Secure Compilation

Amal Ahmed

Northeastern University

Secure Compilation

building compilers that ensure
security properties of source programs
are preserved in target programs

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account™ a, int amount) {
a—balance += amount;
return;

}

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account™ a, int amount) {
a—balance += amount;
return;

}

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account™ a, int amount) {
a—balance += amount;
return;

}

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;
}
}

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account® a, int amount) {
a—balance += amount;
return;

}

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}

}

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account® a, int amount) {
a—balance += amount;
return;

}

context

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}

} - gap between source
and target abstractions

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account® a, int amount) {
a—balance += amount;
return;

}

context

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

% - gap between source
and target abstractions

- need some mechanism
to hide balance in target

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account® a, int amount) {
a—balance += amount;
return;

}

context

Java source code

package Bank;

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}

}

compiled to C target code

typedef struct account_t {

int balance = 0;

void (*deposit) (struct Account™, int) = deposit_f;
} Account;

void deposit_f(Account® a, int amount) {
a—balance += amount;
return;

}

context

- gap between source
and target abstractions

- need some mechanism
to hide balance in target

- how do we prove that
compiler preserves
security properties
...and how are source
properties expressed

More source-level abstractions and
target-level attacks

Security properties as program
equivalences

Security Properties as
Program Equivalences

Example: Confidentiality

private secret : Int = 0;

public setSecret() : Int {
secret = 1;
return 0;

}

Security Properties as
Program Equivalences

Example: Confidentiality

private secret : Int = 0;

public setSecret() : Int {
secret = 1;
return 0;

}

: private secret : Int = 0;

; public setSecret() : Int {E
secret = 0; :
return 0;

Security Properties as
Program Equivalences

Example: Integrity

public proxy(callback : Unit — Unit)
: Int {
var secret = 0;
callback();

return 0;

Security Properties as
Program Equivalences

Example: Integrity

public proxy(callback : Unit — Unit)
: Int {
var secret = 0;
callback();

: public proxy(callback : Unit — Unit):
: : Int { :
var secret = 0;

callback();

return 0;

return 0;

return 1;

Security Properties as
Program Equivalences

Example: Unbounded vs. finite memory

public kernel(n : Int, callback : Unit
— Unit) : Int {

callback();
// security-relevant code
return 0;

}

Security Properties as
Program Equivalences

Example: Unbounded vs. finite memory

public kernel(n : Int, callback : Unit
— Unit) : Int {

callback();
// security-relevant code

}-return 0; EGB{IE"EQFHQ{("H"?"in ngfﬁgéﬁ"?mﬁﬁli"

— Unit) : Int {

callback();
// security-relevant code
return 0;

Security Properties as
Program Equivalences

Example: Memory Allocation Order

public newObjects() : Object {
var X = new Object();
var y = new Object();
return x;

}

Security Properties as
Program Equivalences

Example: Memory Allocation Order

public newObjects() : Object {
var X = new Object();
var y = new Object();
return

}

:public newObjects() : Object {:
var X new Object(); :
var y = new Object();

return v;

ample:

Other Examplgs

ybed source to untypgd target

Other Examples
Example: target can disrupt well-bracketed control flow
when calls and returns are just jumps as in assembly

Example: target with first-class control can manipulate
continuations to leak data

|. Preserving security properties expressed as
some form of equivalence

- contextual equivalence
(different for C, ML, Gallina, DSLs)

|. Preserving security properties expressed as
some form of equivalence
- contextual equivalence

(different for C, ML, Gallina, DSLs)

- observer-sensitive equivalence
(e.g., noninterference in security-typed languages)

|. Preserving security properties expressed as
some form of equivalence
- contextual equivalence

(different for C, ML, Gallina, DSLs)

- observer-sensitive equivalence
(e.g., noninterference in security-typed languages)

- timing/resource-sensitive equivalence
(e.g., security of constant-time code)

|. Preserving security by preserving equivalence

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

|. Preserving security by preserving equivalence

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

3. Different ways of enforcing secure compilation
- static checking

- dynamic checking (e.g., runtime monitoring,
cryptographic & hardware enforcement)

|. Preserving security by preserving equivalence

2. Different compilation targets and threat models
- is the target language typed or untyped?
- what observations can the attacker make?

3. Different ways of enforcing secure compilation
- static checking

- dynamic checking (e.g., runtime monitoring,
cryptographic & hardware enforcement)

4. Proof techniques
- "back-translating” target attackers to source

Fully Abstract Compilation

Preserve and reflect contextual equivalence

el e’
~oCtX
~S
]
~oCtX
~T

el e’

Fully Abstract Compilation

Preserve contextual equivalence

e

compile

d

Guarantees that @ will remain as
secure as € when executed in
arbitrary target-level contexts

i.e. target contexts (attackers d) can
make no more observations about €
than a source context can make about €

Ensuring Full Abstr./ Secure Comp.

source €s

s]+
ad

Ensuring Full Abstr./ Secure Comp.

source Eq

o O+
ad

Must ensure that any a we link with behaves like some source context

Ensuring Full Abstr./ Secure Comp.

source €s

s]+
ad

Ensuring Full Abstr./ Secure Comp.

source Eq

s]+
ad

|. Add target features to the source language.

Ensuring Full Abstr./ Secure Comp.

source Eq

s]+
ad

|. Add target features to the source language.

Ensuring Full Abstr./ Secure Comp.

source Eq

o O+
ad

|. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

Ensuring Full Abstr./ Secure Comp.

source Eq

o O+
ad

|. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

Ensuring Full Abstr./ Secure Comp.

source €5

d

|. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

3. Static checks: rule our badly behaved code in the first place

Ensuring Full Abstr./ Secure Comp.

source €5

d

|. Add target features to the source language.
2. Dynamics checks: catch badly behaved code in the act.

3. Static checks: rule our badly behaved code in the first place

Type-Preserving Compilation

e:T ~» e:T"

Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

. T

el

Type-Preserving Compilation
e:T ~ e :T"

System F to Typed Assembly Language
[Morrisett et al. POPL’97, TOPLAS'98]

Typed compilation of Featherweight Java to F-omega,
private fields to existential type [League et al. TOPLAS'02]

FINE (F# with refinement & affine types) to DCIL
(dependent CIL) [Chen et al. PLDI’| 0]

Security-type-preserving compilation from WHILE lang. to
stack-based TAL (both languages satisfy noninterference).
Extended to concurrent setting with thread creation,
secure scheduler [Barthe et al. 2007, 2010]

Type-Preserving Secure Compilation

Preserve well-typedness & equivalence

. T

el

Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'Hey : T~ €)

F"G Ngmegi’f

' ke~ th:z: ey "

Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'Hey : T~ €)
Given:

ke =% er: T No Cg can
distinguish €1, €2

' ke~ th:z: ey "

Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'Hey : T~ €)
Given:
ke =% er: T No Cg can
distinguish €1, €2

Show:

Given arbitrary Ct
it cannot distinguishe1, €7

' ke~ th:z: ey T

Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'Hey : T~ €)
Given:

ke =% er: T No Cg can
distinguish €1, €2

Show:
Given arbitrary Ct
it cannot distinguishe1, €7

Need to be able to
“back-translate” Ct
to an equivalent Cg

' ke~ th:z: ey T

Closure Conversion

On board: Translation Correctness and Full Abstraction

