Secure Compilation
Lecture 2
Closure Conversion

Renate Robin Eilers Cristina Matache Baber Rehman

June 24, 2019

This is the second talk presented by Amal Ahmed in OPLSS 2019, University of Oregon, USA.

1 Source Language

Types We just have integers and function in source language.

$$\sigma ::= \text{int} \mid \sigma_1 \rightarrow \sigma_2$$

Terms

$$v ::= x \mid n \mid \lambda x : \sigma. e$$

$$e ::= v \mid \text{if} 0 v e_1 e_2 \mid v_1 v_2 \mid \text{let} \; x = e_1 \text{ in } e_2$$

So $e_1 \; e_2$ is a shorthand for $\text{let} \; x = e_1 \text{ in } \text{let} \; y = e_2 \text{ in } x \; y$.

Evaluation contexts:

$$E ::= [\cdot] \mid \text{let} \; x = E \text{ in } e_2$$

The language has a typing judgement $\Gamma \vdash e : \sigma$ and a small-step call-by-value operational semantics $e \rightarrow e'$.

2 Target Language

Types and terms

$$\tau ::= \text{int} \mid (\tau_1, \ldots, \tau_n) \rightarrow \tau' \mid \{\tau_1, \ldots, \tau_n\} \mid \alpha \mid \exists \alpha. \tau$$

$$v ::= x \mid n \mid \lambda (\tau_1, \ldots, \tau_n). e \mid \langle v_1, \ldots, v_n \rangle \mid \text{pack}(\tau, v) \text{ as } \exists \alpha. \tau$$

$$e ::= v \mid \text{if} 0 v e_1 e_2 \mid v_1 (\overrightarrow{v}) \mid \pi_i v \mid \text{unpack}(\alpha, x) = v \text{ in } e_1 \mid \text{let} \; x = e_1 \text{ in } e_2$$
Typing contexts:

\[\Delta ::= \cdot \mid \Delta, \alpha \]
\[\Gamma ::= \cdot \mid \Gamma, x : \tau \]

Typing judgements: \[\Delta, \Gamma \vdash e : \tau \]
To do closure conversion, we want functions to have a closed body:

\[\Delta \vdash x : \tau \]
\[\Delta ; \Gamma \vdash \lambda (x : \tau). e : (\tau' \to \tau) \]
\[\Delta ; \Gamma \vdash v : \tau[\tau'/\alpha] \]
\[\Delta ; \Gamma \vdash \text{pack}(\tau', v) \text{ as } \exists \alpha. \tau : \exists \alpha. \tau \]

Example 1. A term of type \(\exists \alpha. \alpha \times (\alpha \to \text{int}) \) is:

\[w = \text{pack}(\text{bool}, (\text{true}, \lambda x : \text{bool}.5)) \text{ as } \exists \alpha. \alpha \times (\alpha \to \text{int}) \]

\[\Delta; \Gamma \vdash v : \exists \alpha. \tau \]
\[\Delta, \alpha; \Gamma, x : \tau \vdash e_2 : \tau_2 \]
\[\Delta \vdash \tau_2 \]
\[\Delta; \Gamma \vdash \text{unpack}(\alpha, x) = v \text{ in } e_2 : \tau_2 \]

In the rule above \(\alpha \) is not allowed to appear in \(\tau_2 \).

Example 2. A well-typed term is:

\[\text{unpack}(\alpha, x) = w \text{ in } (\pi_2 x) (\pi_1 x) \]

where \(w \) is defined as in the previous example.

3 Translation

Translation of types: \(\sigma^+ \)

\[\text{int}_S^+ = \text{int}_T \]
\[(\sigma_1 \to \sigma_2)^+ = \exists \alpha_{\text{env}}. ((\alpha_{\text{env}}, \sigma_1^+ \to \sigma_2^+), \alpha_{\text{env}}) \]

Typing context translation: \(\Gamma_S^+ \)

\[()^+ = \cdot \]
\[(\Gamma_S, x_S : \sigma)^+ = \Gamma_S^+, x_T : \sigma^+ \]
Term translation: \(\Gamma_S \vdash e_S : \sigma \rightsquigarrow e_T \) where \(\cdot \vdash e_T : \sigma^+ \)

\[
\begin{align*}
\Gamma_S(x_S) & = \sigma \\
\Gamma_S \vdash x_S : \sigma \rightsquigarrow x_T \\
\Gamma_S \vdash n_S : \text{int}_S \rightsquigarrow n_T \\
y_{S_1}, \ldots, y_{S_n} & = \text{free variables}(\lambda x_S : \sigma. e_S) \\
v_{\text{code}} & = \lambda(x_T : (\sigma^+_1, \ldots, \sigma^+_n)) . e_T[(\pi_i z)/y_T_i] \\
\Gamma_S \vdash \lambda x_S : \sigma. e_S : \sigma \rightarrow \sigma' \rightsquigarrow \text{pack}(\langle \sigma^+_1, \ldots, \sigma^+_n \rangle, \langle v_{\text{code}}, (y_{T_1}, \ldots, y_{T_n}) \rangle) \text{ as } (\sigma \rightarrow \sigma')^+ \\
\end{align*}
\]

where \(e_T[(\pi_i z)/y_T_i] \) is a shorthand for

\[
\begin{align*}
\text{let } y_{T_1} = \pi_1 z \text{ in } \ldots \text{let } y_{T_n} = \pi_n z \text{ in } e_T \\
\Gamma_S \vdash v_{S_1} : \sigma_2 \rightsquigarrow v_{T_2} \\
\Gamma_S \vdash v_{S_1} : \sigma \rightsquigarrow v_{T_1} \\
\Gamma_S \vdash v_{S_1}, v_{S_2} : \sigma \rightsquigarrow \text{unpack}(\alpha, p) = v_{T_1} \text{ in } (\pi_1 p, (\pi_2 p, v_{T_2}))
\end{align*}
\]

The rules for \textbf{if} and \textbf{let} are defined according to the structure of the terms.

4 Preservation Theorem

Theorem 4.1 (Type Preservation). If \(\Gamma \vdash e_S : \sigma \) and \(\Gamma \vdash e_S : \alpha \rightsquigarrow e_T \) then \(\Gamma^+_S \vdash e_T : \sigma^+ \)

For correctness, we want to show \(e_S \approx e_T \). This is not contextual equivalence because source language and target language are two different languages. There are many ways to prove compiler correction. We want to say that:

\[
\text{when } e_S \approx e_T \text{ then } \sigma \approx \sigma^+
\]

5 Logical Relations

In logical relations we map related input to related outputs. Same source value and target value are related.

Values \(V[\sigma] = \{(v_S, v_T) | \cdot \vdash v_S : \sigma \wedge \cdot \vdash v_T : \sigma^+ \ldots \} \)

Integers \(V[\text{ints}] = \{(n_S, n_T)\} \)

Function \(V[\sigma_1 \rightarrow \sigma_2] = \{(\lambda x : \sigma_1 . e_S \text{ pack } (\tau_{\text{env}}, (\lambda (Z : T . x_T : \sigma^+_1) . e_T, V_{\text{env}})) \mid \forall (v_S, v_T) E V[\sigma_1] . (e_S[v_S/x_S], e_T [v_{\text{env}}/Z, v_T/x_T]) \in E[\sigma_2]\} \)

3
Typing Judgement \[E[\sigma] = \{(e_S, e_T) : \vdash e_S : \sigma \land \vdash e_T : \sigma^+ \land \forall v_S \cdot e_S \rightarrow^* v_S \Rightarrow \exists v_T \cdot e_T \rightarrow^* v_T \} \]

Target language behaviour is shown in source language.

Definition 5.0.1. \[\Gamma_S \vdash e_S \approx e_T : \sigma = \Gamma_S \vdash e_S : \sigma \land \cdot \vdash e_T : \sigma^+ \land \forall (\gamma_S, \gamma_T) \in G[\sigma] \cdot (\gamma_S(e_S), \gamma_T(e_T)) \in E[\sigma]. \]

\(S \) and \(T \) are like holes in expression. They are not complete program. This is like substitution and linking. It will be combined with other code.

\[\gamma_S = \{ x_S \mapsto v_S \} \]
\[\gamma_T = \{ x_T \mapsto v_T \} \]

\[G[\cdot] = \{ \phi \cdot \phi \} \]
\[G[x_S : \sigma] = \{ (\gamma_S[x_S \mapsto v_S], \gamma_T[x_T \mapsto v_T]) \mid (\gamma_S, \gamma_T) \in G[x_S : \sigma] \land (v_S, v_T) \in V[\sigma] \} \]

Theorem 5.1 (Compiler Correctness). If \(\Gamma_S \vdash e_S : \sigma \Rightarrow e_T \) then \(\Gamma \vdash e_S \approx e_T : \sigma. \)

Proof. This theorem can be proved by induction on typing derivation of source language. It can be proved just by unfolding the definitions. \(\square \)

Lemma 5.2 (Fundamental Property). \(\Gamma \vdash e_S : \sigma \Rightarrow \Gamma \vdash e_S \approx e_T : \sigma \)