Security-Typed Languages
Lecture 4
Renate Robin Eilers Cristina Matache Baber Rehman

June 20, 2019

This is the fourth talk presented by Andrew Myers in OPLSS 2019, University of
Oregon, USA.

1 Transparent Endorsement

From last time: NI — Robust declassification (NI refines RD). Robust declassification
breaks the confidentiality/integrity duality.

To restore duality we define Transparent Endorsement (TE). For an example, see
the code fragment in figurelT]
H—)
/
L H
N
H(—
Figure 1: Lattice for TE

A problem can arise when adversary manages to steer password value directly into
check_password function, abusing downgrading. The problem arises because pwd

String{H} pwd;

bool{H"} check_password(String{H”} guess) {
String{H} endorsed_guess = endorse(guess,H” to H);
bool{H} res = (password == endorsed_guess);
return declassify(res,H to H7);

Figure 2: Example: password checker

with H label (trusted) can flow into H™ (untrusted). To solve the problem we can give
label L to variable guess (untrusted and unconfidential).
This is enforced by the typing rule for transparent endorsement:

rych I, CT(y) 1y EIQI—IV(IILIPC)
pc F x :=endorse(y,/; to I5)

Y = voice = maps confidentiality to corresponding integrity
We can describe both robust declassification and transparent endorsement in the
same picture:
Sit YL Si2

~H ~H

$21 ~YL S
Definition 1.0.1 (Robust declassification).
[si1] =1 [s21] A relevant inputs = [s1,] =1 [$22]
Definition 1.0.2 (Transparent endorsement).

[sil] mu [s12] A relevant inputs = (s3] =g [52,]

RD + TE ="nonmalleable informationi flow"
Where do /\ and \/ come from?
FLAM (Arden et al. CSF’15)
1. labels are principals
2. primitive principals (Alice, Bob, p, q, ...)
3. prinicpal projections (p* integrity projection, p~ confidentiality)
4. joins and meets on principals p A g (reads as: powers of both p and ¢), p V gq.
Vp.qpAqzZpzpVyq

where > is a trust ordering. Least powerful principal is L; most powerful is T.
See figure 4]

A normal form for principals is A~ A B~, where A, B are CNF expressions over
primitive principals. Then /\ and \/ are defined as:

ANATABY)=ATAT"
V(AT AB”)=B“
Reflection: X (A" AB”)= B~ AA™

If something has label I Z X/, we can’t downgrade it nonmalleably. See figure [T}

T—)
/
J_<>T C
XT@
-

z

Figure 3: Lattice for FLAM

compromised labels

Figure 4: Reflection drawn in lattice

2 Hardware security

There are different layers at the hardware level:

app code
libraries
Modern systems: oS

ISA
u architecture

e Correctness and security depends on having contracts between these different
layers

Classic specifications do not work (Meltdown, spectre)

Contracts should capture information flow (hyperproperties)

Contracts should be compositional

Mandatory vs. discretionary access control

2.1 Example

if h; then

hy, :=1; //pulls I; into cache
else

hy := I,
I3 =1 //false if h; = true

Listing 1: Timing to update /; depends on the value of A;.

2.2 Reference papers for reading

e Zhang/PLDI’12: ISA/M-arch contract that rules out timing channels (in addition
to previously discussed leakage)

e Zagieboylo/CSF’19: Detailed ISA contract for realistic ISA supporting nonmal-

leable downgrading

2.3 IMP: read and write label

Consider imperative language IMP where each command has a read label and a write
label.

Read label and write label properties:

e Read label /, bounds influences on time taken by instruction

e Write label /,, is a lower bound on effects instruction has on p-architecture state

ISA
register
u-arch
cache
TLB

It defines two type of properties that processor needs to satisfy. Hardware satisfying
these three porperties can reason about information flow for software/hardware compo-
sition:

e Architecturlar semantcs (like SOS, ¢,y — ¢, 7')

e y-arch semantics: ¢,y, E,G — ¢',y', E', G’

where E = the microarchitecture state, G is global (wall-clock) time.

Read-label property:
Execution time should not depend on high state.

Given command ¢(/,,/,,]
(Vx € vars(c).y1(x) = y,CNAE | Ep)Aefl, 1)y B G — ci,yl.’, Ei’,G,—) > G =
G, fori € {1,2}

write-label property:
lw z TN c[lr’lw]’y’ E,G I C/,yl,E,,G’ > F /E/

Single-step noninterference:
(1 —InAE Eyne 7 E G — ¢.v], E[,G) = E| = E,

if h; then

hy := I;[L,H] // pulls I, into cache
else

hy, := I,[L,H]
I3 := IL[L,L] // false <f h; = true

h, flows into assignment A, of /;. This is updated code from Example 1.1.

3 HDLs

(Hardware description language)
How do you build efficient hardware that verifiably satisfies security properties? Use
SecVerilog = Verilog + security labels

e Threat model = adversary can see all public memory at every clock cycle.
e Partition cache statically

e Annotations on variables (possibly functions)

Soundness: at each clock tick, no H information leaks to a L variable.
See slides for the rest.

	Transparent Endorsement
	Hardware security
	Example
	Reference papers for reading
	IMP: read and write label

	HDLs

