
Implementing
the

Operator Formulation

Operator formulation of algorithms

• Active node/edge:
– site where computation is needed

• Operator:
– local view of algorithm
– computation at active node/edge
– neighborhood: data structure elements

read and written by operator

• Schedule:
– global view of algorithm
– unordered algorithms:

• active nodes can be processed in any order
• all schedules produce the same answer but

performance may vary

– ordered algorithms:
• problem-dependent order on active nodes

: active node

: neighborhood

von Neumann programming model

……….

initial
state

final
state

state
update

Program
Execution

State update: assignment statement
(local view)

Schedule: control-flow constructs
(global view)

von Neumann bottleneck [Backus 79]

Program counter

what

Data-centric programming model

Program
Execution

State update: operator
(local view)

Schedule: ordering between active nodes
(global view)

Active nodes

what

…..state
update

TAO terminology for algorithms

• Active nodes
– Topology-driven algorithms

• Algorithm is executed in rounds
• In each round, all nodes/edges are initially active
• Iterate till convergence

– Data-driven algorithms
• Some nodes/edges initially active
• Applying operator to active node may create new active nodes
• Terminate when no more active nodes/edges in graph

• Operator
– Morph: may change the graph structure by adding/removing nodes/edges
– Label computation: updates labels on nodes/edges w/o changing graph structure
– Reader: makes no modification to graph

Label computation

Algorithms we have studied
• Mesh generation

– Delaunay mesh refinement: data-driven, unordered
• SSSP

– Chaotic relaxation: data-driven, unordered
– Dijkstra: data-driven, ordered
– Delta-stepping: data-driven, ordered
– Bellman-Ford: topology-driven, unordered

• Machine learning
– Page-rank: topology-driven, unordered
– Matrix completion using SGD: topology-driven,

unordered
• Computational science

– Stencil computations: topology-driven, unordered

Parallelization of
Delaunay mesh refinement

• Each mutable data structure element (node,
triangle,..) has an ID and a mark

• What threads do:
– nhoodElements {}
– Get active element from worklist, acquire its mark

and add element nhoodElements
– Iteratively expand neighborhood, and for each data

structure element in neighborhood, acquire its mark
and add element to nHoodElement

– When neighborhood expansion is complete, apply
operator

– If there are newly created active elements, add
them to the worklist

– Release marks of elements in nhoodElements set
– If any mark acquisition fails, release marks of all

elements in nhoodElements and put active element
back on worklist

• Optimistic (speculative) parallelization

Parallelization of stencil computation

Jacobi iteration, 5-point stencil

At At+1

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps

for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

• What threads do:
– there are no conflicts so

each thread just applies
operator to its active nodes

• Good policy for assigning
active nodes to threads:
– divide grid into 2D blocks

and assign one block to
each thread

– this promotes locality
• Static parallelization: no

need for speculation

Questions

• Why can we parallelize some algorithms
statically while other algorithms have to
parallelized at run time using optimistic
parallelization?

• Are there parallelization strategies other than
static and optimistic parallelization?

• What is the big picture?

Binding time

• Useful concept in programming languages
– When do you have the information you need to make some

decision?
• Example: type-checking

– Static type-checking: Java, ML
• type information is available in the program
• type correctness can be checked at compile-time

– Dynamic type-checking: Python, Matlab
• types of objects are known only during execution
• type correctness must be checked at runtime

• Binding time for parallelization
– When do we know the active nodes and neighborhoods?

Parallelization strategies: Binding Time

Optimistic
Parallelization (Time-warp)

Interference graph (DMR, chaotic SSSP)

Inspector-executor (sparse Cholesky,
Bellman-Ford)

Static parallelization (stencil codes, FFT, dense linear algebra)Compile-time

After input
is given

During program
execution

After program
is finished

1

2

3

4

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011

Inspector-Executor
• Figure out what can be done in parallel

– after input has been given, but
– before executing the actual algorithm

• Useful for topology-driven algorithms on graphs
– algorithm is executed in many rounds
– overhead of preprocessing can be amortized over many rounds

• Basic idea:
– determine neighborhoods at each node
– build interference graph
– use graph coloring to find sets of nodes that can be processed in parallel

without synchronization
• Example:

– sparse Cholesky factorization
– we will use Bellman-Ford (in practice Bellman-Ford is implemented differently)

Inspector-Executor

A

B

C
D

E

F
H

{A,B,C}

{B,A,D}

{D,C,B,E,F}

{E,D,G,H}

G

{F,D,H}

Neighborhoods of activities

{C,A,D}

{E,G,H}

A

B

C
D

E

F
H

{A,B,C}

{B,A,D}

{D,C,B,E,F}

{E,D,G,H}

G

{F,D,H}

{C,A,D}

{E,G,H}

Interference graph

Inspector-Executor

A

B

C
D

E

F
H

G

Neighborhoods of activities

{D}
{E,A}
{F}
{G,B}
{H,C}

• Nodes in a set can be done in parallel
• Use barrier synchronization between sets

Graph representations:
how to store graphs in memory

Graph-matrix duality
• Graph (V,E) as a matrix

– Choose an ordering of vertices
– Number them sequentially
– Fill in |V|x|V| matrix

• A(i,j) is w if graph has edge from node i to
node j with label w

– Called adjacency matrix of graph
– Edge (u  v):

• v is out-neighbor of u
• u is in-neighbor of v

• Observations:
– Diagonal entries: weights on self-loops
– Symmetric matrix  undirected

graph
– Lower triangular matrix  no edges

from lower numbered nodes to higher
numbered nodes

– Dense matrix  clique (edge
between every pair of nodes)

1

2

3

4
5

a

bc

d
e

f

g

0 a f 0 0
0 0 0 c 0
0 0 0 e 0
0 0 0 0 d
0 b 0 0 g

1
2
3
4
5

1 2 3 4 5
from

to

Sparse graphs
• Terminology:

– Degree of node: number of edges connected to it
– (Average) diameter of graph: average number of

hops between two nodes
• Power-law graphs

– small number of very high degree nodes (see next
slide for example)

– low diameter
• “six degrees of separation” (Karinthy 1929, Milgram

1967), on Facebook, it is 4.74
– typical of social network graphs like the Internet

graph or the Facebook graph
• Uniform-degree graphs

– nodes have roughly same degree
– high diameter
– road networks, IC circuits, finite-element meshes

• Random (Erdӧs-Rènyi) graphs
– constructed by random insertion of edges
– mathematically interesting but few real-life

examples

Node degree distribution
of power-law graphs

Airline route map: power-law graph

Road map: uniform-degree graph

Three storage formats:CSR,CSC,COO

1 2 4 5 3 1 2 3 4 5

2 4 6 6 5 3 3 2 3 4

16 12 20 4 15 13 10 4 9 7

Coordinate storage

Labels on nodes are stored in a separate vector (not shown)

Adjacency list representation

Permits you to add and remove edges from graph
Deleting edges: often it is more efficient to just to mark an edge as deleted

rather than delete it physically from the list

From: https://www.thecrazyprogrammer.com

Graph sizes

Inputs rmat28 kron30 clueweb12 wdc12

|V| 268M 1073M 978M 3,563M

|E| 4B 11B 42B 129B

|E|/|V| 16 16 44 36

Size (CSR) 35GB 136GB 325GB 986GB

Shared-memory Galois System

Galois system

• Ubiquitous parallelism:
– small number of expert

programmers (Stephanies) must
support large number of
application programmers (Joes)

– cf. SQL

• Galois system:
– Stephanie: library of concurrent

data structures and runtime
system

– Joe: application code in
sequential C++

• Galois set iterator for highlighting
opportunities for exploiting ADP

Parallel program = Operator + Schedule + Parallel data structures

Joe: Operator + Schedule

Stephanie: Parallel data structures
and runtime system

Hello graph Galois Program
#include “Galois/Galois.h”
#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph;
typedef Galois::Graph::GraphNode Node;

Graph graph;

struct P {
void operator()(Node n, Galois::UserContext<Node>& ctx) {
graph.getData(n).value += 1;

}
};

int main(int argc, char** argv) {
graph.structureFromGraph(argv[1]);
Galois::for_each(graph.begin(), graph.end(), P());
return 0;

}

25

Data structure
Declarations

Galois Iterator

Operator

Parallel execution of Galois programs

26

Concurrent
data structures

main()
….
for each …..{
…….
…….
}
.....

Master thread
Application Program

i1

i2

i3

i4

i5

• Application (Joe) program
– Sequential C++
– Galois set iterator: for each

• New elements can be added
to set during iteration

• Optional scheduling
specification (cf. OpenMP)

• Highlights opportunities in
program for exploiting
amorphous data-parallelism

• Runtime system
– Ensures serializability of

iterations
– Execution strategies

• Optimistic parallelization
• Interference graphs

Workset
of active nodes

Graph

PERFORMANCE STUDIES

Galois vs Other Graph Frameworks

Intel Study: Galois vs. Graph Frameworks

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014

Galois: Performance on SGI Ultraviolet

FPGA Tools

Moctar & Brisk, “Parallel FPGA Routing based on the Operator Formulation”
DAC 2014

Summary

• Finding parallelism in programs
– binding time: when do you know the active nodes

and neighborhoods
– range of possibilities from static to optimistic
– optimistic parallelization can be used for all

algorithms but in general, early binding is better

• Shared-memory Galois implements some of
these parallelization strategies
– focus: irregular programs

	Implementing �the�Operator Formulation�
	Operator formulation of algorithms
	von Neumann programming model
	Data-centric programming model
	TAO terminology for algorithms
	Algorithms we have studied
	Parallelization of �Delaunay mesh refinement
	Parallelization of stencil computation
	Questions
	Binding time
	Parallelization strategies: Binding Time
	Inspector-Executor
	Inspector-Executor
	Inspector-Executor
	Graph representations:�how to store graphs in memory
	Graph-matrix duality
	Sparse graphs
	Airline route map: power-law graph
	Road map: uniform-degree graph
	Three storage formats:CSR,CSC,COO
	Adjacency list representation
	Graph sizes
	Shared-memory Galois System
	Galois system
	Hello graph Galois Program
	Parallel execution of Galois programs
	Performance Studies
	Galois vs Other Graph Frameworks
	Galois: Performance on SGI Ultraviolet
	FPGA Tools
	Summary

