
Security-typed Languages Lecture 1

Farzaneh Derakhshan, Tao Gu, Aditya Oak

18 June 2019

1 Information Flow: Brief History

It turns out that strong typing and dependent types are not enough for prevent-
ing undefined behaviours. Meltdown attack is an example of such behaviour:

try{
i:=secret //will generate exception.
a=M[i] //load address into cache
} catch(illegal read){
for j in 0 ... n {
· · · //time access to M[j]} }

In the above example, OS read protection is broken and the attacker can read
the Kernel. Specs are almost always nondeterministic and the implementation
may refine them. Attackers can use this to create correlation between secrets
and time and access the secrets. Attack examples such as Meltdown, Spectre,
and Foreshadow suggest that we need a more expressive specification of informa-
tion flow. In particular, we need that that the contents of inaccessible memory
do not affect execution time.
In this rest of this section we briefly introduce the history of information flow:

• Lampson, 1971: “A Note on the confinement problem.”
Lampson explored the problem of information leak and discussed that
conventional means are not enough to avoid that. They also introduced a
category of covert channels as those that are not intended for information
transfer at all, including the service program’s effect on the system load.

• Bell, Lopadula, 1976: “Secure Computer System: Unified exposition
and multics interpretation.”
They introduced a computing system with different security levels: public,
confidential, secret, and top secret. The rule is that no read up and (more
controversially) no write down can happen on the more secret level. For
example, information can flow from a public level to the a confidential
level, but not the other way around.

1

• Denning, 1976: “A lattice model of secure information flow.”
Denning recognised that mathematical structure of lattices is similar to the
relation of policies. Using this observation they built a lattice of policies:
For example above policy levels form lattice

public v confidential v secret v top-secret:

We can also incorporate the subject of a secret data in lattice

(secret, {nuclear}) v (secret; {nuclear; terror})

• Denning and Denning, 1977: “Certification of Programs for Secure
Information Flow.”
They used static analysis on programs to verify flow on the respective
lattice

• Biba : “Integrity considerations for secure computer systems.”
They explained how integrity of information is affected by flow. Trusted
information is of higher integrity, so the flow of information is always from
trusted information to untrusted information. But, we have trusted information v
untrusted information. This depicts a duality between trusted and confi-
dentiality.

2 IMP: syntax and rules

In this section, we introduce a language IMP, and some deduction rules which
reason about the information flow in IMP programs.

2.1 Syntax

AExp a ::= x | n | a1 ⊕ a2

BExp b ::= true | false | b1 ∧ b2 | a1 = a2

Command c ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c

Here x ∈ Var, n ∈ N, ∧ . AExp, BExp and Command are respectively arithmetic
expressions, boolean expressions, and commands. As for the operators, ∧ stands
for conjunction, = stands for equivalence, x := a is value assignment.

Let L be a lattice with a specific bottom element ⊥. The join and meet in
L are t and u. Relation v is the normal partial order on lattice, defined as
‘1 v ‘2 ⇐⇒ ‘1 t ‘2 = ‘2. If ‘1 v ‘2, then we say “‘1 is lower than ‘2” or “‘2

is higher than ‘1”. Elements in L are called labels.

De�nition 1. The judgements are of the following three forms:

` a : ‘ ` b : ‘ pc ` c

2

where a ∈ AExp, b ∈ BExp, c ∈ Command, and pc; ‘ ∈ L (pc stands for
“program counter”).

Intuitively, labels in L can be seen as “security levels” or “information”, and
the bottom element ⊥ simply means “public”, or “least information”. Then
` a : ‘ can be read either as “term a has security level ‘” or as “term a requires
information in ‘”, and pc ` c can be read as either “the information in pc can
flow into command c” or “to execute command c one needs at least information
in pc”. The function Γ: Var→ L assigns to each variable x a label Γ(x), which
is the security level of variable x.

Example 2. The following expressions are all judgements:

` n : ⊥ ` true : ⊥ ` x : Γ(x)

2.2 Deduction rules

The rules for IMP are as follows:

` a1 : ‘1 ` a2 : ‘2

` a1 ⊕ a2 : ‘1 t ‘2

pc ` c1 pc ` c2

pc ` c1; c2

pc ` c1 pc ` c2

pc ` c1; c2 pc ` skip

` a : ‘ ‘ v Γ(x) pc v Γ(x)

pc ` x := a

` b : ‘ ‘ t pc ` c1 ‘ t pc ` c1

pc ` if b then c1 else c2

` b : ‘ ‘ t pc ` c

pc ` while b do c

According to our intuition of judgements above, these rules should have a quite
straightforward reading. Take the rule for value assignment as an example. One
can read it as, if the information level of term a is ‘, and both ‘ and pc are
lower than the information level of variable x, then the information at level pc
flows into the assignment command x := a.

Example 3. Let pub and secret respectively have the lowest and highest
security level, say ⊥ and >. Consider the following program (in pseudocode):
As a result, we have pub = secret, which means that we can know the value of
secret from that of pub. This destroys the security order of pub and secret:
intuitively the high-level information should not affect low-level information.
The above language IMP provides a way to formalize this intuition:

> 6` pub := true

which means that “the information at level > does emphnot flow into pub”.

3

Algorithm 1 Test if secret is true or false

1: pub = false
2: if secret then
3: pub = true

4: Return pub

3 Noninterference

In 1982, Goguen and Meseguer proposed noninterfernce model. A system has
high (secret) and low (public) inputs and outputs. Such a system is said to have
noninterference property if given the same low inputs, system always produces
same low outputs irrespective of the changes in the high inputs.

H1 L

H'1 L'

H2 L

H'2 L'

~L

When high inputs are changed, behaviour of the system remains indistinguish-
able for an observer who can only observe the low outputs. We formalize this
notion of indistinguishability. Let s be the state of a system. s1 ∼L s2 de-
notes two states s1 and s2 that are indistinguishable from the perspective of
a low observer. Let JSK be the observable behaviour when executing from s.
Indistinguishablity of the two behaviours is denoted by JS1K ≈L JS2K.

• TINI (termination insensitive noninterference) : Program may terminate
on some high inputs and may not on others.

• TSNI (termination sensitive noninterference) : high inputs do not decide
whether a program terminates or not. TSNI is relatively harder to enforce.

TINI + termination ⇒ TSNI

Let state s be composed of two parts sH (high) and sL (low), then indistin-
guishability of two states s1 and s2 is given by

s1 ∼L s2 ⇐⇒ (s1L
= s2L

)

4

4 Real Systems

• SPARK Ada : Based on [Denning:1977]

• Jif / JFlow [myers1999jow]: Java + Information flow

• Flow Caml 1

• Laminar [Roy:2009]

• Paragon [broberg2013paragon]

• JOANA 2

• IFC for web applications

• SecVerilog 3 : Verilog + Information Flow

1https://www.normalesup.org/~simonet/soft/flowcaml
2https://pp.ipd.kit.edu/projects/joana
3http://www.cs.cornell.edu/projects/secverilog

5

https://www.normalesup.org/~simonet/soft/flowcaml
https://pp.ipd.kit.edu/projects/joana
http://www.cs.cornell.edu/projects/secverilog

	Information Flow: Brief History
	IMP: syntax and rules
	Syntax
	Deduction rules

	Noninterference
	Real Systems

