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Secure Compilation

building compilers that ensure
security properties of source programs
are preserved in target programs
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Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit( int amount ) {
this.balance += amount;

}

}

compiled to C target code

typedef struct account_t {

int balance = 0;

void ( *deposit ) ( struct Account™, int ) = deposit_f;
} Account;

void deposit_f( Account® a, int amount ) {
a—balance += amount;
return;

}

context

- gap between source
and target abstractions

- need some mechanism
to hide balance in target

- how do we prove that
compiler preserves
security properties
...and how are source
properties expressed



More source-level abstractions and
target-level attacks

Security properties as program
equivalences
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Security Properties as
Program Equivalences

Example: Memory Allocation Order

public newObjects( ) : Object {
var X = new Object();
var y = new Object();
return

}

:public newObjects( ) : Object {:
var X new Object(); :
var y = new Object();

return v;
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Other Examplgs
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Other Examples
Example: target can disrupt well-bracketed control flow
when calls and returns are just jumps as in assembly

Example: target with first-class control can manipulate
continuations to leak data
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(different for C, ML, Gallina, DSLs)

- observer-sensitive equivalence
(e.g., noninterference in security-typed languages)

- timing/resource-sensitive equivalence
(e.g., security of constant-time code)
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|. Preserving security by preserving equivalence

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

3. Different ways of enforcing secure compilation
- static checking

- dynamic checking (e.g., runtime monitoring,
cryptographic & hardware enforcement)

4. Proof techniques
- "back-translating” target attackers to source
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Fully Abstract Compilation

Preserve contextual equivalence

e

compile

d

Guarantees that @ will remain as
secure as € when executed in
arbitrary target-level contexts

i.e. target contexts (attackers d ) can
make no more observations about €
than a source context can make about €
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Type-Preserving Compilation
e:T ~ e :T"

System F to Typed Assembly Language
[Morrisett et al. POPL’97, TOPLAS'98]

Typed compilation of Featherweight Java to F-omega,
private fields to existential type [League et al. TOPLAS'02]

FINE (F# with refinement & affine types) to DCIL
(dependent CIL) [Chen et al. PLDI’| 0]

Security-type-preserving compilation from WHILE lang. to
stack-based TAL (both languages satisfy noninterference).
Extended to concurrent setting with thread creation,
secure scheduler [Barthe et al. 2007, 2010]



Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

. T

el
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Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'Hey : T~ €)
Given:

ke =% er: T No Cg can
distinguish €1, €2

Show:
Given arbitrary Ct
it cannot distinguishe1, €7

Need to be able to
“back-translate” Ct
to an equivalent Cg

' ke~ th:z: ey T



Closure Conversion

On board: Translation Correctness and Full Abstraction






