
Secure Compilation

Amal Ahmed
Northeastern University

Secure Compilation

building compilers that ensure
security properties of source programs

are preserved in target programs

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

compiled to C target code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

compiled to C target code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

compiled to C target code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

compiled to C target code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

compiled to C target code

context

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

compiled to C target code

context

- gap between source
and target abstractions

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

compiled to C target code

context

- gap between source
and target abstractions

- need some mechanism
to hide balance in target

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Java source code

0:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

30
1 package Bank;
2
3 public class Account{
4 private int balance = 0;
535
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }40

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;45
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }50

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the55

size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.

This violation occurs because there is a discrepancy between what abstractions the source
language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful60

abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 65].

In order to withstand the danger posed by exploitable target languages, secure compilation65

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality70

they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker75

contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a
variety of formal statements can capture when a compiler is secure. One such formal criterion that
has been widely adopted for secure compilation is compiler full abstraction [1].

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

compiled to C target code

context

- gap between source
and target abstractions

- need some mechanism
to hide balance in target

- how do we prove that
compiler preserves
security properties
... and how are source
properties expressed

More source-level abstractions and
target-level attacks

 Security properties as program
 equivalences

Security Properties as
Program Equivalences

Example: Confidentiality

Formal Approaches to Secure Compilation 0:5

Example 2.1 (Con�dentiality of values [9]). Consider the Java-like code below, where function
setSecret sets the �eld secret to 1 and then returns 0.

1 private secret : Int = 0;
2175
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }180

The �eld secret is used to store con�dential data (it is private) and it is inaccessible from other
source-level code, so a target-level attacker should not be able to retrieve its value. If this code
gets compiled to a language where memory locations are identi�ed by natural numbers (e.g., an
untyped assembly language or �µ-hashref [59]), then the address where secret is stored can be
read by attackers. By dereferencing the number associated with the location of secret, attackers185

can violate the intended con�dentiality property of the code.

Example 2.2 (Integrity of values [9]). Analogous to Theorem 2.1, function proxy below sets the
variable secret to 1, and then calls the function callback, that was passed in as a parameter.

1 public proxy(callback : Unit ! Unit) : Int {190
2 var secret = 1;
3 callback();
4 return 0;
5 }195

The variable secret is inaccessible to the code in the callback function at the source level. However,
if this code is compiled to a target language that can manipulate the call stack, it can access the
secret variable and change its value. Similarly, malicious target-level code can manipulate the
return address stored on the stack, altering the expected �ow of computation.

Example 2.3 (Finite memory size [59]). When dealing with memory, its size can also a�ect the200

behaviour of a component, however the memory size is often not a concern of source languages.
Consider a source language with a dynamic memory allocation operation new. Function kernel
below allocates n new Objects, calls a function callback and executes security-relevant code before
returning 0.

205
1 public kernel(n : Int, callback : Unit !Unit) : Int {
2 for (i = 0 to n){
3 new Object();
4 }
5 callback();210
6 // security-relevant code
7 return 0;
8 }

At the source level, the security-relevant code will always be executed. However, if this code is215

compiled to a language that limits its memory to contain only n Objects, code execution can be
disrupted during the callback. If the callback allocates another object, the security-relevant code
will not be executed.

Example 2.4 (Deterministic memory allocation [59]). Dynamic memory allocation is a feature
that leads to complications, as illustrated in the code below. In this example, the code allocates two220

Objects, and then returns the �rst one.
1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();225

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Security Properties as
Program Equivalences

Example: Confidentiality

Formal Approaches to Secure Compilation 0:5

Example 2.1 (Con�dentiality of values [9]). Consider the Java-like code below, where function
setSecret sets the �eld secret to 1 and then returns 0.

1 private secret : Int = 0;
2175
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }180

The �eld secret is used to store con�dential data (it is private) and it is inaccessible from other
source-level code, so a target-level attacker should not be able to retrieve its value. If this code
gets compiled to a language where memory locations are identi�ed by natural numbers (e.g., an
untyped assembly language or �µ-hashref [59]), then the address where secret is stored can be
read by attackers. By dereferencing the number associated with the location of secret, attackers185

can violate the intended con�dentiality property of the code.

Example 2.2 (Integrity of values [9]). Analogous to Theorem 2.1, function proxy below sets the
variable secret to 1, and then calls the function callback, that was passed in as a parameter.

1 public proxy(callback : Unit ! Unit) : Int {190
2 var secret = 1;
3 callback();
4 return 0;
5 }195

The variable secret is inaccessible to the code in the callback function at the source level. However,
if this code is compiled to a target language that can manipulate the call stack, it can access the
secret variable and change its value. Similarly, malicious target-level code can manipulate the
return address stored on the stack, altering the expected �ow of computation.

Example 2.3 (Finite memory size [59]). When dealing with memory, its size can also a�ect the200

behaviour of a component, however the memory size is often not a concern of source languages.
Consider a source language with a dynamic memory allocation operation new. Function kernel
below allocates n new Objects, calls a function callback and executes security-relevant code before
returning 0.

205
1 public kernel(n : Int, callback : Unit !Unit) : Int {
2 for (i = 0 to n){
3 new Object();
4 }
5 callback();210
6 // security-relevant code
7 return 0;
8 }

At the source level, the security-relevant code will always be executed. However, if this code is215

compiled to a language that limits its memory to contain only n Objects, code execution can be
disrupted during the callback. If the callback allocates another object, the security-relevant code
will not be executed.

Example 2.4 (Deterministic memory allocation [59]). Dynamic memory allocation is a feature
that leads to complications, as illustrated in the code below. In this example, the code allocates two220

Objects, and then returns the �rst one.
1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();225

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 Marco Patrignani, Amal Ahmed, and Dave Clarke

model malicious attackers that interoperate with the secure software (the hole-�lling component415

P), possibly mounting attacks such as those described in Section 2.
Contextual equivalence can be used to model security properties of source code, as described by

Theorem 3.4 below, for various examples from Section 2.

Example 3.4 (Security properties via contextual equivalence). The code snippet of Theorem 2.1
described con�dentiality properties. That code is presented alongside a new snippet in Figure 1420

(relevant di�erences in side-by-side snippets are coloured in red). If the two snippets are contex-
tually equivalent, then the value of secret is con�dential to the code. In fact, the two snippets
assign di�erent values to secret, so if they are contextually equivalent, then secret must not be
discernible by external code.

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Theorem 2.2 described integrity properties. Figure 2 presents that code425

alongside other code that checks whether the variable secret has been modi�ed during the
callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it
were allocated globally, its integrity would need to be checked at each lookup of its value. If these
code snippets are contextually equivalent, then secret cannot be modi�ed during the callback.

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4 if (secret == 0) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4
5 return 0;
6
7
8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Theorem 2.3 described memory size properties. Figure 3 presents that code430

alongside other code that does not allocate n new Objects. In Theorem 2.3, external code could
disrupt the execution �ow by over�owing the memory. If these code snippets are contextually
equivalent, then the memory size does not a�ect the computation.

The code snippet of Theorem 2.4 describes memory allocation properties. Figure 4 presents
that code alongside other code that returns the second allocated object instead of the �rst one. If435

these code snippets are contextually equivalent, then the memory allocation order is invisible to an
attacker, as she is unable to distinguish between objects based on their allocation order.

3.1.1 Discussion. Contextual equivalence shows its limitations both in the attacks it can express
and complexity it introduces in proofs. Timing attacks or, more generally, side-channels attacks
cannot be expressed with contextual equivalence. Thus, these attacks are generally disregarded by440

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Security Properties as
Program Equivalences

Example: Integrity

0:10 Marco Patrignani, Amal Ahmed, and Dave Clarke

model malicious attackers that interoperate with the secure software (the hole-�lling component415

P), possibly mounting attacks such as those described in Section 2.
Contextual equivalence can be used to model security properties of source code, as described by

Theorem 3.4 below, for various examples from Section 2.

Example 3.4 (Security properties via contextual equivalence). The code snippet of Theorem 2.1
described con�dentiality properties. That code is presented alongside a new snippet in Figure 1420

(relevant di�erences in side-by-side snippets are coloured in red). If the two snippets are contex-
tually equivalent, then the value of secret is con�dential to the code. In fact, the two snippets
assign di�erent values to secret, so if they are contextually equivalent, then secret must not be
discernible by external code.

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Theorem 2.2 described integrity properties. Figure 2 presents that code425

alongside other code that checks whether the variable secret has been modi�ed during the
callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it
were allocated globally, its integrity would need to be checked at each lookup of its value. If these
code snippets are contextually equivalent, then secret cannot be modi�ed during the callback.

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4 if (secret == 0) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4
5 return 0;
6
7
8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Theorem 2.3 described memory size properties. Figure 3 presents that code430

alongside other code that does not allocate n new Objects. In Theorem 2.3, external code could
disrupt the execution �ow by over�owing the memory. If these code snippets are contextually
equivalent, then the memory size does not a�ect the computation.

The code snippet of Theorem 2.4 describes memory allocation properties. Figure 4 presents
that code alongside other code that returns the second allocated object instead of the �rst one. If435

these code snippets are contextually equivalent, then the memory allocation order is invisible to an
attacker, as she is unable to distinguish between objects based on their allocation order.

3.1.1 Discussion. Contextual equivalence shows its limitations both in the attacks it can express
and complexity it introduces in proofs. Timing attacks or, more generally, side-channels attacks
cannot be expressed with contextual equivalence. Thus, these attacks are generally disregarded by440

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Security Properties as
Program Equivalences

Example: Integrity

0:10 Marco Patrignani, Amal Ahmed, and Dave Clarke

model malicious attackers that interoperate with the secure software (the hole-�lling component415

P), possibly mounting attacks such as those described in Section 2.
Contextual equivalence can be used to model security properties of source code, as described by

Theorem 3.4 below, for various examples from Section 2.

Example 3.4 (Security properties via contextual equivalence). The code snippet of Theorem 2.1
described con�dentiality properties. That code is presented alongside a new snippet in Figure 1420

(relevant di�erences in side-by-side snippets are coloured in red). If the two snippets are contex-
tually equivalent, then the value of secret is con�dential to the code. In fact, the two snippets
assign di�erent values to secret, so if they are contextually equivalent, then secret must not be
discernible by external code.

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Theorem 2.2 described integrity properties. Figure 2 presents that code425

alongside other code that checks whether the variable secret has been modi�ed during the
callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it
were allocated globally, its integrity would need to be checked at each lookup of its value. If these
code snippets are contextually equivalent, then secret cannot be modi�ed during the callback.

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4 if (secret == 0) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4
5 return 0;
6
7
8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Theorem 2.3 described memory size properties. Figure 3 presents that code430

alongside other code that does not allocate n new Objects. In Theorem 2.3, external code could
disrupt the execution �ow by over�owing the memory. If these code snippets are contextually
equivalent, then the memory size does not a�ect the computation.

The code snippet of Theorem 2.4 describes memory allocation properties. Figure 4 presents
that code alongside other code that returns the second allocated object instead of the �rst one. If435

these code snippets are contextually equivalent, then the memory allocation order is invisible to an
attacker, as she is unable to distinguish between objects based on their allocation order.

3.1.1 Discussion. Contextual equivalence shows its limitations both in the attacks it can express
and complexity it introduces in proofs. Timing attacks or, more generally, side-channels attacks
cannot be expressed with contextual equivalence. Thus, these attacks are generally disregarded by440

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 Marco Patrignani, Amal Ahmed, and Dave Clarke

model malicious attackers that interoperate with the secure software (the hole-�lling component415

P), possibly mounting attacks such as those described in Section 2.
Contextual equivalence can be used to model security properties of source code, as described by

Theorem 3.4 below, for various examples from Section 2.

Example 3.4 (Security properties via contextual equivalence). The code snippet of Theorem 2.1
described con�dentiality properties. That code is presented alongside a new snippet in Figure 1420

(relevant di�erences in side-by-side snippets are coloured in red). If the two snippets are contex-
tually equivalent, then the value of secret is con�dential to the code. In fact, the two snippets
assign di�erent values to secret, so if they are contextually equivalent, then secret must not be
discernible by external code.

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Theorem 2.2 described integrity properties. Figure 2 presents that code425

alongside other code that checks whether the variable secret has been modi�ed during the
callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it
were allocated globally, its integrity would need to be checked at each lookup of its value. If these
code snippets are contextually equivalent, then secret cannot be modi�ed during the callback.

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4 if (secret == 0) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4
5 return 0;
6
7
8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Theorem 2.3 described memory size properties. Figure 3 presents that code430

alongside other code that does not allocate n new Objects. In Theorem 2.3, external code could
disrupt the execution �ow by over�owing the memory. If these code snippets are contextually
equivalent, then the memory size does not a�ect the computation.

The code snippet of Theorem 2.4 describes memory allocation properties. Figure 4 presents
that code alongside other code that returns the second allocated object instead of the �rst one. If435

these code snippets are contextually equivalent, then the memory allocation order is invisible to an
attacker, as she is unable to distinguish between objects based on their allocation order.

3.1.1 Discussion. Contextual equivalence shows its limitations both in the attacks it can express
and complexity it introduces in proofs. Timing attacks or, more generally, side-channels attacks
cannot be expressed with contextual equivalence. Thus, these attacks are generally disregarded by440

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Security Properties as
Program Equivalences

Example: Unbounded vs. finite memory
Formal Approaches to Secure Compilation 0:11

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.

Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]
uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Security Properties as
Program Equivalences

Example: Unbounded vs. finite memory
Formal Approaches to Secure Compilation 0:11

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.

Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]
uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Formal Approaches to Secure Compilation 0:11

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.

Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]
uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Formal Approaches to Secure Compilation 0:11

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.

Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]
uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Security Properties as
Program Equivalences

Example: Memory Allocation Order

Formal Approaches to Secure Compilation 0:11

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.

Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]
uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Security Properties as
Program Equivalences

Example: Memory Allocation Order

Formal Approaches to Secure Compilation 0:11

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.

Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]
uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Formal Approaches to Secure Compilation 0:11

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return x;
5 }

1 public newObjects() : Object {
2 var x = new Object();
3 var y = new Object();
4 return y;
5 }

Fig. 4. These code snippets express memory allocation properties.

secure compilation techniques; they can be countered using orthogonal protection mechanisms
which are beyond the scope of this survey. This is interesting future work that is discussed in
Section 6.

Moreover, although other de�nitions of contextual equivalence exist (for example, Curien [32]
uses reduction to the same value instead of divergence), no alternative formulation drops the uni-445

versal quanti�cation on contexts. Reasoning (and proving properties) about contexts is notoriously
complex [16, 50, 59, 95]. To compensate for this di�culty, di�erent forms of equivalence can be
used, e.g., trace semantics [60, 62, 96, 98], weak bisimulation [108], applicative bisimilarity [10]
and logical relations [14], but only if they are proved to be as precise as contextual equivalence.
These equivalences are described in Appendix A. Given an equivalence ⇡, if ⇡ is correct (it does450

not capture additional cases) and complete (it captures all equivalent cases) w.r.t. 'ctx, then it
can be used in place of 'ctx.3 In fact, many proofs of compiler full abstraction rely on a program
equivalence that is as precise as contextual equivalence to be carried out.

Having presented how to formalise security properties as program equivalence, we next discuss
how to de�ne compiler properties that preserve such security properties.455

4 A SPECTRUM OF COMPILER PROPERTIES
This section presents the three main kinds of compiler properties that have been frequently studied
in the literature. The three properties are: (1) that compilation is type-preserving (Section 4.1), which
establishes that a compiler from a typed source language to a typed target transforms well-typed
source terms into well-typed target terms; (2) that compilation is semantics-preserving (informally
known as compiler correctness, Section 4.2), which establishes that a compiler generates a target460

program with the same observable behaviour as the source program; and (3) that compilation
is equivalence-preserving (Section 4.3), which establishes that the compiler translates programs
that are equivalent in the source language—e.g., contextually equivalent or indistinguishable to an
observer at a given security level—into programs that are similarly equivalent in the target language.
Each of these properties is pertinent to secure compilation. Equivalence-preservation is the most465

3 In this case, ⇡ is said to be fully-abstract, but we drop this terminology to avoid confusion with fully-abstract compilation.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: 0.

Other Examples

Example: Typed source to untyped target

125:6 M. Patrignani et al.

At the source level, the security-relevant code will always be executed. However, if this code is
compiled to a language that limits its memory to contain only n Objects, code execution can be
disrupted during the callback. If the callback allocates another object, then the security-relevant
code will not be executed.

Example 2.4 (Deterministic Memory Allocation [57]). Dynamic memory allocation is a feature
that leads to complications, as illustrated in the code below. In this example, the code allocates
two Objects, and then returns the first one.

Whileatsourcelevel Objectyisinaccessible,thisisnottrueincertaintargetlanguages.Atarget-

Other Examples

Example: target can disrupt well-bracketed control flow
 when calls and returns are just jumps as in assembly

Example: target with first-class control can manipulate
 continuations to leak data

1. Preserving security properties expressed as
some form of equivalence

- contextual equivalence
 (different for C, ML, Gallina, DSLs)
- observer-sensitive equivalence

(e.g., noninterference in security-typed languages)
- timing/resource-sensitive equivalence
 (e.g., security of constant-time code)

1. Preserving security properties expressed as
some form of equivalence

- contextual equivalence
 (different for C, ML, Gallina, DSLs)
- observer-sensitive equivalence

(e.g., noninterference in security-typed languages)
- timing/resource-sensitive equivalence
 (e.g., security of constant-time code)

1. Preserving security properties expressed as
some form of equivalence

- contextual equivalence
 (different for C, ML, Gallina, DSLs)
- observer-sensitive equivalence

(e.g., noninterference in security-typed languages)
- timing/resource-sensitive equivalence
 (e.g., security of constant-time code)

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

1. Preserving security by preserving equivalence

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

3. Different ways of enforcing secure compilation
- static checking
- dynamic checking (e.g., runtime monitoring,
cryptographic & hardware enforcement)

1. Preserving security by preserving equivalence

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

3. Different ways of enforcing secure compilation
- static checking
- dynamic checking (e.g., runtime monitoring,
cryptographic & hardware enforcement)

4. Proof techniques
- "back-translating" target attackers to source

1. Preserving security by preserving equivalence

Fully Abstract Compilation

Preserve and reflect contextual equivalence

e1 e2

e1 e2

e

Fully Abstract Compilation

Preserve contextual equivalence

Guarantees that will remain as
secure as when executed in
arbitrary target-level contexts

e

e a

i.e. target contexts (attackers) can
make no more observations about
than a source context can make about

e

e
e

a

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

Must ensure that any a we link with behaves like some source context

es

et

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

1. Add target features to the source language.

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

 Bad!1. Add target features to the source language.

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

1. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

 Bad!

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

1. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

 Bad!
Performance cost

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

1. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

3. Static checks: rule our badly behaved code in the first place

 Bad!
Performance cost

Ensuring Full Abstr. / Secure Comp.

a
a

source

target

es

et

1. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

3. Static checks: rule our badly behaved code in the first place

 Bad!
Performance cost

Verification

Type-Preserving Compilation

e : � � e : �+e

Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

e1 e2

e1 e2
e : � � e : �+

e : � � e : �+

Type-Preserving Compilation
e : � � e : �+e

• System F to Typed Assembly Language
[Morrisett et al. POPL’97, TOPLAS'98]

• Typed compilation of Featherweight Java to F-omega,
private fields to existential type [League et al. TOPLAS'02]

• FINE (F# with refinement & affine types) to DCIL
(dependent CIL) [Chen et al. PLDI’10]

• Security-type-preserving compilation from WHILE lang. to
stack-based TAL (both languages satisfy noninterference).
Extended to concurrent setting with thread creation,
secure scheduler [Barthe et al. 2007, 2010]

Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

e1 e2

e1 e2
e : � � e : �+

e : � � e : �+

Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

e1

e1

e2

e2

Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

e1

e1

e2

e2

Given:
No can
distinguish

Show:
Given arbitrary ,
it cannot distinguish

Need to be able to
“back-translate”
to an equivalent

CT

CT

CS

e1, e2

CS
e1, e2

e1 e2

Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

e1

e1

e2

e2

Given:
No can
distinguish

Show:
Given arbitrary ,
it cannot distinguish

Need to be able to
“back-translate”
to an equivalent

CT

CT

CS

e1, e2

CS
e1, e2

e1 e2

Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

e1

e1

e2

e2

Given:
No can
distinguish

Show:
Given arbitrary ,
it cannot distinguish

Need to be able to
“back-translate”
to an equivalent

CT

CT

CS

e1, e2

CS
e1, e2

e1 e2

Closure Conversion

 On board: Translation Correctness and Full Abstraction

