
Security-Typed Languages
Lecture 4

Renate Robin Eilers Cristina Matache Baber Rehman
June 20, 2019

This is the fourth talk presented by Andrew Myers in OPLSS 2019, University of
Oregon, USA.

1 Transparent Endorsement
From last time: NI → Robust declassification (NI refines RD). Robust declassification
breaks the confidentiality/integrity duality.

To restore duality we define Transparent Endorsement (TE). For an example, see
the code fragment in figure 1

H←

H→

L H

C

I

Figure 1: Lattice for TE
A problem can arise when adversary manages to steer password value directly into

check_password function, abusing downgrading. The problem arises because pwd

String{H} pwd;
bool{H←} check_password(String{H→} guess) {

String{H} endorsed_guess = endorse(guess ,H→ to H);
bool{H} res = (password == endorsed_guess );
return declassify(res ,H to H←);

}

Figure 2: Example: password checker

1



with H label (trusted) can flow into H→ (untrusted). To solve the problem we can give
label L to variable guess (untrusted and unconfidential).

This is enforced by the typing rule for transparent endorsement:
Γ(y) ⊑ l1 l2 ⊑ Γ(y) l1 ⊑ l2 ⊔▽(l1 ⊔ pc)

pc ⊢ x ∶= endorse(y, l1 to l2)
▽ = voice = maps confidentiality to corresponding integrity
We can describe both robust declassification and transparent endorsement in the

same picture:
s11 ∼L s12

∼H ∼H

s21 ∼L s22

Definition 1.0.1 (Robust declassification).
Js11K ≈L Js21K ∧ relevant inputs ⇒ Js12K ≈L Js22K

Definition 1.0.2 (Transparent endorsement).
Js11K ≈H Js12K ∧ relevant inputs ⇒ Js21K ≈H Js22K

RD + TE ="nonmalleable informationi flow"

Where do △ and▽ come from?
FLAM (Arden et al. CSF’15)
1. labels are principals
2. primitive principals (Alice, Bob, p, q,…)
3. prinicpal projections (p← integrity projection, p→ confidentiality)
4. joins and meets on principals p ∧ q (reads as: powers of both p and q), p ∨ q.

∀p, q.p ∧ q ⪰ p ⪰ p ∨ q

where ⪰ is a trust ordering. Least powerful principal is ⊥; most powerful is ⊤.
See figure 4

A normal form for principals is A← ∧ B→, where A,B are CNF expressions over
primitive principals. Then △ and ▽ are defined as:

△(A← ∧ B→) = A→ ∧ T←

▽(A← ∧ B→) = B←

Reflection:⧖ (A← ∧ B→) = B← ∧ A→

If something has label l ⋢ ⧖l, we can’t downgrade it nonmalleably. See figure 1.

2



⊤←

⊤→

⊥ ⊤

L

H

⪰

⊑
L H

Figure 3: Lattice for FLAM
compromised labels

Figure 4: Reflection drawn in lattice

2 Hardware security
There are different layers at the hardware level:

Modern systems:

app code
libraries

OS
ISA

� architecture

• Correctness and security depends on having contracts between these different
layers

• Classic specifications do not work (Meltdown, spectre)
• Contracts should capture information flow (hyperproperties)
• Contracts should be compositional
• Mandatory vs. discretionary access control

2.1 Example

3



if ℎ1 then
ℎ2 := l1 //pulls l1 into cache

else
ℎ2 := l2

l3 := l1 //false if ℎ1 = true

Listing 1: Timing to update l3 depends on the value of ℎ1.

2.2 Reference papers for reading
• Zhang/PLDI’12: ISA/M-arch contract that rules out timing channels (in addition

to previously discussed leakage)
• Zagieboylo/CSF’19: Detailed ISA contract for realistic ISA supporting nonmal-

leable downgrading

2.3 IMP: read and write label
Consider imperative language IMP where each command has a read label and a write
label.

Read label and write label properties:

• Read label lr bounds influences on time taken by instruction
• Write label lw is a lower bound on effects instruction has on �-architecture state
ISA
register
�-arch
cache
TLB
…

It defines two type of properties that processor needs to satisfy. Hardware satisfying
these three porperties can reason about information flow for software/hardware compo-
sition:

• Architecturlar semantcs (like SOS, c, 
 ⟶ c′, 
 ′)
• �-arch semantics: c, 
, E,G ⟶ c′, 
 ′, E′, G′

where E = the microarchitecture state, G is global (wall-clock) time.
Read-label property:

Execution time should not depend on high state.

4



Given command c[lr, lw]
(∀x ∈ vars(c).
1(x) = 
2(x))∧E1 lrE2)∧c[lr, lw], 
i, Ei, G ⟶ ci, 
 ′i , E

′
i , Gi)⇒ G1 =

G2 for i ∈ {1, 2}
write-label property:

lw ⋢ l ∧ c[lr,lw], 
, E, G ⟶ c′, 
 ′, E′, G′ ⇒ E lE′

Single-step noninterference:
(
1 − l
2 ∧ E1 lE2 ∧ clr,lw , 
i, Ei, Gi ⟶ ci, 
 ′i , E

′
i , G

′
i)⇒ E′1 = E

′
2

if ℎ1 then
ℎ2 := l1[L,H] // pulls l1 into cache

else
ℎ2 := l2[L,H]

l3 := l1[L,L] // false if ℎ1 = true

ℎ1 flows into assignment ℎ2 of l1. This is updated code from Example 1.1.

3 HDLs
(Hardware description language)

How do you build efficient hardware that verifiably satisfies security properties? Use
SecVerilog = Verilog + security labels

• Threat model = adversary can see all public memory at every clock cycle.
• Partition cache statically
• Annotations on variables (possibly functions)
Soundness: at each clock tick, no H information leaks to a L variable.
See slides for the rest.

5


	Transparent Endorsement
	Hardware security
	Example
	Reference papers for reading
	IMP: read and write label

	HDLs

