v,k−−−−−−→
s′

〈N ∪ {k} ∪ ν(v, s′) | P ∪ {k} ∪ ν(v, s′) ` s[s′], f(�), v, k〉

if f@M de�ned, k /∈ dom(s), ν(f, v, s′) ∩N ⊆ P, λ(ν(v)) ⊆ ν(s′), s�λ(P) v s′

〈N | P ` s,−, v, k〉 ret v,k−−−−−→
s�λ(P ′)

〈〈N | P ′ ` s〉〉 where P ′ = Cl(s, P ∪ ν(v))

In the case of the S-P call it is S which calls a publicly-named function from the module. As in the case

of the return, the only constraint is that the function f , arguments v and the state update s′ only involve

public or fresh names. The hygiene conditions on the continuations impose that no continuation names

are stored, for reasons already explained. Finally, the P-S return represents the action of the program

yielding a �nal result to the system following a function call. The names used in constructing the re-

turn value are disclosed and the public part of the store is observed. In analogy with game semantics

the function return is a Proponent answer while the system call is an Opponent question.

The initial con�guration of the SLS for module M is S0
M = 〈〈N0 | P0 ` s0〉〉. It contains a store s0

where all variables are initialised to the value speci�ed in the declaration. The set N0 contains all the

exported and imported names, all declared variables and functions. The set P0 contains all exported

and imported names. When M is not clear from the context, we may write P 0
M for P0, etc.

4.2 Compositionality

The SLS of a module M gives us an interpretation JMK which is modular and e�ective (i.e. it can be

executed) so no consideration of the context is required in formulating properties of modules based on

their SLS. Technically, we can reason about SLS using standard tools for transition systems such as trace

equivalence, bisimulation or Hennessy-Milner logic.

We �rst show that the SLS is consistent by proving a compositionality property. SLS interpretations of

modules can be composed semantically in a way that is consistent with syntactic composition. Syntactic

composition for modules is concatenation with renaming of un-exported function and variable names

to prevent clashes, which we will denote by using − · −. In particular, we show that we can de�ne

a semantic SLS composition ⊗ so that, for an appropriate notion of isomorphism in the presence of

τ -transitions (∼=τ), the following holds.

56

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

For any modules M,M ′: JM ·M ′K ∼=τ JMK⊗ JM ′K .

We call this the principle of functional composition. Its interpretation is as a “no cheating” condi-

tion: the operational semantics must disclose enough information to the system to allow the system to

functionally compose separate modules. The process by functional composition is realised in practice

is linking. For example, it can be easily seen that if P does not disclose the current continuation to S in

an P-S call then S is unable to return from the call.

Let P range over program con�gurations, and S over system con�gurations. Moreover, assume an

extended set of continuation names N ′κ = Nκ] Naux, where Naux is a countably in�nite set of fresh

auxiliary names. We de�ne semantic composition of modules inductively as in Fig. 2 (all rules have

symmetric, omitted counterparts). We use an extra component Π containing those names which have

been communicated between either module and the outside system, and we use an auxiliary store s

containing values of locations only. The latter records the last known values of location names that are

not private to a single module. Continuation names in each Π are assigned Program/System polarities

(we write k ∈ ΠP / k ∈ ΠS), thus specifying whether a continuation name was introduced by either of

the modules or from the outside system. Cross calls and returns are assigned τ -labels and are marked by

auxiliary continuation names. We also use the following notations for updates ofΠ when an interaction

with the outside system is made, where we write Pr for the set of private names ν(S,S ′) \Π .

• (Π, s′)P [v, k, s] = Cl(s′[s], ν(v) ∪Π) ∪ {k}, and assign P polarity to k;

• (Π, s′)S [v, k, s] = Π ∪ ν(v, s \ Pr) ∪ {k}, and assign S polarity to k.

The notations apply also to the case when no continuation name k is included in the update (just dis-

regard k). The semantic composition of modules M and M ′ is thus given by:

JMK⊗ JM ′K = JMK⊗s0∪s
′
0

Π0
JM ′K

where s0 is the store assigning initial values to all initial public locations of JMK, and similarly for s′0,

and Π0 contains all exported and imported names.

The rules of Fig. 2 feature side-conditions on choice of continuation names,9 system stores10 and name

privacy. The latter originate from nominal game semantics and they guarantee that the names intro-
9That is, auxiliary names are used precisely for cross calls and returns.

10These stipulate (rules (vi)-(vii)) that the store produced in each outside system transition must: (a) be de�ned on all public
names (i.e. names in Π), and (b) agree with the old one on all other names. The latter safeguards against the system breaking
name privacy.

57

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

P −→ P ′(i)
P ⊗sΠ S −→ P ′ ⊗sΠ S

Internal move

ν(P ′) ∩ ν(S) ⊆ ν(P).

P call f,v,k−−−−−−→
s

S ′ S call f,v,k−−−−−−→
s

P ′
(ii)

P ⊗s′Π S
τ−−→ S ′ ⊗s

′[λ(s)]
Π P ′

Cross-call

k ∈ Naux \ ν(S).

P ret v,k−−−−→
s

S ′ S ret v,k−−−−→
s

P ′
(iii)

P ⊗s′Π S
τ−−→ S ′ ⊗s

′[λ(s)]
Π P ′

Cross-return

k ∈ Naux.

P call f,v,k−−−−−−→
s

S ′ S 6call f,v,k−−−−−−→
s(iv)

P ⊗s′Π S
call f,v,k−−−−−−→
s′[s]�Π′

S ′ ⊗s
′[λ(s)]
Π′ S

Program call

Π ′ = (Π, s′)P [v, k, s] and k ∈ Nκ \ ν(S).

P ret v,k−−−−→
s

S ′ S 6ret v,k−−−−→
s(v)

P ⊗s′Π S
ret v,k−−−−−→
s′[s]�Π′

S ′ ⊗s
′[λ(s)]
Π′ S

Program return

Π ′ = (Π, s′)P [v, s] and k ∈ Nκ.

S call f,v,k−−−−−−→
s

P
(vi)

S ⊗s′Π S ′
call f,v,k−−−−−−→
s�Π′

P ⊗s
′[λ(s)]
Π′ S ′

System call

k ∈ Nκ \ (ν(S ′) \ΠS), Π ′ = (Π, s′)S [v, k, s],
λ(Π) ⊆ dom(s), s′ \Π ⊆ s and ν(v, s\Pr)∩Pr =
∅.

S ret v,k−−−−→
s

P
(vii)

S ⊗s′Π S ′
ret v,k−−−−→
s�Π′

P ⊗s
′[λ(s)]
Π′ S ′

System return

k ∈ Nκ \ ν(S ′), Π ′ = (Π, s′)S [v, s],
λ(Π) ⊆ dom(s), s′ \Π ⊆ s and ν(v, s\Pr)∩Pr =
∅.

Figure 2: Rules for semantic composition

duced (freshly) by M and M ′ do not overlap (rule (i)), and that the names introduced by the system in

the composite module do not overlap with any of the names introduced by M or M ′ (rules (vi)-(vii)).

They safeguard against incorrect name �ow during composition.

Let us call the four participants in the composite SLS Program A, System A, Program B, System B. When-

ever we use X, Y as Program or System names they can be either A or B, but di�erent. Whenever we say

Agent we mean Program or System. A state of the composite system is a pair (Agent X, Agent Y) noting

that they cannot be both Programs. The composite transition rules re�ect the following intuitions.

• Rule (i): If Program X makes an internal (operational) transition System Y is not a�ected.

• Rules (ii)-(iii): If Program X makes a system transition to System X and System Y can match the

transition going to Program Y then the composite system makes an internal (τ) transition. This

is the most important rule and it is akin to game semantic composition via “synchronisation and

hiding”. It signi�es M making a call (or return) to (from) a function present in M ′.

58

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

• Rules (iv)-(v): If Program X makes a system transition that cannot be matched by System Y then

it is a system transition in the composite system, a non-local call or return.

• Rules (vi)-(vii): From a composite system con�guration (both entities are in a system con�gura-

tion) either Program X or Program Y can become active via a call or return from the system.

We can now formalise functional composition.

De�nition 23. Let G1,G2 be LTSs corresponding to a semantic composite SLS and an ordinary SLS re-

spectively. A function R from states of G1 to con�gurations of G2 is called a τ -isomorphism if it maps the

initial state of G1 to the initial con�guration of G2 and, moreover, for all states X of G1 and ` ∈ L,

1. if X τ−→ X ′ then R(X) = R(X ′),

2. if X → X ′ then R(X)→ R(X ′),

3. if R(X) −→ Y and X 6 τ−→ then X −→ X ′ with R(X ′) = Y ,

4. if X `−→ X ′ then R(X)
`−→ R(X ′),

5. if R(X)
`−→ Y and X 6 τ−→ then X `−→ X ′ with R(X ′) = Y .

We write G1 ∼=τ G2 if there is a τ -isomorphism R : G1 → G2.

Theorem 18. For all modulesM,M ′, JMK⊗ JM ′K ∼=τ JM ·M ′K.

The principle of functional composition holds and thus linking modules is possible.

As a �nal comment, the compositional extension of an operational semantics to a system-level (trace)

semantics is something that should always be attempted. A conventional, closed-system operational

semantics has no support for FFI, an essential feature of any realistic language. The SLS makes an infor-

mational rather than simply behavioural speci�cation of the language, as in what names of things are

public and what names of things are to be kept secret. The preservation of secrecy is the mechanism by

which equational properties can still hold. If all names are public the System can break any equivalence.

But the secrecy mechanism will always come at a cost, because names must be hidden in one way or

another (encryption, randomisation). The SLS makes this important trade-o� explicit and speci�es it

mathematically.

The epistemically-constrained system-level semantics gives a security-�avoured semantics for the pro-

gramming language which is re�ected by its logical properties and by the notion of equivalence it gives

rise to.

We will see that certain properties of traces in the SLS of a module correspond to “secrecy violations”, i.e.

undesirable disclosures of names that are meant to stay secret. In such traces it is reasonable to refer to

59

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

the System as an attacker and consider its actions an attack. We will see that although the attack cannot

be realised within the given language it can be enacted in a realistic system by system-level actions.

We will also see that certain equivalences that are known to hold in conventional semantics still hold in

a system-level model. This means that even in the presence of an omnipotent attacker, unconstrained by

a prescribed set of language constructs, the epistemic restrictions can prevent certain observations, not

only by the programming context but by any ambient computational system. This is a very powerful

notion of equivalence which embodies tamper-resistance for a module.

Note that we chose these examples to illustrate the conceptual interest of the SLS-induced properties

rather than as an illustration of the mathematical power of SLS-based reasoning techniques. For this

reason, the examples are as simple and clear as possible.

4.3 A system-level attack: violating secrecy

Let us now formally revisit the earlier example, inspired by a �awed security protocol informally de-

scribed as follows.

Consider a secret, a locally generated key and an item of data read from the environment.

If the local key and the input data are equal then output the secret, otherwise output the

local key.

In a conventional process-calculus syntax the protocol can be written as

νsνk.in(a).if k=a then out(s) else out(k).

It is true that the secret s is not leaked because the local k cannot be known as it is disclosed only at

the very end. This can be proved using bisimulation-based techniques for anonymity. Let us consider

an implementation of the protocol:

export prot;

import read;

decl prot() {

local s, k, x; s = new(); k = new(); x = read();

if (*x == *k) then *s else *k}

We have local variables s holding the “secret location” and k holding the “private location”. We use

the non-local, system-provided, function read to obtain a name from the system, which cannot be that

60

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

〈〈N0 | P0 ` ∅〉〉
call prot (),k−−−−−−−−→

∅
〈N0, k | P0, k ` ∅,−, E, k〉

−−−−−−−→∗〈N1, k, a0, a1 | P0, k ` (s 7→ a0, p 7→ a1, x 7→ 0),

(�; if(∗x == ∗p) then ∗ s else ∗ p) ◦ (x =�) ◦ (read(�)), (), k〉
call read (),k′
−−−−−−−−→

∅
〈〈N1, k, k

′, a0, a1 | P1 ` (s 7→ a0, k 7→ a1, x 7→ 0, k′ 7→ (t, k))〉〉

ret a2,k
′

−−−−−−−→
∅

〈N2 | P1, a2 ` (s 7→ a0, k 7→ a1, x 7→ 0, k′ 7→ (t, k)), t, a2, k〉

−−−−−−−→∗〈N2 | P1, a2 ` (s 7→ a0, k 7→ a1, x 7→ a2, k
′ 7→ (t, k)),−, a1, k〉

ret a1,k−−−−−−−→
∅

〈〈N2 | P2, a2, a1 ` (s 7→ a0, k 7→ a1, x 7→ a2, k
′ 7→ (t, k))〉〉

ret a1,k
′

−−−−−−−→
∅

〈N2 | P1, a2, a1 ` (s 7→ a0, k 7→ a1, x 7→ a2, k
′ 7→ (t, k)), t, a1, k〉

−−−−−−−→∗〈N2 | P1, a2, a1 ` (s 7→ a0, k 7→ a1, x 7→ a1, k
′ 7→ (t, k)),−, a0, k〉

ret a0,k−−−−−−−→
∅

〈〈N2 | P2, a2, a1, a0 ` (s 7→ a0, k 7→ a1, x 7→ a2, k
′ 7→ (t, k))〉〉.

Above, t = (�; if(∗x == ∗k) then ∗ s else ∗ k) ◦ (x =�), N0 = P0 = {prot, read}, N1 = N0 ∪ {s, k, x},
N2 = N1 ∪ {k, k′, a0, a1, a2} and P1 = P0 ∪ {k, k′}.

Figure 3: Secret a0 leaks.

stored at s or k. A value is read into x using untrusted system call read(). Can the secrecy of s be

violated by making the name stored into it public? Unlike in the process-calculus model, the answer is

“yes”.

The initial con�guration is 〈〈 prot, read | prot, read ` ∅〉〉. We denote the body of prot by E. The

transition corresponding to the secret being leaked is shown in Fig. 3. The labelled transitions are the

interactions between the program and the system and are interpreted as follows:

1. system calls prot() giving continuation k

2. program calls read() giving fresh continuation k′

3. system returns (from read) using k′ and producing fresh name a2

4. program returns (from prot) leaking local name a1 stored in k

5. system uses k′ to fake a second return from read, using the just-learned name a1 as a return

value

6. with a1 the program now returns the secret a0 stored in s to the environment.

Values of a2 are omitted as they do not a�ect the transitions.

The critical step is (5), where the system is using a continuation in a presumably illegal, or at least

unexpected, way. This attack can be implemented in several ways:

61

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

• If the attacker has access to more expressive control commands such as callcc then the contin-

uation can simply be replayed.

• If the attacker has low-level access to memory it can clone (copy and store) the continuation k′,

i.e. the memory pointed at by the name k′. In order to execute the attack it is not required to have

an understanding of the actual machine code or byte-code, as the continuation is treated as a black

box. This means that the attack cannot be prevented by any techniques reliant on obfuscation of

the instruction or address space, such as randomisation.

• If the attacker has access to fork-like concurrency primitives then it can exploit them for the

attack because such primitives duplicate the thread of execution, creating copies of all memory

segments. Note that the behaviour of the conventional Unix fork is richer than what we consider

in our system model, but it can be readily accommodated in our framework by a con�guration-

cloning system transition:

〈〈N | P ` s〉〉 → 〈〈N +N | P + P ` s[N/inl(N)] ∪ s[N/inr(N)]〉〉

• The attacker’s ability to clone the con�guration can lead to attacks which are purely systemic,

for example executing the program into a virtual machine, pausing execution, cloning the state

of the machine, then playing the two copies against each other.

4.4 Equivalence

Functional Compositionality gives an internal consistency check for the semantics. This already shows

that our language is “well behaved” from a system-level point of view. In this section we want to

further emphasise this point. We can do that by proving that there are nontrivial equivalences which

hold. There are many such equivalences we can show, but we will choose a simple but important one,

because it embodies a principle of locality for state.

This deceptively simple example establishes the fact that a local variable cannot be interfered with by a

non-local function. This was an interesting example because it highlighted a signi�cant shortcoming of

global state models of imperative programming. Although not pointed out at the time, functor-category

models of state developed roughly at the same time gave a mathematically clean solution for this equiv-

alence, which followed directly from the type structure of the programming language.

62

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

We compare SLSs be examining their traces. Formally, the set of traces of module M is given by

T (M) = {(π ·w) ∈ L∗ | S0
M

w−→→ X, ∀a∈P 0
M . π(a) = a.}

De�nition 24. LetM1,M2 be modules with common public names. We say thatM1 andM2 are trace

equivalent, writtenM1
∼= M2, if T (M1) = T (M2).

The above extends to modules with P 0
M1
6= P 0

M2
by explicitly �lling in the missing public names on

each side. We next introduce a handy notion of bisimilarity which precisely captures trace equivalence.

For each con�guration X , let us write P (X) for the set of public names of X

De�nition 25. LetR be a relation between con�gurations. R is a simulation if, whenever (X1, X2) ∈ R,

we have P (X1) = P (X2) and also:

• X1 → X ′1 implies (X ′1, X2) ∈ R;

• X1
`−→ X ′1 impliesX2 −→→ X ′′2 with (π ·X ′′2)

`−→ X ′2 and (X ′1, X
′
2) ∈ R, for some name permutation

π such that π(a) = a for all a ∈ P (X1).

R is a bisimulation if it and its inverse are simulations. ModulesM1 andM2 are bisimilar, writtenM1 ∼

M2, if there is a bisimulationR such that (S0
M1
, S0
M2

) ∈ R.

Lemma 6. Bisimilarity coincides with trace equivalence.

Proposition 1. Trace equivalence is a congruence for module composition − · −.

It is straightforward to check that the following three programs have bisimilar SLS transition systems:

export f; import g; decl f() {local x; g(); return *x;}

export f; import g; decl x; decl f() {g(); return *x;}

export f; import g; decl f() {g(); return 0;}

Intuitively, the reason is that in the �rst two programs f-local (module-local, respectively) variable x

is never visible to non-local function g, and will keep its initial value, which it 0. The bisimulation

relation is straightforward as the three LTSs are equal modulo silent transitions and permutation of

private names for x.

Other equivalences, for example in the style of parametricity also hold, with simple proofs of equivalence

via bisimulation:

63

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

export inc, get;

decl x;

decl inc(){x = (*x + 1) % 3;}

decl get() {return *x;}

export inc, get;

decl x;

decl inc() {x = (*x - 1) % 3;}

decl get() {return -*x;}

These two programs, or rather libraries, implement a modulo-3 counter as an abstract data structure,

using private hidden state x. The environment can increment the counter (inc) or read its value (get)

but nothing else. The �rst implementation counts up, and the second counts down.

4.5 Annotated further reading

The material presented in this section is closely based on

Ghica, Dan R., and Nikos Tzevelekos. "A system-level game semantics." Electronic Notes in

Theoretical Computer Science 286 (2012): 191-211.

The paper was used in proving the correctness of separate compilation such as

Stewart, Gordon, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. "Composi-

tional compcert." ACM SIGPLAN Notices 50, no. 1 (2015): 275-287.

Some of the papers that introduce the key ideas of trace semantics for programming languages are:

Je�rey, Alan, and Julian Rathke. "A fully abstract may testing semantics for concurrent ob-

jects." Theoretical Computer Science 338, no. 1-3 (2005): 17-63.

Lassen, Soren B., and Paul Blain Levy. "Typed normal form bisimulation." International

Workshop on Computer Science Logic. Springer, Berlin, Heidelberg, 2007.

Laird, James. "A fully abstract trace semantics for general references." International Collo-

quium on Automata, Languages, and Programming. Springer, Berlin, Heidelberg, 2007.

A remarkable language for which the emphasis is on security properties via its trace semantics is pre-

sented in

Jagadeesan, Radha, Corin Pitcher, Julian Rathke, and James Riely. "Local memory via layout

randomization." In Computer Security Foundations Symposium (CSF), 2011 IEEE 24th, pp.

161-174. IEEE, 2011.

Finally, a formal connection between game semantics and trace semantics has been studied in

Jaber, Guilhem. "Operational nominal game semantics." In International Conference on

64

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Foundations of Software Science and Computation Structures, pp. 264-278. Springer, Berlin,

Heidelberg, 2015.

65

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

5 References

1. Abramsky, S., Ghica, D. R., Murawski, A. S., & Ong, C. H. L. (2004, March). Applying game

semantics to compositional software modeling and veri�cation. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (pp. 421-435). Springer, Berlin,

Heidelberg.

2. Abramsky, Samson, Dan R. Ghica, Andrzej S. Murawski, C-HL Ong, and Ian David Bede Stark.

"Nominal games and full abstraction for the nu-calculus." In null, pp. 150-159. IEEE, 2004.

3. Abramsky, Samson, Kohei Honda, and Guy McCusker. "A fully abstract game semantics for gen-

eral references." Logic in Computer Science, 1998. Proceedings. Thirteenth Annual IEEE Sympo-

sium on. IEEE, 1998.

4. Abramsky, Samson, and Radha Jagadeesan. "Games and full completeness for multiplicative linear

logic." The Journal of Symbolic Logic 59.2 (1994): 543-574.

5. Abramsky, Samson, Radha Jagadeesan, and Pasquale Malacaria. "Full abstraction for PCF." Infor-

mation and Computation 163.2 (2000): 409-470.

6. Abramsky, Samson, and Guy McCusker. "Linearity, sharing and state: a fully abstract game se-

mantics for Idealized Algol with active expressions." Algol-like languages. Birkhäuser, Boston,

MA, 1997. 297-329.

7. Abramsky, Samson, and Guy McCusker. "Game semantics." Computational logic. Springer, Berlin,

Heidelberg, 1999.

8. Bakewell, A., & Ghica, D. R. (2008, March). On-the-�y techniques for game-based software model

checking. In International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (pp. 78-92). Springer, Berlin, Heidelberg.

9. Blass, Andreas. "A game semantics for linear logic." Annals of Pure and Applied logic 56.1-3 (1992):

183-220.

10. Brookes, Stephen D., Charles AR Hoare, and Andrew W. Roscoe. "A theory of communicating

sequential processes." Journal of the ACM (JACM) 31.3 (1984): 560-599.

11. Brookes, Stephen D., Charles AR Hoare, and Andrew W. Roscoe. "A theory of communicating

sequential processes." Journal of the ACM (JACM) 31.3 (1984): 560-599.

12. Danos, Vincent, and Russell Harmer. "The anatomy of innocence." International Workshop on

66

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Computer Science Logic. Springer, Berlin, Heidelberg, 2001.

13. Danos, Vincent, and Russell S. Harmer. "Probabilistic game semantics." ACM Transactions on

Computational Logic (TOCL) 3.3 (2002): 359-382.

14. Dimovski, A., Ghica, D. R., & Lazić, R. (2006, March). A counterexample-guided re�nement tool

for open procedural programs. In International SPIN Workshop on Model Checking of Software

(pp. 288-292). Springer, Berlin, Heidelberg.

15. Fleming, Shane T., Ivan Beretta, David B. Thomas, George A. Constantinides, and Dan R. Ghica.

"PushPush: Seamless integration of hardware and software objects via function calls over AXI."

In Field Programmable Logic and Applications (FPL), 2015 25th International Conference on, pp.

1-8. IEEE, 2015.

16. Gabbay, Murdoch, and Dan Ghica. "Game semantics in the nominal model." Electronic Notes in

Theoretical Computer Science 286 (2012): 173-189.

17. Ghica, Dan R. "Geometry of synthesis: a structured approach to VLSI design." In ACM SIGPLAN

Notices, vol. 42, no. 1, pp. 363-375. ACM, 2007.

18. Ghica, Dan R. "Applications of game semantics: From program analysis to hardware synthesis."

Logic In Computer Science, 2009. LICS’09. 24th Annual IEEE Symposium on. IEEE, 2009.

19. Ghica, Dan R. "Function interface models for hardware compilation." In Formal Methods and Mod-

els for Codesign (MEMOCODE), 2011 9th IEEE/ACM International Conference on, pp. 131-142.

IEEE, 2011.

20. Ghica, Dan R. "Diagrammatic reasoning for delay-insensitive asynchronous circuits." Computa-

tion, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Springer,

Berlin, Heidelberg, 2013. 52-68.

21. Ghica, Dan R., and Adam Bakewell. "Clipping: A semantics-directed syntactic approximation." In

2009 24th Annual IEEE Symposium on Logic In Computer Science, pp. 189-198. IEEE, 2009.

22. Ghica, Dan R., and Mohamed N. Menaa. "Synchronous game semantics via round abstraction." In-

ternational Conference on Foundations of Software Science and Computational Structures. Springer,

Berlin, Heidelberg, 2011.

23. Ghica, Dan R., and Guy McCusker. "Reasoning about Idealized Algol using regular languages."

International Colloquium on Automata, Languages, and Programming. Springer, Berlin, Heidel-

berg, 2000.

67

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

24. Ghica, Dan R., and Andrzej S. Murawski. "Angelic semantics of �ne-grained concurrency." Inter-

national Conference on Foundations of Software Science and Computation Structures. Springer,

Berlin, Heidelberg, 2004.

25. Ghica, Dan R., and Andrzej S. Murawski. "Angelic semantics of �ne-grained concurrency." Annals

of Pure and Applied Logic 151.2-3 (2008): 89-114.

26. Ghica, Dan R., and Alex Smith. "Geometry of Synthesis II: From games to delay-insensitive cir-

cuits." Electronic Notes in Theoretical Computer Science 265 (2010): 301-324.

27. Ghica, Dan R., and Alex Smith. "Geometry of synthesis III: resource management through type

inference." In ACM SIGPLAN Notices, vol. 46, no. 1, pp. 345-356. ACM, 2011.

28. Ghica, Dan R., Alex Smith, and Satnam Singh. "Geometry of synthesis IV: compiling a�ne recur-

sion into static hardware." In ACM SIGPLAN Notices, vol. 46, no. 9, pp. 221-233. ACM, 2011.

29. Ghica, Dan R., and Nikos Tzevelekos. "A system-level game semantics." Electronic Notes in The-

oretical Computer Science 286 (2012): 191-211.

30. Girard, Jean-Yves. "Linear logic: its syntax and semantics." London Mathematical Society Lecture

Note Series (1995): 1-42.

31. Harmer, Russ, Martin Hyland, and Paul-André Mellies. "Categorical combinatorics for innocent

strategies." Logic in Computer Science, 2007. LICS 2007. 22nd Annual IEEE Symposium on. IEEE,

2007.

32. Harmer, Russell, and Guy McCusker. "A fully abstract game semantics for �nite nondeterminism."

LICS. IEEE, 1999.

33. Harmer, Russ, and Olivier Laurent. "The anatomy of innocence revisited." International Confer-

ence on Foundations of Software Technology and Theoretical Computer Science. Springer, Berlin,

Heidelberg, 2006.

34. Hoare, Charles Antony Richard. "Communicating sequential processes." Communications of the

ACM 21.8 (1978): 666-677.

35. Honda, Kohei, and Nobuko Yoshida. "Game-theoretic analysis of call-by-value computation." The-

oretical Computer Science 221.1-2 (1999): 393-456.

36. Hopkins, D., Murawski, A. S., & Ong, C. H. L. (2011, July). A fragment of ML decidable by visibly

pushdown automata. In International Colloquium on Automata, Languages, and Programming

(pp. 149-161). Springer, Berlin, Heidelberg.

68

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

37. Hyland, J. Martin E., and C-HL Ong. "On full abstraction for PCF: I, II, and III." Information and

computation 163.2 (2000): 285-408.

38. Jagadeesan, Radha, Corin Pitcher, Julian Rathke, and James Riely. "Local memory via layout ran-

domization." In Computer Security Foundations Symposium (CSF), 2011 IEEE 24th, pp. 161-174.

IEEE, 2011.

39. Jaber, Guilhem. "Operational nominal game semantics." In International Conference on Founda-

tions of Software Science and Computation Structures, pp. 264-278. Springer, Berlin, Heidelberg,

2015.

40. Je�rey, Alan, and Julian Rathke. "A fully abstract may testing semantics for concurrent objects."

Theoretical Computer Science 338, no. 1-3 (2005): 17-63.

41. Jifeng, He, Mark B. Josephs, and C. A. R. Hoare. "A theory of synchrony and asynchrony." Pro-

gramming Concepts and Methods. Elsevier, 1990.

42. Joachim Lambek, From lambda calculus to Cartesian closed categories, in To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism, eds. J. P. Seldin and J. Hindley, Academic

Press, 1980, pp. 376-402.

43. Laird, James. "A fully abstract game semantics of local exceptions." LICS. IEEE, 2001.

44. Laird, James. "A game semantics of idealized CSP." Electronic Notes in Theoretical Computer

Science 45 (2001): 232-257.

45. Laird, James. "A fully abstract trace semantics for general references." International Colloquium

on Automata, Languages, and Programming. Springer, Berlin, Heidelberg, 2007.

46. Lassen, Soren B., and Paul Blain Levy. "Typed normal form bisimulation." International Workshop

on Computer Science Logic. Springer, Berlin, Heidelberg, 2007.

47. Mackie, Ian. "The geometry of interaction machine." Proceedings of the 22nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. ACM, 1995.

48. Milner, Robin. "Functions as processes." Mathematical structures in computer science 2.2 (1992):

119-141.

49. Murawski, Andrzej S., and Nikos Tzevelekos. "Nominal game semantics." Foundations and Trends

in Programming Languages 2.4 (2016): 191-269.

50. Nygaard, Mikkel, and Glynn Winskel. "HOPLA—a higher-order process language." International

69

DRAFT
– SU

BJECT TO CHANGE – DO NOT DIST
RIBUTE

Conference on Concurrency Theory. Springer, Berlin, Heidelberg, 2002.

51. O’Hearn, Peter, and Robert Tennent. ALGOL-like Languages. Springer Science & Business Media,

2013.

52. Ong, C. H. (2002). Observational equivalence of 3rd-order Idealized Algol is decidable. In Logic

in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on (pp. 245-256). IEEE.

53. Pitts, Andrew M. Nominal sets: Names and symmetry in computer science. Cambridge University

Press, 2013.

54. Plotkin, Gordon D. "LCF considered as a programming language." Theoretical computer science

5.3 (1977): 223-255.

55. Roscoe, Bill. "The theory and practice of concurrency." (1998). (http://www.cs.ox.ac.uk/people/

bill.roscoe/publications/68b.pdf)

56. Stewart, Gordon, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. "Compositional com-

pcert." ACM SIGPLAN Notices 50, no. 1 (2015): 275-287.

57. Tennent, Robert D. Semantics of programming languages. Vol. 199. No. 1. Hemel Hempstead:

Prentice-Hall, 1991.

58. Thomas, David B., Shane T. Fleming, George A. Constantinides, and Dan R. Ghica. "Transpar-

ent linking of compiled software and synthesized hardware." In Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition, pp. 1084-1089. EDA Consortium, 2015.

70

http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

	Introduction
	Denotational semantics
	Technical properties
	Reading list

	Game semantics

	Game semantics, an interaction semantics
	Arenas, plays, strategies
	Examples of strategies
	Arithmetic
	Non-determinism
	State
	Control

	Composing strategies
	Categories of games
	Associativity
	Identity

	Annotated further reading list

	Idealised Concurrent Algol
	Syntax
	Operational semantics
	Game semantics
	Model of the (applied) lambda calculus
	Examples

	Soundness, Adequacy, and Full Abstraction
	Examples

	Annotated further reading list
	Applications of game semantics

	Trace semantics, another interaction semantics
	Trace semantics
	Compositionality
	A system-level attack: violating secrecy
	Equivalence
	Annotated further reading

	References

