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Operator formulation of algorithms

• Active node/edge: 
– site where computation is needed

• Operator:
– local view of algorithm
– computation at active node/edge
– neighborhood: data structure elements 

read and written by operator

• Schedule: 
– global view of algorithm
– unordered algorithms: 

• active nodes can be processed in any order
• all schedules produce the same answer but 

performance may vary

– ordered algorithms: 
• problem-dependent order on active nodes

: active node

: neighborhood



von Neumann programming model
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Data-centric programming model
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TAO terminology for algorithms

• Active nodes
– Topology-driven algorithms

• Algorithm is executed in rounds
• In each round, all nodes/edges are initially active
• Iterate till convergence

– Data-driven algorithms
• Some nodes/edges initially active
• Applying operator to active node may create new active nodes
• Terminate when no more active nodes/edges in graph

• Operator
– Morph: may change the graph structure by adding/removing nodes/edges
– Label computation: updates labels on nodes/edges w/o changing graph structure
– Reader: makes no modification to graph

Label computation



Algorithms we have studied
• Mesh generation

– Delaunay mesh refinement: data-driven, unordered
• SSSP

– Chaotic relaxation: data-driven, unordered
– Dijkstra: data-driven, ordered
– Delta-stepping: data-driven, ordered
– Bellman-Ford: topology-driven, unordered

• Machine learning
– Page-rank: topology-driven, unordered
– Matrix completion using SGD: topology-driven, 

unordered
• Computational science

– Stencil computations: topology-driven, unordered



Parallelization of 
Delaunay mesh refinement

• Each mutable data structure element (node, 
triangle,..) has an ID and a mark 

• What threads do:
– nhoodElements {}
– Get active element from worklist, acquire its mark 

and add element nhoodElements
– Iteratively expand neighborhood, and for each data 

structure element in neighborhood, acquire its mark 
and add element to nHoodElement

– When neighborhood expansion is complete, apply 
operator

– If there are newly created active elements, add 
them to the worklist

– Release marks of elements in nhoodElements set
– If any mark acquisition fails, release marks of all 

elements in nhoodElements and put active element 
back on worklist

• Optimistic (speculative) parallelization



Parallelization of stencil computation

Jacobi iteration, 5-point stencil

At At+1

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps

for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

• What threads do:
– there are no conflicts so 

each thread just applies 
operator to its active nodes

• Good  policy for assigning 
active nodes to threads:
– divide grid into 2D blocks 

and assign one block to 
each thread

– this promotes locality
• Static parallelization: no 

need for speculation



Questions

• Why can we parallelize some algorithms 
statically while other algorithms have to 
parallelized at run time using optimistic 
parallelization?

• Are there parallelization strategies other than 
static and optimistic parallelization?

• What is the big picture?



Binding time

• Useful concept in programming languages
– When do you have the information you need to make some 

decision?
• Example: type-checking

– Static type-checking: Java, ML
• type information is available in the program
• type correctness can be checked at compile-time

– Dynamic type-checking: Python, Matlab
• types of objects are known only during execution
• type correctness must be checked at runtime

• Binding time for parallelization
– When do we know the active nodes and neighborhoods?



Parallelization strategies: Binding Time

Optimistic
Parallelization    (Time-warp)

Interference graph (DMR, chaotic SSSP)

Inspector-executor (sparse Cholesky,
Bellman-Ford)

Static parallelization   (stencil codes, FFT, dense linear algebra)Compile-time

After input
is given

During program
execution

After program 
is finished
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2
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4

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011



Inspector-Executor
• Figure out what can be done in parallel 

– after input has been given, but
– before executing the actual algorithm

• Useful for topology-driven algorithms on graphs
– algorithm is executed in many rounds
– overhead of preprocessing can be amortized over many rounds

• Basic idea:
– determine neighborhoods at each node
– build interference graph
– use graph coloring to find sets of nodes that can be processed in parallel 

without synchronization
• Example:

– sparse Cholesky factorization
– we will use Bellman-Ford (in practice Bellman-Ford is implemented differently)



Inspector-Executor
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Inspector-Executor
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• Nodes in a set can be done in parallel
• Use barrier synchronization between sets



Graph representations:
how to store graphs in memory



Graph-matrix duality
• Graph (V,E) as a matrix

– Choose an ordering of vertices
– Number them sequentially
– Fill in |V|x|V| matrix

• A(i,j) is w if graph has edge from node i to 
node j with label w

– Called adjacency matrix of graph
– Edge (u  v): 

• v is out-neighbor of u
• u is in-neighbor of v

• Observations:
– Diagonal entries: weights on self-loops
– Symmetric matrix  undirected 

graph
– Lower triangular matrix  no edges 

from lower numbered nodes to higher 
numbered nodes

– Dense matrix  clique (edge 
between every pair of nodes)
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Sparse graphs
• Terminology:

– Degree of node: number of edges connected to it
– (Average) diameter of graph: average number of 

hops between two nodes
• Power-law graphs

– small number of very high degree nodes (see next 
slide for example)

– low diameter 
• “six degrees of separation” (Karinthy 1929, Milgram 

1967), on Facebook, it is 4.74
– typical of social network graphs like the Internet 

graph or the Facebook graph
• Uniform-degree graphs

– nodes have roughly same degree
– high diameter
– road networks, IC circuits, finite-element meshes 

• Random (Erdӧs-Rènyi) graphs
– constructed by random insertion of edges
– mathematically interesting but few real-life 

examples

Node degree distribution
of power-law graphs



Airline route map: power-law  graph



Road map: uniform-degree graph



Three storage formats:CSR,CSC,COO

1 2 4 5 3 1 2 3 4 5

2 4 6 6 5 3 3 2 3 4

16 12 20 4 15 13 10 4 9 7

Coordinate storage

Labels on nodes are stored in a separate vector (not shown)



Adjacency list representation

Permits you to add and remove edges from graph
Deleting edges: often it is more efficient to just to mark an edge as deleted

rather than delete it physically from the list

From: https://www.thecrazyprogrammer.com



Graph sizes

Inputs rmat28 kron30 clueweb12 wdc12

|V| 268M 1073M 978M 3,563M

|E| 4B 11B 42B 129B

|E|/|V| 16 16 44 36

Size (CSR) 35GB 136GB 325GB 986GB



Shared-memory Galois System



Galois system

• Ubiquitous parallelism:
– small number of expert 

programmers (Stephanies) must 
support  large number of 
application programmers (Joes)

– cf. SQL

• Galois system:
– Stephanie: library of concurrent 

data structures and runtime 
system

– Joe: application code in 
sequential C++

• Galois set iterator for highlighting 
opportunities for exploiting ADP

Parallel program = Operator + Schedule + Parallel data structures

Joe: Operator + Schedule

Stephanie: Parallel data structures
and runtime system



Hello graph Galois Program
#include “Galois/Galois.h”
#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph;
typedef Galois::Graph::GraphNode Node;

Graph graph;

struct P {
void operator()(Node n, Galois::UserContext<Node>& ctx) {
graph.getData(n).value += 1;

}
};

int main(int argc, char** argv) {
graph.structureFromGraph(argv[1]);
Galois::for_each(graph.begin(), graph.end(), P());
return 0;

}

25

Data structure
Declarations

Galois Iterator

Operator



Parallel execution of Galois programs

26

Concurrent 
data structures

main()
….
for each …..{
…….
…….
}
.....

Master thread
Application Program

i1

i2
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i5

• Application (Joe) program
– Sequential C++
– Galois set iterator: for each

• New elements can be added 
to set during iteration

• Optional scheduling 
specification (cf. OpenMP)

• Highlights opportunities in 
program for exploiting 
amorphous data-parallelism

• Runtime system
– Ensures serializability of 

iterations
– Execution strategies

• Optimistic parallelization
• Interference graphs

Workset
of active nodes

Graph



PERFORMANCE STUDIES



Galois vs Other Graph Frameworks

Intel Study: Galois vs. Graph Frameworks

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014



Galois: Performance on SGI Ultraviolet



FPGA Tools

Moctar & Brisk,  “Parallel FPGA Routing based on the Operator Formulation” 
DAC 2014



Summary

• Finding parallelism in programs
– binding time: when do you know the active nodes 

and neighborhoods
– range of possibilities from static to optimistic
– optimistic parallelization can be used for all 

algorithms but in general, early binding is better

• Shared-memory Galois implements some of 
these parallelization strategies
– focus: irregular programs
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