Implementing
the
Operator Formulation

Operator formulation of algorithms

e Active node/edge:

— site where computation is needed
e QOperator:

— local view of algorithm

— computation at active node/edge

— neighborhood: data structure elements
read and written by operator

e Schedule:
— global view of algorithm

— unordered algorithms:

e active nodes can be processed in any order

() : active node

e all schedules produce the same answer but T . neighborhood
performance may vary T

— ordered algorithms:

e problem-dependent order on active nodes

von Neumann programming model|

state
update]

initial final
state state

Program counter

State update: assignment statement
(local view)

Program
Execution

Schedule: control-flow constructs
(global view)

von Neumann bottleneck [Backus 79]

Data-centric programming model

Active nodes

State update: operator
(local view)

Program
Execution

Schedule: ordering between active nodes
(global view)

TAO terminology for algorithms

Structured (grid,clique,set,..)
Topology Semi-structured (tree)
Unstructured (general graph)

Topology-driven
Location .<
Data-driven

Algorithms ﬁztc';éi
Unordered
Ordering <
Ordered
Morph
Operator Label computation
Reader

e Active nodes

— Topology-driven algorithms
e Algorithm is executed in rounds
* Ineach round, all nodes/edges are initially active
* Iterate till convergence

— Data-driven algorithms
* Some nodes/edges initially active
* Applying operator to active node may create new active nodes
* Terminate when no more active nodes/edges in graph
* QOperator
— Morph: may change the graph structure by adding/removing nodes/edges
— Label computation: updates labels on nodes/edges w/o changing graph structure
— Reader: makes no modification to graph

Algorithms we have studied

Mesh generation
— Delaunay mesh refinement: data-driven, unordered

SSSP

— Chaotic relaxation: data-driven, unordered
— Dijkstra: data-driven, ordered

— Delta-stepping: data-driven, ordered

— Bellman-Ford: topology-driven, unordered

Machine learning

— Page-rank: topology-driven, unordered

— Matrix completion using SGD: topology-driven,
unordered

Computational science
— Stencil computations: topology-driven, unordered

Parallelization of

Delaunay mesh refinement

Before

After

e Each mutable data structure element (node,
triangle,..) has an ID and a mark

e What threads do:

nhoodElements € {}

Get active element from worklist, acquire its mark
and add element nhoodElements

Iteratively expand neighborhood, and for each data
structure element in neighborhood, acquire its mark
and add element to nHoodElement

When neighborhood expansion is complete, apply
operator

If there are newly created active elements, add
them to the worklist

Release marks of elements in nhoodElements set

If any mark acquisition fails, release marks of all
elements in nhoodElements and put active element
back on worklist

e Optimistic (speculative) parallelization

Parallelization of stencil computation

What threads do:

— there are no conflicts so
each thread just applies
operator to its active nodes

Good policy for assigning
active nodes to threads:

— divide grid into 2D blocks
and assign one block to

each thread M A1
— this promotes locality Jacobi iteration, 5-point stencil
Static parallelization: no
need for speculation //Jacobi iteration with 5-point stencil

//initialize array A
for time = 1, nsteps
for <i,j>in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
for <i,j>in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

Questions

 Why can we parallelize some algorithms
statically while other algorithms have to
parallelized at run time using optimistic
parallelization?

e Are there parallelization strategies other than
static and optimistic parallelization?

e What is the big picture?

Binding time

e Useful concept in programming languages

— When do you have the information you need to make some
decision?
e Example: type-checking
— Static type-checking: Java, ML

e type information is available in the program
e type correctness can be checked at compile-time

— Dynamic type-checking: Python, Matlab
* types of objects are known only during execution
e type correctness must be checked at runtime

e Binding time for parallelization
— When do we know the active nodes and neighborhoods?

Parallelization strategies: Binding Time

Compile-time - Static parallelization (stencil codes, FFT, dense linear algebra)

After input
is given

- Inspector-executor (sparse Cholesky,
Bellman-Ford)

During program
execution

- Interference graph (DMR, chaotic SSSP)

After program | gptimistic

is finished T payallelization (Time-warp)
\7

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011

Inspector-Executor

Figure out what can be done in parallel

— after input has been given, but

— before executing the actual algorithm
Useful for topology-driven algorithms on graphs

— algorithm is executed in many rounds

— overhead of preprocessing can be amortized over many rounds
Basic idea:

— determine neighborhoods at each node

— build interference graph

— use graph coloring to find sets of nodes that can be processed in parallel
without synchronization

Example:
— sparse Cholesky factorization
— we will use Bellman-Ford (in practice Bellman-Ford is implemented differently)

Inspector-Executor

A {A,B,C} A {A.B,C}

{E,G,H}

{D,C,B,E,F} G {D’C’B’E’F}

Neighborhoods of activities Interference graph

Inspector-Executor

1D}
{£,A}
{F}
1G,B}
11,0}

Neighborhoods of activities * Nodes in a set can be done in parallel
e Use barrier synchronization between sets

Graph representations:
how to store graphs in memory

Graph-matrix duality

Graph (V,E) as a matrix

— Choose an ordering of vertices

— Number them sequentially

— Fillin [V|x|V]| matrix 1

e A(i,j) is wif graph has edge from node i to
node j with label w

— Called adjacency matrix of graph
— Edge (u =2 v):
e Vvisout-neighbor of u
* uisin-neighbor of v
Observations:
— Diagonal entries: weights on self-loops

to
— Symmetric matrix €< -2 undirected \ 12345
h from

grap)

2

3

4

5

| | 0afoo
— Lower triangular matrix € -2 no edges

; 000cO
from lower numbered nodes to higher
000e0O
numbered nodes

ooood
— Dense matrix € -2 clique (edge 0b0Og
between every pair of nodes) L S

Sparse graphs

Terminology:

— Degree of node: number of edges connected to it

— (Average) diameter of graph: average number of
hops between two nodes

e Power-law graphs |
slide for example)
— low diameter

[
— small number of very high degree nodes (see next

“six degrees of separation” (Karinthy 1929, Milgram
1967), on Facebook, itis 4.74

Node degree distribution
— typical of social network graphs like the Internet of power-law graphs
graph or the Facebook graph
e Uniform-degree graphs

— nodes have roughly same degree
— high diameter

— road networks, IC circuits, finite-element meshes
e Random (Erdds-Renyi) graphs

— constructed by random insertion of edges

— mathematically interesting but few real-life
examples

Airline route map: power-law graph

Current Route Map @

-
\ Edmaonton
4 |
"u\ / W Saskatoon,
9{'\9:?. b b Wi

- A x 1
Kelawna .
fJJ

I,;" [Rgimal fhuns-jgyzx—ﬂ)

pﬂlﬂl’! %

/ 7R _ Dty - -Hwﬂhhorﬂhmclu {) l /J‘vﬂ“‘tﬁ{
PascaRichipndi M % I// 4 P
Rancalrcp - aluef __ — \ S/ [

FE A) g

“1,-;'...46" e T \, 'L._'—? !‘(J ”}’_ﬂ
5) ‘\-'l"‘-"& Torcato] - : /

| Wakeeon dagione | / o A
= roit _/ : / i
c‘riu_ﬂg_fi'”—"ﬂ \>
-\'\;‘7}3\ I', itz Pizina
Pmlnuruh
"/ [':;\\-F%\\’_.w!;smmm.uc
e

San Luls Oblspa,
Santa Mari
Sarta Barlara &

Unisad Rugienal Jet
Unibed Turse Pros <«
Sussonal

Tims Zanes

Pacific - § Alantic

N3
{ Cenral

e r i NoOK

UNITED =
EXPRESS

Road map: uniform-degree graph

i 5

3

Three storage formats:CSR,CSC,COO0O

Coordinate storage
1 2 4 5 3 1 2 3 4

2 4 6 6 5 3 3 2
16 12 20 4 15 13 10 4 9

12 *C‘D\ Cumpressed SPIZITSE row
“’\/Tm o ||
7

s \)/ | +7 d 23342536460
i,
u-GY ai 16131012 4 14 9 20 7 4
0
0

(0 16 13 0 0 Compressed sparse column

&) T J cp | IR IR R A |

0 4 0 0 14 1) 1

00 9 0 0 20 L) \\\j«aﬂ
0 0 0 7 0 4 ri 0N S T A e Sl S RS (7
0 0 0 0 0 0 ai [Ig 4 13 19 1 b) S

Labels on nodes are stored in a separate vector (not shown)

Adjacency list representation

|
o
i
M
s
.|”—|

Head
(an arrayof
pointers)

Adjacency List Representation of Graph
From: https://www.thecrazyprogrammer.com

Permits you to add and remove edges from graph
Deleting edges: often it is more efficient to just to mark an edge as deleted
rather than delete it physically from the list

Graph sizes

268M 1073M 978M 3,563M
IE| 4B 118 428 1298
IEI/|V] 16 16 44 36

Size (CSR) 35GB 136GB 325GB 986GB

Shared-memory Galois System

Galois system

Parallel program = Operator + Schedule + Parallel data structures

e Ubiquitous parallelism:

— small number of expert
programmers (Stephanies) must
support large number of
application programmers (Joes)

— cf. SQL

e Galois system:

— Stephanie: library of concurrent
data structures and runtime
system

— Joe: application code in
sequential C++

* Galois set iterator for highlighting
opportunities for exploiting ADP

Hello graph Galois Program

#include “Galois/Galois.h”
#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph; Data structure
typedef Galois::Graph::GraphNode Node; < Declarations
Graph graph;
struct P {

void operator()(Node n, Galois::UserContext<Node>& ctx) { < Operator

graph.getData(n).value +=1;

}

2

int main(int argc, char** argv) {
graph.structureFromGraph(argv[1]);
Galois::for_each(graph.begin(), graph.end(), P()); <
return O;

}

Galois Iterator

25

Parallel execution of Galois programs

e Application (Joe) program Application Program
— Sequential C++ Master thread
_ _ main()
— Galois set iterator: for each
* New elements can be added for each{

to set during iteraton |

e Optional scheduling | ...
specification (cf. OpenMP)

e Highlights opportunitiesin |
program for exploiting
amorphous data-parallelism

* Runtime system

— Ensures serializability of
iterations

— Execution strategies

Workset

of active nodes
e Optimistic parallelization

* Interference graphs Graph Concurrent
data structures s

PERFORMANCE STUDIES

Galois vs. Graph Frameworks

Intel Study

@ Combblas B Graphlab = Native [l Combblas @ Graphlab

B Native

Giraph & Galois

[Socialite

Galois

M Giraph

M Socialite

10

DRURRNNNNNNNNY

SIS LIS SILIIIISIISIISSIIISY,
QNN

ALY
ANNNNNNY
R

AL A SIS SIS SIS,

00
10
1
0

—

!
)

0.01

J139YIUAS

eipadjim

v }00Qa2e

leusnolann

21319YIUAS

eipadnim

}00Qga2e4

|eudnolaAI

(spuo2as) uoneusanl Jad swiy

(b) Breadth-First Search

(a) PageRank

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014

Galois: Performance on SGI Ultraviolet

512
480 barnes-hut
delaunay mesh refinem App | Implementation | Threads | Time (s)
448 delaunay triangulat. triangle 1 06
416 betweenness central: dor | Galois ! 155.7
triandg Galois 512 0.37
384 d. triangle 1 1185
dt (salois 1 56.6
352 (Galois 512 0.18
320 splash2 1 =6000
m bh (zalois 1 1386
- 288 Galois 512 3.55
S 056 HPCS SSCA | 1 6720
iy bc Galois 1 5394
O 224 Galois 512 21.6
ol graphlab 2 531
192 P tri | Galois 1 7.03
160 / Galois 512 0.028
128 : Table 2: Serial runtime comparisons to other imple-
/ mentations rounded to the nearest second. Included
96 are runtimes for Galois algorithms at 512 threads.
64 The splash2 implementation of bh timed out after
100 minutes.
32
0

128 192 256 320 384 448 512
Threads

0 04

FPGA Tools

Maze Router Execution Time

B vPR50 [Galois B Galois [Galois [[] Galois
(Baseline) (1 Thread) (2 Threads) (4 Threads) (8 Threads)

(s) Deterministic Scheduler (s) Non-Deterministic Scheduler
450 - 450
300 300
, Mo ,i]::,Ii]:, O 0 1

-5‘5\ & & a@‘ g_;'l..- & I:}.!f: N & F {ba :}? &P é}k v e &£ F & -9.5'-" g2
a7 ,b-zf'-‘? b-zfﬁ“? i\-zfp ’m\b _@"QL .:;-"E? g ﬁ)}ﬁ .:_'DQQL 1:1-‘."'b > f“& bz"“?{;‘.:‘{v bﬁ% ,ﬁf@i‘ -@'SEL 3;""?} & '?953
N & & & & &’ S

Averages VPRS5.0 134 6 seconds VPR 5.0 1346 seconds

Galois (1 Thread) 162.4 seconds Galois (1 Thread) 145.3 seconds

Galois (2 Threads) 106.6 seconds Galois (2 Threads) 88.8 seconds

Galois (4 Threads) 592 seconds Galois (4 Threads) 43.0 seconds

Galois (8 Threads) 33.7 seconds Galois (8 Threads) 22.6 seconds

Moctar & Brisk, “Parallel FPGA Routing based on the Operator Formulation”
DAC 2014

Summary

e Finding parallelism in programs

— binding time: when do you know the active nodes
and neighborhoods

— range of possibilities from static to optimistic

— optimistic parallelization can be used for all
algorithms but in general, early binding is better

e Shared-memory Galois implements some of
these parallelization strategies

— focus: irregular programs

	Implementing �the�Operator Formulation�
	Operator formulation of algorithms
	von Neumann programming model
	Data-centric programming model
	TAO terminology for algorithms
	Algorithms we have studied
	Parallelization of �Delaunay mesh refinement
	Parallelization of stencil computation
	Questions
	Binding time
	Parallelization strategies: Binding Time
	Inspector-Executor
	Inspector-Executor
	Inspector-Executor
	Graph representations:�how to store graphs in memory
	Graph-matrix duality
	Sparse graphs
	Airline route map: power-law graph
	Road map: uniform-degree graph
	Three storage formats:CSR,CSC,COO
	Adjacency list representation
	Graph sizes
	Shared-memory Galois System
	Galois system
	Hello graph Galois Program
	Parallel execution of Galois programs
	Performance Studies
	Galois vs Other Graph Frameworks
	Galois: Performance on SGI Ultraviolet
	FPGA Tools
	Summary

