
Compositional Compiler Verification
& Secure Compilation

Amal Ahmed

Northeastern University

Compiler Correctness

s! t =⇒ s ≈ t

compiles to same behavior

= semantics-preserving compilation

One of the “big problems” of computer science

• since McCarthy and Painter 1967:
Correctness of a Compiler for Arithmetic Expressions

Compiler Verification

• see Dave 2003: Compiler Verification: A Bibliography

Compiler Verification since 2006…

Leroy ’06 : Formal certification of a compiler back-end or:
 programming a compiler with a proof assistant.

Lochbihler ’10 : Verifying a compiler for Java threads.

Myreen ’10 : Verified just-in-time compiler on x86.

Sevcik et al.’11: Relaxed-memory concurrency and
verified compilation.

Zhao et al.’13 : Formal verification of SSA-based
optimizations for LLVM

Kumar et al.’14 : CakeML: A verified implementation
of ML

…
CompCert

6/12/18, 8(33 AMCakeML

Page 1 of 4https://cakeml.org/

About
CakeML is a functional programming language and an ecosystem of

proofs and tools built around the language. The ecosystem includes a

proven-correct compiler that can bootstrap itself.

The CakeML project consists of the following components, all of which are free software.

Language definition. The CakeML language is based on a substantial subset of Standard ML. Its formal
semantics is specified in higher-order logic (HOL) in a functional big-step style. The core of the language
(its syntax and semantics) is quite stable, but the standard basis library is still undergoing development.
Contributions are welcome!

Compiler backend. The CakeML compiler has many parts. The most significant part is the verified
compiler backend, which transforms an untyped AST to concrete machine code for one of 5 target
architectures. The compiler backend has been proved to only produce machine code that is compatible
with the behaviours of the source programs. The backend passes through several intermediate
languages (as this diagram illustrates) and performs some optimisations.

Compiler frontend 1. There are two frontends to the compiler. The first one is a proof-producing
synthesis tool (called the translator). It generates CakeML AST from ML-like functions in HOL and proves
that the generated AST has the same behaviour as the HOL function. The original version of this tool
produced only pure CakeML code, but more recent versions can produce code that performs I/O and
uses state, including local state.

Compiler frontend 2. The second compiler frontend consists of a traditional parser followed by a type
inferencer. Both of these have been proved sound and complete with respect to declarative
specifications. For the parser, this means that our PEG parser implementation finds a correct parse tree if
there exists one according to a traditional grammar for CakeML concrete syntax (SML). Soundness and
completeness of the type inferencer means that, if the program is can be typed, then the inferencer will
find a type (which is the most general type).

Compiler bootstrapping. The CakeML compiler has been bootstrapped inside HOL. By bootstrapped
we mean that the compiler has compiled itself. This was achieved by noticing that frontend 2 combined
with the backend is a HOL function which we can feed into the tool-chain consisting of frontend 1 and
the backend. The result is a verified binary that provably implements the compiler itself (with frontend 2).
The latest bootstrapped binary is on our downloads page. The bootstrapping is described here.

Post-hoc verification of CakeML programs. We have adapted Charguéraud's CFML verification
framework to CakeML. Usually, we recommend that verified CakeML code is produced via synthesis
using frontend 1. However, in some cases it is more convenient to do Hoare-style reasoning in the
separation logic of CFML. CakeML's version of CFML supports reasoning about references, arrays,
exceptions and I/O, and is used for verification of parts of the CakeML basis library.

Verified applications built using CakeML. The CakeML tools are geared towards production of verified
applications using proof-producing synthesis (frontend 1) and compilation inside HOL (in-logic evaluation
of the compiler backend). To date, the largest case study is the bootstrapped CakeML compiler. Other
end-to-end verified applications that have been produced using the CakeML tools are:

a word frequency counter (a tutorial example)
Unix-like tools such as grep, sort, cat, diff, and patch
an OpenTheory article checker
a certificate checker for floating-point error bounds

This website provides further details of the CakeML project, links to papers, courseware, auxiliary tools

Code
The code for this project is hosted on GitHub. We
also host pre-built downloads.

Get involved
Join the slack channel cakeml.slack.com or the
connected #cakeml IRC channel on freenode
(webchat). There are also mailing lists.

Starter projects
We maintain a list of starter issues and desired
enhancements. We recommend contacting us
before starting work on one of these.

Latest compiler
The latest verified CakeML compiler passes
through 12 intermediate languages and targets
machine code for 5 architectures.

6/12/18, 8(33 AMCakeML

Page 1 of 4https://cakeml.org/

About
CakeML is a functional programming language and an ecosystem of

proofs and tools built around the language. The ecosystem includes a

proven-correct compiler that can bootstrap itself.

The CakeML project consists of the following components, all of which are free software.

Language definition. The CakeML language is based on a substantial subset of Standard ML. Its formal
semantics is specified in higher-order logic (HOL) in a functional big-step style. The core of the language
(its syntax and semantics) is quite stable, but the standard basis library is still undergoing development.
Contributions are welcome!

Compiler backend. The CakeML compiler has many parts. The most significant part is the verified
compiler backend, which transforms an untyped AST to concrete machine code for one of 5 target
architectures. The compiler backend has been proved to only produce machine code that is compatible
with the behaviours of the source programs. The backend passes through several intermediate
languages (as this diagram illustrates) and performs some optimisations.

Compiler frontend 1. There are two frontends to the compiler. The first one is a proof-producing
synthesis tool (called the translator). It generates CakeML AST from ML-like functions in HOL and proves
that the generated AST has the same behaviour as the HOL function. The original version of this tool
produced only pure CakeML code, but more recent versions can produce code that performs I/O and
uses state, including local state.

Compiler frontend 2. The second compiler frontend consists of a traditional parser followed by a type
inferencer. Both of these have been proved sound and complete with respect to declarative
specifications. For the parser, this means that our PEG parser implementation finds a correct parse tree if
there exists one according to a traditional grammar for CakeML concrete syntax (SML). Soundness and
completeness of the type inferencer means that, if the program is can be typed, then the inferencer will
find a type (which is the most general type).

Compiler bootstrapping. The CakeML compiler has been bootstrapped inside HOL. By bootstrapped
we mean that the compiler has compiled itself. This was achieved by noticing that frontend 2 combined
with the backend is a HOL function which we can feed into the tool-chain consisting of frontend 1 and
the backend. The result is a verified binary that provably implements the compiler itself (with frontend 2).
The latest bootstrapped binary is on our downloads page. The bootstrapping is described here.

Post-hoc verification of CakeML programs. We have adapted Charguéraud's CFML verification
framework to CakeML. Usually, we recommend that verified CakeML code is produced via synthesis
using frontend 1. However, in some cases it is more convenient to do Hoare-style reasoning in the
separation logic of CFML. CakeML's version of CFML supports reasoning about references, arrays,
exceptions and I/O, and is used for verification of parts of the CakeML basis library.

Verified applications built using CakeML. The CakeML tools are geared towards production of verified
applications using proof-producing synthesis (frontend 1) and compilation inside HOL (in-logic evaluation
of the compiler backend). To date, the largest case study is the bootstrapped CakeML compiler. Other
end-to-end verified applications that have been produced using the CakeML tools are:

a word frequency counter (a tutorial example)
Unix-like tools such as grep, sort, cat, diff, and patch
an OpenTheory article checker
a certificate checker for floating-point error bounds

This website provides further details of the CakeML project, links to papers, courseware, auxiliary tools

Code
The code for this project is hosted on GitHub. We
also host pre-built downloads.

Get involved
Join the slack channel cakeml.slack.com or the
connected #cakeml IRC channel on freenode
(webchat). There are also mailing lists.

Starter projects
We maintain a list of starter issues and desired
enhancements. We recommend contacting us
before starting work on one of these.

Latest compiler
The latest verified CakeML compiler passes
through 12 intermediate languages and targets
machine code for 5 architectures.

CompCertTSO

Why CompCert had such impact…

The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are
absent. As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack
of trying: we have devoted about six CPU-years to the
task. The apparent unbreakability of CompCert supports a
strong argument that developing compiler optimizations
within a proof framework, where safety checks are explicit
and machine-checked, has tangible benefits for compiler
users. (Yang et al. PLDI 2011)

• Demonstrated that realistic verified compilers are both
feasible and bring tangible benefits

http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

Why CompCert had such impact…
• Demonstrated that realistic verified compilers are both

feasible and bring tangible benefits

• Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes
- proof using simulations

[Yang et al. PLDI’11]

[CompCert manual 2015]

Why CompCert had such impact…
• Demonstrated that realistic verified compilers are both

feasible and bring tangible benefits

• Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes
- proof using simulations

[Yang et al. PLDI’11]

But the simplicity of the proof architecture
comes at a price…

Problem: Whole-Program Assumption
Correct compilation guarantee only applies to
whole programs!

Ps

Pt

!

CompCert’s … “formal guarantees of
semantics preservation apply only to whole
programs that have been compiled as a
whole by [the] CompCert C
[compiler]” (Leroy 2014)

Problem: Whole-Program Assumption
Correct compilation guarantee only applies to
whole programs!

Ps

Pt

!

et

es

!

low-level
libraries

Problem: Whole-Program Assumption
Correct compilation guarantee only applies to
whole programs!

Ps

Pt

!

et

es

!
from

different
compiler &

source lang.

!

“Compositional” Compiler Verification
This Lecture…
• why specifying compositional compiler
correctness theorems is hard

• survey recent results

• generic CCC theorem to guide future
compiler correctness theorems

• lessons for formalizing linking &
verifying multi-pass compilers et

es

!

Compiler Correctness

s! t =⇒ s ≈ t

expressed how?

CompCert

Ps ! Pt =⇒ Ps ≈ Pt

Whole-Program Compiler Correctness

expressed how?

Pt !−→ . . . !−→ P j
t !−→∗ P j+n

t !−→ . . .

Ps !−→ . . . !−→ P i
s !−→ P i+1

s !−→ . . .

R R R

“closed” simulations

Whole-Program Compiler Correctness

Ps ! Pt =⇒ Pt " Ps

behavior refinement

Tt

∀n. Pt "−→n P ′
t =⇒

∃m. Ps "−→m P ′
s ∧ Tt ≃ Ts

Ts

Correct Compilation of Components?

es

et

!

eS ≈ eT

expressed how?

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

?

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

expressed how?

?

“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

expressed how?

?

Produced by
- same compiler,
- diff compiler for S,
- compiler for diff lang R,
- R that’s very diff from S?

Is behavior of expressible in S?e′t

“Compositional” Compiler Correctness

es

et e′t

!

eS ≈ eT

 Definition should:

• permit linking with
target code of arbitrary
provenance

• support verification of
multi-pass compilers

If we want to verify realistic compilers…

Next
• Survey of “compositional” compiler correctness results

- how to express

• How does the choice affect:
- what we can link with (horizontal compositionality)
- how we check if some is okay to link with
- effort required to prove transitivity for multi-pass

compilers (vertical compositionality)

- effort required to have confidence in theorem
statement

eS ≈ eT

e′t

What we can link with

nothing

SepCompCert
Kang et al.’16

same
compiler

CompCert

diff compiler,
same S

Pilsner
Neis et al.’15

compiled from
diff lang R

Compositional CompCert
Stewart et al.’15

compiled from
very diff R

Multi-language ST
Perconti-Ahmed’14

What we can link with

nothing same
compiler

diff compiler,
same S

compiled from
diff lang R

compiled from
very diff R

CompCert
SepCompCert
Kang et al.’16 Pilsner

Neis et al.’15
Compositional CompCert

Stewart et al.’15
Multi-language ST
Perconti-Ahmed’14

Approach: Separate Compilation
SepCompCert
[Kang et al. ’16]

! ! !

Approach: Separate Compilation
SepCompCert
[Kang et al. ’16]

! ! !

Level A correctness:
exactly same compiler

Level B correctness:
can omit some intra-language
(RTL) optimizations

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Approach: Cross-Language Relations

es

et e′t

!

eS ≈ eT

Cross-language relation

Approach: Cross-Language Relations

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]

- [Hur-Dreyer POPL’11]

Cross-language relation

Approach: Cross-Language Relations

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]

- [Hur-Dreyer POPL’11]

Cross-language relation

 No transitivity!

Approach: Cross-Language Relations

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]

- [Hur-Dreyer POPL’11]

Cross-language relation

 No transitivity!

Parametric inter-language
simulations (PILS)
- [Neis et al. ICFP’15]

Approach: Cross-Language Relations

es

et e′t

!

eS ≈ eT

Compiling ML-like langs:

Logical relations

- [Benton-Hur ICFP’09]

- [Hur-Dreyer POPL’11]

Cross-language relation

 No transitivity!

Parametric inter-language
simulations (PILS)
- [Neis et al. ICFP’15] Prove transitivity,

 but requires effort!

x : τ ′ ⊢ es : τ ! et =⇒ x : τ ′ ⊢ es ≃ et : τ

Cross-Language Relation (Pilsner)

 cross-language relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τe′t

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! Does the compiler
correctness theorem
permit linking with ?e′t

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! cross-language relation

∀e′s, e′s. ⊢ e′s ≃ e′t : τ
′ =⇒ ⊢ es[e′s/x] ≃ et[e′t/x] : τe′t

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! e′s

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

! e′s
⊢ e′s ≃ e′t : τ

′

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

⊢ es[e′s/x] ≃ et[e′t/x] : τ∴
e′s

⊢ e′s ≃ e′t : τ
′

Cross-Language Relation (Pilsner)

es

et e′t

x : τ ′ ⊢ es ≃ et : τHave

!

⊢ es[e′s/x] ≃ et[e′t/x] : τ∴
e′s

⊢ e′s ≃ e′t : τ
′

• Need to come up with
 -- not feasible in practice!

• Cannot link with
 whose behavior cannot
 be expressed in source.

e′s

e′t

Horizontal
Compositionality Linking

Horizontal
Compositionality

Horizontal
Compositionality

es

et e′t

e′s!

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e 0S eS n e 0S

eT e 0T eT n e 0T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e 0t

eT e 0T eT n e 0T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e 0S eS n e 0S

eT e 0T eT n e 0T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e 0t

eT e 0T eT n e 0T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

=⇒
es

et
e′t

e′s

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e 0S eS n e 0S

eT e 0T eT n e 0T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e 0t

eT e 0T eT n e 0T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Source-Independent
Linking

Source-Independent
Linking

es

et e′t

!

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e 0S eS n e 0S

eT e 0T eT n e 0T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e 0t

eT e 0T eT n e 0T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

=⇒
es

et
e′t

e′t

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e 0S eS n e 0S

eT e 0T eT n e 0T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e 0t

eT e 0T eT n e 0T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Source-Independent
Linking

es

et e′t

!

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e 0S eS n e 0S

eT e 0T eT n e 0T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e 0t

eT e 0T eT n e 0T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

=⇒
es

et
e′t

e′t

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

Horizontal Compositionality

eS e 0S eS n e 0S

eT e 0T eT n e 0T

S⇡T S⇡T) S⇡T

vs. Source-independent Linking

eS eS n e 0t

eT e 0T eT n e 0T

S⇡T) ?⇡T

Vertical Compositionality

eS

eI

eT

S⇡I

I⇡T

)

eS

eT

S⇡T

vs. Transitivity

eS

eI

eT

⇡SIT

⇡SIT

)

eS

eT

⇡SIT

Fig. 1. Horizontal & Vertical Compositionality: The right notions?

5.1 Source-independent Linking
All real compilers must support linking. Compiling whole programs is both wildly ine�cient, as
most changes to programs will only a�ect a tiny fraction of the modules, and inappropriate for
high-level languages which nearly universally link against libraries written in lower-level languages.
But how do we characterize the type of linking that correct compilers support?
We draw a distinction between Horizontal Compositionality for compilers and what we are

terming Source-independent Linking. This is in the top half of Figure 1. What the phrase, Horizontal
Compositionality, should mean, in a semantic sense is what the top left quadrant in Figure 1 depicts:
that if we have a source component eS is related to a target component eT , and similarly for e 0S and
e 0T , then the composition of eS and e 0S should be related to the composition of eT and e 0T . This is
the type of compositionality supported by logical relations, a technique that has long been known
to be a useful means of proving correctness of compiler transformations (e.g., [Minamide et al.
1996] use a logical relation to prove the correctness of closure conversion). We believe that the
idea that horizontal compositionality is the form of linking property that compositional compilers
should support became popular after [Benton and Hur 2009] used a source-target logical relation
to specify compiler correctness between a nonterminating STLC and an SECD machine.

A compiler that supports horizontal compositionality, in the sense depicted in top left in Figure 1,
compiles a term eS to a term eT and then allows eT to be linked with a target term e 0T provided

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Compositional CompCert
Stewart et al.’15

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

e′t

Correct Compilation of Components?

es

et e′t

!

eS ≈ eT

expressed how?

e′t

Need a semantics
of source-target
interoperability:
- interaction semantics
- source-target multi-language

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Approach: Interaction Semantics
Compositional CompCert
• Language-independent linking

[Stewart et al. POPL’15]

Approach: Interaction Semantics
Compositional CompCert
• Language-independent linking

- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML),
compilers with different source/target memory models

• Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality
- transitivity relies on compiler passes performing restricted
set of memory transformations

[Stewart et al. POPL’15]

Approach: Interaction Semantics
Compositional CompCert
• Language-independent linking

- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML),
compilers with different source/target memory models

• Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality
- transitivity relies on compiler passes performing restricted
set of memory transformations

[Stewart et al. POPL’15]

Approach: Interaction Semantics
Compositional CompCert
• Language-independent linking

- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML),
compilers with different source/target memory models

• Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality
- transitivity relies on compiler passes performing restricted
set of memory transformations

[Stewart et al. POPL’15]

Compositional CompCert
Stewart et al.’15

diff compiler,
same S

SepCompCert
Kang et al.’16

What we can link with

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Multi-language ST
Perconti-Ahmed’14

ST et

es

et e′t

! e′t
Specify semantics
of source-target
interoperability:

T Ses

Approach: Source-Target Multi-lang.

Multi-language semantics:

a la Matthews-Findler ’07

[Perconti-Ahmed ESOP’14]

ST et

es

et e′t

! Specify semantics
of source-target
interoperability:

T Ses

ST e′t

Approach: Source-Target Multi-lang.

Multi-language semantics:

a la Matthews-Findler ’07

[Perconti-Ahmed ESOP’14]

T S(es (ST e′t))
≈ctx et e′t

es

et e′t

! ST e′t

Approach: Source-Target Multi-lang.
[Perconti-Ahmed ESOP’14]

es

et

! eS ≈ eT
eS ≈ctx ST eT

def
=

Approach: Source-Target Multi-lang.
[Perconti-Ahmed ESOP’14]

Multi-Language Semantics Approach

S

I

T

SIT

Multi-Language Semantics Approach

S

I

T

SIT

Multi-Language Semantics Approach

S

I

T

SIeIISeS

SIT

Multi-Language Semantics Approach

S

I

T

SIeIISeS

IT eTT IeI

SIT

Multi-Language Semantics Approach

S

I

T

SIeIISeS

IT eTT IeI

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

Multi-Lang. Approach: Multi-pass

!
!

eT

eS

eI

eS ≈ctxSIeI

eI ≈ctxIT eT

Compiler Correctness

Multi-Lang. Approach: Multi-pass

!
!

eT

eS

eI

eS ≈ctxSIeI

Compiler Correctness

SIeI ≈ctxSI(IT eT)

Multi-Lang. Approach: Multi-pass

!
!

eT

eS

eI

eS ≈ctxSIeI

Compiler Correctness

SIeI ≈ctxSI(IT eT)
}eS ≈ctxSIT eT

Multi-Lang. Approach: Linking

es

et e′t

e′s

Multi-Lang. Approach: Linking

es

et e′t

SIT e′t

Compiler Correctness: F to TAL

!
!

!

Closure Conversion

Allocation

Code Generation

eF

eC

eA

eT

τC

τA

τT

Combined language FCAT

• Boundaries mediate between

 & & &

• Operational semantics

• Boundary cancellation

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e

τC τA τTτ τ τ

CFτe !−→∗ CFτv !−→ v
τFCe !−→∗ τFCv !−→ v

τFCCFτe ≈ctx e : τ

CFτ τFCe ≈ctx e : τC

[Perconti-Ahmed ESOP’14]
[Patterson et al. PLDI’17]

Interoperability: F and C

CF int(n) !−→ n

intFC(n) !−→ n

Interoperability: F and C

(τ → τ ′)C = ∃β.⟨((β, τC) → τ ′C),β⟩

⌧ ::= · · · | Lh⌧ i
t ::= · · · | ⌧FCe
v ::= · · · | Lh⌧iFCv
E ::= · · · | ⌧FCE
⌧ ::= · · · | d↵e
t ::= · · · | CF⌧ e

E ::= · · · | CF⌧E

⌧ ::= ⌧ | ⌧

e ::= e | e

v ::= v | v

E ::= E | E

� ::= · | �,↵ | �,↵

� ::= · | �, x : ⌧ | �,x: ⌧

⌧hCi Operational Type Translation

8[↵].(⌧)! ⌧ 0hCi

= 9�.h
⇣
8[↵].(�, ⌧hCi[↵/d↵e])! ⌧ 0hCi[↵/d↵e]

⌘
,�i

↵hCi = d↵e 9↵.⌧hCi = 9↵.(⌧hCi[↵/d↵e])

unithCi = unit µ↵.⌧hCi = µ↵.(⌧hCi[↵/d↵e])

inthCi = int h⌧1, . . . , ⌧nihCi = h⌧1hCi, . . . , ⌧nhCii

Lh⌧ ihCi = ⌧

Type Substitution: d↵e[⌧/↵] = ⌧hCi

�;� ` e : ⌧ Include F and C rules, with environments replaced by �;�

�;� ` e : ⌧hCi

�;� ` ⌧FCe : ⌧
�;� ` e : ⌧

�;� ` CF⌧ e : ⌧hCi

CF
⌧ (v) = v Value Translation

CF
unit(()) = () CF

int(n) = n CF
Lh⌧i(Lh⌧iFCv) = v

CF
8[↵].(⌧)! ⌧ 0

(v) = packhunit,hv, ()ii as (8[↵].(⌧)! ⌧ 0)hCi

where v = �[↵](z : unit, x: ⌧hCi[↵/d↵e]).

CF⌧ 0[Lh↵i/↵](v [Lh↵i] ⌧ [Lh↵i/↵]FCx)
CF

9↵.⌧ (packh⌧ 0,vi as 9↵.⌧) = packh⌧ 0hCi,vi as 9↵.⌧hCi

where CF
⌧ [⌧ 0/↵](v) = v

CF
µ↵.⌧ (foldµ↵.⌧ v) = fold

µ↵.⌧hCiv where CF
⌧ [µ↵.⌧/↵](v) = v

CF
h⌧1, . . . , ⌧ni(hv1, . . . , vni) = hv1, . . . , vni where CF

⌧i (vi) = vi

⌧
FC(v) = v Value Translation

unit
FC(()) = () int

FC(n) = n Lh⌧i
FC(v) = Lh⌧iFCv

8[↵].(⌧)! ⌧ 0
FC(v) = �[↵](x : ⌧).⌧

0
FCe

where e = (unpack h�, yi = v in ⇡1(y) [d↵e]⇡2(y), CF⌧ x)
9↵.⌧

FC(packh⌧ 0,vi as 9↵.⌧hCi) = packhLh⌧ 0i,vi as 9↵.⌧
where ⌧ [Lh⌧ 0i/↵]

FC(v) = v
µ↵.⌧

FC(fold
µ↵.⌧ hFi v) = foldµ↵.⌧ v where ⌧ [µ↵.⌧/↵]

FC(v) = v

h⌧1, . . . , ⌧niFC(hv1, . . . , vni) = hv1, . . . , vni where ⌧iFC(vi) = vi

e 7�! e0 Include F and C rules, replacing eval. contexts E, E with E.

CF
⌧ (v) = v

E[CF⌧ v] 7�! E[v]

⌧
FC(v) = v ⌧ 6= Lh⌧ i

E[⌧FCv] 7�! E[v]

Figure 2: FC multi-language system (extends F & C from Figure 1)

from C to F:
⌧! ⌧ 0

FC(v) = �(x : ⌧).⌧
0
FC(unpack h�, yi = v

in ⇡1(y) ⇡2(y) CF⌧ x)

In both function cases, notice that the direction of the conversion
(and the boundary used) reverses for function arguments.

Handling Abstract Types Consider the type 8[↵].(↵)! ↵. Since
↵C = ↵, the translation of this type is

8[↵].(↵)! ↵C = 9�.h(8[↵].(�,↵)! ↵),�i.

If we naively try to extend the function case of the value translation
given above, we get the following:
8[↵].(↵)! ↵

FC(v) = �[↵](x :↵).↵FC(unpack h�, yi = v

in ⇡1(y) [↵C
]⇡2(y) CF↵x)

Note that the application produced by this translation needs a C

type corresponding to ↵. But we cannot simply insert some C type
variable ↵, because no binder for a C type variable is produced by
this translation! What we really want is that when ↵ is instantiated
with a concrete type ⌧ , the positions inside language C where that
type is needed receive ⌧C .

We resolve this by making two changes to our system: first,
we add a type d↵e (which can be read as “the suspension of ↵
into C”) that allows a type variable from F to appear in C. The
F type variable ↵ needs to be translated, but the translation is
suspended until ↵ is instantiated with a concrete type, and that
type is translated. We enforce this semantics by building the type
translation directly into the definition of type substitution, as shown
in figure 2.

Now that we have a type d↵e that accomplishes what we need,
we must introduce that type appropriately. We define a second type
translation ⌧hCi that is used by the multi-language semantics to
handle free type variables without disrupting the binding struc-
ture of terms. We refer to this second translation as the opera-
tional type translation. It closely follows the compiler’s type trans-
lation, except that it suspends translation of free F type variables
(↵hCi = d↵e) instead of replacing them with C type variables.
When translating a type that binds type variables, we do want to
produce a C type variable in both the binding and reference posi-
tions, which we accomplish by a substitution, e.g.

(9↵.⌧)hCi = 9↵.(⌧hCi[↵/d↵e]).

Thus, for a closed type, the operational translation is exactly the
compiler’s translation, that is, ⌧hCi = ⌧C .

With these two changes, we can correct the example above
by replacing the appearance of ↵C with ↵hCi, and get a sensible
translation back to F for values of type 8[↵].(↵)! ↵C .

Now consider translating values of type 8[↵].(↵)! ↵ from F

into C. Once again, the existing machinery is not quite sufficient.
Here is a naive attempt:

CF
8[↵].(↵)! ↵(v) = packhunit,hv0, ()ii as (8[↵].(↵)! ↵)hCi

where v
0 = �[↵](z : unit, x:↵).CF↵(v [↵]↵FCx).

This time, we have translated the binder for ↵ into a C binder,
but we are left with free occurrences of ↵ in the F part of the result!
This is not a suitable translation, as we must produce a closed value.
Note that v is parametric in ↵, which means it does not matter to
the F part of v0 (between the two language boundaries) what type
↵ is replaced with, as long as the overall value produced is closed.
The C part of the term expects this type to translate to ↵.

We introduce a lump type Lh⌧ i that allows us to pass C values to
F terms as opaque lumps. The introduction form for the lump type
is the boundary Lh⌧iFCe, which is a value when e is a value, and
the elimination form is CFLh⌧ie. A pair of opposite boundaries at
lump type cancel, to yield the underlying C value. We extend the
operational type translation with Lh⌧ ihCi = ⌧ .

Now the three free occurrences of ↵ in v
0 can be replaced with

Lh↵i, giving a well-typed translation. More generally, the transla-
tion of a function value (v of type 8[↵].(⌧)! ⌧ 0) will substitute
[Lh↵i/↵] wherever ⌧ and ⌧ 0 appear in the result of translation.

With the additional tools of lumps, suspensions, and the opera-
tional type translation, we have now developed everything needed
for the FC multi-language system. Figure 2 presents more of the
details, including the complete value translations.

4 2012/11/7

CFτ→ τ ′
v !−→ pack⟨unit,⟨v, ()⟩⟩ as ∃β.⟨((β, τC) → τ ′C),β⟩

where v = λ(z : unit, x: τC).CFτ ′
(v τFC x)

τ→ τ ′FCv !−→

Challenges
F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap, e.g.,

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
ve

AChv1,v2i
<latexit sha1_base64="mOAfc099ja3dlgGCl1KwYEBsF0s=">AAACSXicbZBNSyMxGMefad21232revQSLAsLKzJTWBS8VHvxqLC1QqcMmfSZGsxkhiRTKGG+i34aD170uB9jT4onM1MPvuwDCf/8n5c8/OJccG18/6/XaK58+Lja+tT+/OXrt++dtfVTnRWK4ZBlIlNnMdUouMSh4UbgWa6QprHAUXwxqPKjOSrNM/nHLHKcpHQmecIZNc6KOvthSs05o8IeDMqwnmczReUMS1un4sSGwr0FknkUbM+jXqjqZ1lGna6/49dB3ovgWXT7W+GvSwA4jjr34TRjRYrSMEG1Hgd+biaWKsOZG9gOC405ZRd0hmMnJU1RT2y9VEl+OGdKkky5Iw2p3ZcdlqZaL9LYVVZ767e5yvxfblyYZG9iucwLg5ItP0oKQUxGKmJkyhUyIxZOUKa425Wwc6ooM45rux1OMXHwX6NTs7i0wbaj8dtdFangLZf34rS3Ezh94pAdwjJasAlb8BMC2IU+HMExDIHBFVzDLdx5N94/78F7XJY2vOeeDXgVjeYTiwy01A==</latexit><latexit sha1_base64="tCwI1NHZ8dP2WhXaBJDscQL4CTA=">AAACSXicbZDLSgMxFIYz9VbrrerSTVAEwSIzgii4qXbjUsFqoVOGTHqmhmYyQ5IplDBv4Qv4NC7c6NLHcKW4MjN1odYDCX/+c8nhC1POlHbdV6cyMzs3v1BdrC0tr6yu1dc3blSSSQptmvBEdkKigDMBbc00h04qgcQhh9tw2CrytyOQiiXiWo9T6MVkIFjEKNHWCuqnfkz0HSXcnLVyv5xnEknEAHJTpsLI+Ny+OeBR4DVGwaEvy2eeB/Ud98AtA08L71vsNLf9/fvX5vgyqL/7/YRmMQhNOVGq67mp7hkiNaN2YM3PFKSEDskAulYKEoPqmXKpHO9ap4+jRNojNC7dnx2GxEqN49BWFnurv7nC/C/XzXR00jNMpJkGQScfRRnHOsEFMdxnEqjmYysIlczuiukdkYRqy7VW8/sQWfi/0clBmBuvYWkc2asg5f3lMi1uDg88q68ssnM0iSraQttoD3noGDXRBbpEbUTRA3pEz+jFeXLenA/nc1Jacb57NtGvqMx8AczUtlo=</latexit><latexit sha1_base64="tCwI1NHZ8dP2WhXaBJDscQL4CTA=">AAACSXicbZDLSgMxFIYz9VbrrerSTVAEwSIzgii4qXbjUsFqoVOGTHqmhmYyQ5IplDBv4Qv4NC7c6NLHcKW4MjN1odYDCX/+c8nhC1POlHbdV6cyMzs3v1BdrC0tr6yu1dc3blSSSQptmvBEdkKigDMBbc00h04qgcQhh9tw2CrytyOQiiXiWo9T6MVkIFjEKNHWCuqnfkz0HSXcnLVyv5xnEknEAHJTpsLI+Ny+OeBR4DVGwaEvy2eeB/Ud98AtA08L71vsNLf9/fvX5vgyqL/7/YRmMQhNOVGq67mp7hkiNaN2YM3PFKSEDskAulYKEoPqmXKpHO9ap4+jRNojNC7dnx2GxEqN49BWFnurv7nC/C/XzXR00jNMpJkGQScfRRnHOsEFMdxnEqjmYysIlczuiukdkYRqy7VW8/sQWfi/0clBmBuvYWkc2asg5f3lMi1uDg88q68ssnM0iSraQttoD3noGDXRBbpEbUTRA3pEz+jFeXLenA/nc1Jacb57NtGvqMx8AczUtlo=</latexit><latexit sha1_base64="Mmo7XrIWiu8IU0993Cv2kQUe1Lc=">AAACSXicbZDLSgMxFIYz9VbrrerSTbAILqTMFETBTdWNSwXbCp0yZNIzbWgmMySZQgnzMD6NCze69DFcKa7MjF14O5Dw5z+XHL4w5Uxp131xKguLS8sr1dXa2vrG5lZ9e6erkkxS6NCEJ/IuJAo4E9DRTHO4SyWQOOTQCyeXRb43BalYIm71LIVBTEaCRYwSba2gfubHRI8p4eb8MvfLeSaRRIwgN2UqjIzP7ZsDngbe0TRo+bJ85nlQb7hNtwz8V3hz0UDzuA7qb/4woVkMQlNOlOp7bqoHhkjNqB1Y8zMFKaETMoK+lYLEoAamXCrHB9YZ4iiR9giNS/d7hyGxUrM4tJXF3up3rjD/y/UzHZ0ODBNppkHQr4+ijGOd4IIYHjIJVPOZFYRKZnfFdEwkodpyrdX8IUQW/k90chTmxjuyNI7tVZDyfnP5K7qtpmf1jdtoX8yZVdEe2keHyEMnqI2u0DXqIIru0QN6Qs/Oo/PqvDsfX6UVZ96zi35EZeETP8CzSw==</latexit>

Challenges

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap, e.g.,

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

AChv1,v2i
<latexit sha1_base64="mOAfc099ja3dlgGCl1KwYEBsF0s=">AAACSXicbZBNSyMxGMefad21232revQSLAsLKzJTWBS8VHvxqLC1QqcMmfSZGsxkhiRTKGG+i34aD170uB9jT4onM1MPvuwDCf/8n5c8/OJccG18/6/XaK58+Lja+tT+/OXrt++dtfVTnRWK4ZBlIlNnMdUouMSh4UbgWa6QprHAUXwxqPKjOSrNM/nHLHKcpHQmecIZNc6KOvthSs05o8IeDMqwnmczReUMS1un4sSGwr0FknkUbM+jXqjqZ1lGna6/49dB3ovgWXT7W+GvSwA4jjr34TRjRYrSMEG1Hgd+biaWKsOZG9gOC405ZRd0hmMnJU1RT2y9VEl+OGdKkky5Iw2p3ZcdlqZaL9LYVVZ767e5yvxfblyYZG9iucwLg5ItP0oKQUxGKmJkyhUyIxZOUKa425Wwc6ooM45rux1OMXHwX6NTs7i0wbaj8dtdFangLZf34rS3Ezh94pAdwjJasAlb8BMC2IU+HMExDIHBFVzDLdx5N94/78F7XJY2vOeeDXgVjeYTiwy01A==</latexit><latexit sha1_base64="tCwI1NHZ8dP2WhXaBJDscQL4CTA=">AAACSXicbZDLSgMxFIYz9VbrrerSTVAEwSIzgii4qXbjUsFqoVOGTHqmhmYyQ5IplDBv4Qv4NC7c6NLHcKW4MjN1odYDCX/+c8nhC1POlHbdV6cyMzs3v1BdrC0tr6yu1dc3blSSSQptmvBEdkKigDMBbc00h04qgcQhh9tw2CrytyOQiiXiWo9T6MVkIFjEKNHWCuqnfkz0HSXcnLVyv5xnEknEAHJTpsLI+Ny+OeBR4DVGwaEvy2eeB/Ud98AtA08L71vsNLf9/fvX5vgyqL/7/YRmMQhNOVGq67mp7hkiNaN2YM3PFKSEDskAulYKEoPqmXKpHO9ap4+jRNojNC7dnx2GxEqN49BWFnurv7nC/C/XzXR00jNMpJkGQScfRRnHOsEFMdxnEqjmYysIlczuiukdkYRqy7VW8/sQWfi/0clBmBuvYWkc2asg5f3lMi1uDg88q68ssnM0iSraQttoD3noGDXRBbpEbUTRA3pEz+jFeXLenA/nc1Jacb57NtGvqMx8AczUtlo=</latexit><latexit sha1_base64="tCwI1NHZ8dP2WhXaBJDscQL4CTA=">AAACSXicbZDLSgMxFIYz9VbrrerSTVAEwSIzgii4qXbjUsFqoVOGTHqmhmYyQ5IplDBv4Qv4NC7c6NLHcKW4MjN1odYDCX/+c8nhC1POlHbdV6cyMzs3v1BdrC0tr6yu1dc3blSSSQptmvBEdkKigDMBbc00h04qgcQhh9tw2CrytyOQiiXiWo9T6MVkIFjEKNHWCuqnfkz0HSXcnLVyv5xnEknEAHJTpsLI+Ny+OeBR4DVGwaEvy2eeB/Ud98AtA08L71vsNLf9/fvX5vgyqL/7/YRmMQhNOVGq67mp7hkiNaN2YM3PFKSEDskAulYKEoPqmXKpHO9ap4+jRNojNC7dnx2GxEqN49BWFnurv7nC/C/XzXR00jNMpJkGQScfRRnHOsEFMdxnEqjmYysIlczuiukdkYRqy7VW8/sQWfi/0clBmBuvYWkc2asg5f3lMi1uDg88q68ssnM0iSraQttoD3noGDXRBbpEbUTRA3pEz+jFeXLenA/nc1Jacb57NtGvqMx8AczUtlo=</latexit><latexit sha1_base64="Mmo7XrIWiu8IU0993Cv2kQUe1Lc=">AAACSXicbZDLSgMxFIYz9VbrrerSTbAILqTMFETBTdWNSwXbCp0yZNIzbWgmMySZQgnzMD6NCze69DFcKa7MjF14O5Dw5z+XHL4w5Uxp131xKguLS8sr1dXa2vrG5lZ9e6erkkxS6NCEJ/IuJAo4E9DRTHO4SyWQOOTQCyeXRb43BalYIm71LIVBTEaCRYwSba2gfubHRI8p4eb8MvfLeSaRRIwgN2UqjIzP7ZsDngbe0TRo+bJ85nlQb7hNtwz8V3hz0UDzuA7qb/4woVkMQlNOlOp7bqoHhkjNqB1Y8zMFKaETMoK+lYLEoAamXCrHB9YZ4iiR9giNS/d7hyGxUrM4tJXF3up3rjD/y/UzHZ0ODBNppkHQr4+ijGOd4IIYHjIJVPOZFYRKZnfFdEwkodpyrdX8IUQW/k90chTmxjuyNI7tVZDyfnP5K7qtpmf1jdtoX8yZVdEe2keHyEMnqI2u0DXqIIru0QN6Qs/Oo/PqvDsfX6UVZ96zi35EZeETP8CzSw==</latexit>

Challenges

FCAT

F

C

A

T

τFCeCFτe

ACτe

T Aτe

τCAe

τAT e
e v

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap, e.g.,

A+T: What is ? What is ?
How to define contextual
equiv. for TAL components?
How to define logical relation?

AChv1,v2i
<latexit sha1_base64="mOAfc099ja3dlgGCl1KwYEBsF0s=">AAACSXicbZBNSyMxGMefad21232revQSLAsLKzJTWBS8VHvxqLC1QqcMmfSZGsxkhiRTKGG+i34aD170uB9jT4onM1MPvuwDCf/8n5c8/OJccG18/6/XaK58+Lja+tT+/OXrt++dtfVTnRWK4ZBlIlNnMdUouMSh4UbgWa6QprHAUXwxqPKjOSrNM/nHLHKcpHQmecIZNc6KOvthSs05o8IeDMqwnmczReUMS1un4sSGwr0FknkUbM+jXqjqZ1lGna6/49dB3ovgWXT7W+GvSwA4jjr34TRjRYrSMEG1Hgd+biaWKsOZG9gOC405ZRd0hmMnJU1RT2y9VEl+OGdKkky5Iw2p3ZcdlqZaL9LYVVZ767e5yvxfblyYZG9iucwLg5ItP0oKQUxGKmJkyhUyIxZOUKa425Wwc6ooM45rux1OMXHwX6NTs7i0wbaj8dtdFangLZf34rS3Ezh94pAdwjJasAlb8BMC2IU+HMExDIHBFVzDLdx5N94/78F7XJY2vOeeDXgVjeYTiwy01A==</latexit><latexit sha1_base64="tCwI1NHZ8dP2WhXaBJDscQL4CTA=">AAACSXicbZDLSgMxFIYz9VbrrerSTVAEwSIzgii4qXbjUsFqoVOGTHqmhmYyQ5IplDBv4Qv4NC7c6NLHcKW4MjN1odYDCX/+c8nhC1POlHbdV6cyMzs3v1BdrC0tr6yu1dc3blSSSQptmvBEdkKigDMBbc00h04qgcQhh9tw2CrytyOQiiXiWo9T6MVkIFjEKNHWCuqnfkz0HSXcnLVyv5xnEknEAHJTpsLI+Ny+OeBR4DVGwaEvy2eeB/Ud98AtA08L71vsNLf9/fvX5vgyqL/7/YRmMQhNOVGq67mp7hkiNaN2YM3PFKSEDskAulYKEoPqmXKpHO9ap4+jRNojNC7dnx2GxEqN49BWFnurv7nC/C/XzXR00jNMpJkGQScfRRnHOsEFMdxnEqjmYysIlczuiukdkYRqy7VW8/sQWfi/0clBmBuvYWkc2asg5f3lMi1uDg88q68ssnM0iSraQttoD3noGDXRBbpEbUTRA3pEz+jFeXLenA/nc1Jacb57NtGvqMx8AczUtlo=</latexit><latexit sha1_base64="tCwI1NHZ8dP2WhXaBJDscQL4CTA=">AAACSXicbZDLSgMxFIYz9VbrrerSTVAEwSIzgii4qXbjUsFqoVOGTHqmhmYyQ5IplDBv4Qv4NC7c6NLHcKW4MjN1odYDCX/+c8nhC1POlHbdV6cyMzs3v1BdrC0tr6yu1dc3blSSSQptmvBEdkKigDMBbc00h04qgcQhh9tw2CrytyOQiiXiWo9T6MVkIFjEKNHWCuqnfkz0HSXcnLVyv5xnEknEAHJTpsLI+Ny+OeBR4DVGwaEvy2eeB/Ud98AtA08L71vsNLf9/fvX5vgyqL/7/YRmMQhNOVGq67mp7hkiNaN2YM3PFKSEDskAulYKEoPqmXKpHO9ap4+jRNojNC7dnx2GxEqN49BWFnurv7nC/C/XzXR00jNMpJkGQScfRRnHOsEFMdxnEqjmYysIlczuiukdkYRqy7VW8/sQWfi/0clBmBuvYWkc2asg5f3lMi1uDg88q68ssnM0iSraQttoD3noGDXRBbpEbUTRA3pEz+jFeXLenA/nc1Jacb57NtGvqMx8AczUtlo=</latexit><latexit sha1_base64="Mmo7XrIWiu8IU0993Cv2kQUe1Lc=">AAACSXicbZDLSgMxFIYz9VbrrerSTbAILqTMFETBTdWNSwXbCp0yZNIzbWgmMySZQgnzMD6NCze69DFcKa7MjF14O5Dw5z+XHL4w5Uxp131xKguLS8sr1dXa2vrG5lZ9e6erkkxS6NCEJ/IuJAo4E9DRTHO4SyWQOOTQCyeXRb43BalYIm71LIVBTEaCRYwSba2gfubHRI8p4eb8MvfLeSaRRIwgN2UqjIzP7ZsDngbe0TRo+bJ85nlQb7hNtwz8V3hz0UDzuA7qb/4woVkMQlNOlOp7bqoHhkjNqB1Y8zMFKaETMoK+lYLEoAamXCrHB9YZ4iiR9giNS/d7hyGxUrM4tJXF3up3rjD/y/UzHZ0ODBNppkHQr4+ijGOd4IIYHjIJVPOZFYRKZnfFdEwkodpyrdX8IUQW/k90chTmxjuyNI7tVZDyfnP5K7qtpmf1jdtoX8yZVdEe2keHyEMnqI2u0DXqIIru0QN6Qs/Oo/PqvDsfX6UVZ96zi35EZeETP8CzSw==</latexit>

What is a component in TAL?

e

e : τ ! e

What is a component in TAL?

e

e : τ ! e

e ::= (I,H)

basic block = instruction sequence

Heap with basic blocks

Equivalence of components in TAL?

e : τ ! e

e1 e2
related inputs

Equivalence of components in TAL?

e : τ ! e

e1 e2
related inputs

related outputs

Equivalence of components in TAL?

e : τ ! e

e1 e2
related inputs

related outputs

central challenge: interoperability between
high-level (direct-style) language &

assembly (continuation style)

FunTAL: Reasonably Mixing a Functional Language
with Assembly [Patterson et al. PLDI’17]

CompCompCert vs. Multi-language

Transitivity
structured
simulation

all passes use
multi-lang

Check okay-to-link-with
satisfies
CompCert
memory model

satisfies
expected type
(translation of
source type)

Requires uniform memory
model across compiler IRs

yes no

Allows linking with
behavior inexpressible in S

no yes

≈ctx

Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

diff compiler,
same S

SepCompCert
Kang et al.’16

Proving Transitivity

nothing same
compiler

compiled from
diff lang R

compiled from
very diff R

CompCert

Pilsner
Neis et al.’15

Transitivity
requires
effort /
engineering

Vertical
Compositionality Transitivity

Vertical
Compositionality

Vertical
Compositionality

!
!

eS

eI =⇒ !
eS

eT

≈SI

≈IT

≈ST

eT

Transitivity
CompCompCert & Multi-lang

!
!

eT

eS

eI

≈SIT

≈SIT

=⇒ !
eS

eT

≈SIT

Vertical
Compositionality

Transitivity

Horizontal
Compositionality

Source-Independent
Linking

Pilsner
Neis et al.’15

Pilsner
Neis et al.’15

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

Compositional CompCert
Stewart et al.’15

Multi-language ST
Perconti-Ahmed’14

To Understand if Theorem is Correct…

Pilsner
Neis et al.’15

- source-target PILS

Compositional CompCert
Stewart et al.’15

- interaction semantics
 & structured simulations

Multi-language ST
Perconti-Ahmed’14 - source-target multi-language

To Understand if Theorem is Correct…

Pilsner
Neis et al.’15

- source-target PILS

Compositional CompCert
Stewart et al.’15

- interaction semantics
 & structured simulations

Multi-language ST
Perconti-Ahmed’14 - source-target multi-language

Is there a generic CCC theorem?

Generic CCC Theorem?

es

et

!

eS ≈ eT

expressed how?

Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

∈ L linking set

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link(⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS)) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS)

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

?

∈ L linking set

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link(⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS)) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS)

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

? ∈ Ŝ

source-target linking medium

∈ L linking set

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link(⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS)) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS)

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

? ∈ Ŝ

source-target linking medium

! lift (from L to) Ŝ

∈ L linking set

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link(⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS)) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS)

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generic CCC Theorem?

es

et e′t

!

eS ≈ eT

expressed how?

? ∈ Ŝ

source-target linking medium

! lift (from L to) Ŝ
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

∈ L linking set

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link(⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS)) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS)

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generic CCC Theorem

es

et e′t

!

eS ≈ eT
?

∈ L

∈ Ŝ

! lift (from L to) Ŝ
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link(⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS)) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS)

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generic CCC Theorem

es

et e′t

!

eS ≈ eT
?

∈ L

∈ Ŝ

! lift (from L to) Ŝ
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn (e 0T , eT) =) e 0T TnT eT T@DS ⇣(e

0
T ,�) DSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]DS (4)
8eS . [·]DS DSnS eS DS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e
0
T ,�) DSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a DSvS b , 8c . c DSnDS a DS@S c SnS b

4 EXISTING APPROACHES
There are several existing approaches to compositional compiler correctness, all of which aim to
give meaning to the execution of e SnT eT . The theorems then ensure that the behavior of that
execution is preserved in the program that results by compiling e and then linking with eT . In
this section, we will show how �ve di�erent approaches to compositional compiler correctness all
satisfy our CCC Theorem. In doing so, we will expose various features of the approaches. We will
then compare and contrast each method, showing how the CCC framework allows us to more easily
do this than was previously possible. These are not the only pieces of prior work on compositional
compiler correctness, but they represent a suitable broad cross-section.

4.1 SepCompCert
The approach taken by ?] is a separate compilation result rather than truly compositional correct-
ness, but we include it here to show that our de�nition scales down to separate compilation. We
will also show how further approaches relate to this result.

We �rst present a summary of how the CCC theorem is instantiated for SepCompCert, then
describe in detail each point, and �nally explain why the theorem they prove implies our CCC
theorem.

L {(eT ,�) | � = source component eS that was compiled by the SepCompCert compiler to eT }
DS unchanged source language S

DSnS unchanged source language linking SnS

DS@S source language (whole program) observational equivalence S@S

⇣(·) ⇣(eT , eS) = eS

We can see that in this case, the language DS is actually just the source language S . This is the reason
for much of the simpli�cation of the SepCompCert e�ort, as it means that much of the rest of the
complexity (the cross language linking, the operational semantics of runningDS programs) evaporates.
What is left is our lifting function, but this too becomes simple, because of the SepCompCert
restriction that we only link with modules that were produced by the SepCompCert compiler. We

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

 …and “lift” is inverse of “compile” on compiler output

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

T������ 3.2 (CCC: C������������ C������� C���������� REVISED).

9 ⇣. 8e 2 S . 8(eT ,�) 2 L. okn(eT & CST (e)) =) link(eT & CST (e)) T@bS link(⇣(eT ,�) & e)
(1)

Notation: e1, . . . , en & e 0 means e 0 exists at the some �xed place within the preceding sequence, �xed
for each instantiation of the theorem.

where ([·]T ,�[·]) 2 L (2)
8e . 9�. (CST (e),�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8e . [·]bS bSnS e bS@S e (5)

8(eT ,�) 2 L. 8eS . (8c . eT TnT c TvT CST (eS) TnT c) =)
(8c . ⇣(eT ,�) bSnS c bSvS eS SnS c)

^ (8c . c TnT eT TvT c TnT CST (eS)) =)
(8c . c SnbS ⇣(eT ,�) bSvS c SnS eS)

(6)

We walk through the theorem in detail, starting with part (1), which is the central result. We
require that there exists a “lift” function written ⇣ that translates from eT ,� pairs to some term in
the lifted language bS . Given the existence of ⇣, the theorem states that for any term e in S and any
pair eT ,� in the set of permissible-to-link terms L, the following implication holds. That is, if it is
okay to link eT with the result of compilation CST (e) then semantics preservation holds from the
source term e linked with the lifted target ⇣(eT ,�) and the compiled term CST (e) with eT . Note,
in particular, that this requires a cross-language linking bSnS , and bS must have been designed to
accommodate exactly this linking. Further, recall that our notion of linking is asymmetric, with the
left side acting as a context that provides bindings for the right, and formalized as a context with a
hole (written [·]). Formally, C n e , C[e].
Note that there are three novel things in this de�nition, as compared to the previous one. First,

we explicitly de�ne the linking set L of target contexts we can link with. This set is made up of
pairs of contexts and (depending on the instantiation, possibly empty) proofs that they are indeed
acceptable. Secondly, we de�ne a source-target linking medium language bS that is the medium in
which the source term e and target term eT can interact. Third, we de�ne a lifting function ⇣ that
translates the target context into the bS language.

It’s important to describe which parts of this de�nition the reader must understand. This is, as we
described in §1, the Trusted Understanding Base (TUB) for this theorem. The reader needs to trust
that the semantics of S and T used for this theorem indeed correspond to the languages S and T
that the compiler operates over. The reader needs to also understand the lifted language bS and how
linking of bS contexts with S terms works. On the other hand, the reader does not need to understand
how the particular ⇣ function works, just that it exists (and ful�lls various side-conditions to the
theorem which we will go over shortly). Finally, the reader needs to understand L, and in particular,
if � is non-trivial, will need to understand how they can be sure that the target context eT that they
want to link with is indeed something that the theorem covers.

The side-conditions of the theorem serve to ensure that the various novel parts of this de�nition
are well-formed. Part (2) ensures that the empty context in the target language T is in L, which
is used to prove that the de�nition implies whole-program correctness (a corollary we will prove
formally in §3.2).
Part (3) says that anything that is the output of the compiler is in the set L. Note that some of

these terms may not actually be able to be linked (because they will not pass okn with any term),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Generic CCC Theorem (Formally)

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

1:7

source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.

T������ 4.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS 2 S . 8(eT ,�) 2 L. eT TZT CS
T (eS) T@bS ⇣(eT ,�) bSZS eS (1)

where (úT ,�ú) 2 L (2)

8eS . 9�. (CS
T (eS),�) 2 L (3)

⇣(úT ,�ú) = úbS (4)
8eS . úbS bSZS eS bS@S eS (5)

8(eT ,�) 2 L. 8eS . (8cT . cT TZT eT T@T cT TZT CS
T (eS)) =)

(8cS . cS SZbS ⇣(eT ,�) bS@S cS SZS eS) (6)

We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

1:7

source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.

T������ 4.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS 2 S . 8(eT ,�) 2 L. eT TZT CS
T (eS) T@bS ⇣(eT ,�) bSZS eS (1)

where (úT ,�ú) 2 L (2)

8eS . 9�. (CS
T (eS),�) 2 L (3)

⇣(úT ,�ú) = úbS (4)
8eS . úbS bSZS eS bS@S eS (5)

8(eT ,�) 2 L. 8eS . (8cT . cT TZT eT T@T cT TZT CS
T (eS)) =)

(8cS . cS SZbS ⇣(eT ,�) bS@S cS SZS eS) (6)

We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

 …and “lift” is inverse of “compile” on compiler output

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

1:7

source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.

T������ 4.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS 2 S . 8(eT ,�) 2 L. eT TZT CS
T (eS) T@bS ⇣(eT ,�) bSZS eS (1)

where (úT ,�ú) 2 L (2)

8eS . 9�. (CS
T (eS),�) 2 L (3)

⇣(úT ,�ú) = úbS (4)
8eS . úbS bSZS eS bS@S eS (5)

8(eT ,�) 2 L. 8eS . (8cT . cT TZT eT T@T cT TZT CS
T (eS)) =)

(8cS . cS SZbS ⇣(eT ,�) bS@S cS SZS eS) (6)

We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

1:7

source-target multi-language (as in [Perconti and Ahmed 2014]), which means we can directly link
eS with e 0T .

Lift Function from L to bS . We will require a function ⇣ (pronounced “lift”) that translates T
components in the linking set L to components in the source-target linking medium bS . Hence, the

⇣ function translates a pair (eT ,�) to a component in bS , which means that the function can make
use of information in � to generate the bS component. This will turn out to be critical for modeling
results such as Pilsner and SepCompCert as we shall see in §5. In cases where the source or target
include nondeterminism, de�ning the lift function can be subtle, which we discuss in depth in §6.2.

Linking S and bS . Once we have chosen a source-target linking medium bS we will need to formally
specify linking of source S components with bS components: SZbS .

Linking Target Components. Finally, we need a speci�cation of linking for target-language com-
ponents: TZT . This should be a speci�cation of the linking used by the compiler being veri�ed.

CCC Theorem. We present the full CCC theorem below, noting that part (1) is very similar to our
informal de�nition earlier, but made concrete using the parameters we speci�ed above.
The subsequent requirements (2-6) are necessary to make the theorem well-behaved, and we

will go through them in detail, but we present the entire de�nition at once to make it easier to
reference. Most of the side conditions are not terribly interesting. But they are critical in ensuring
that compilers that satisfy CCC are indeed compositional in the sense that we expect, as we show
in the next subsection by proving that weaker compositional results follow from CCC.

T������ 4.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS 2 S . 8(eT ,�) 2 L. eT TZT CS
T (eS) T@bS ⇣(eT ,�) bSZS eS (1)

where (úT ,�ú) 2 L (2)

8eS . 9�. (CS
T (eS),�) 2 L (3)

⇣(úT ,�ú) = úbS (4)
8eS . úbS bSZS eS bS@S eS (5)

8(eT ,�) 2 L. 8eS . (8cT . cT TZT eT T@T cT TZT CS
T (eS)) =)

(8cS . cS SZbS ⇣(eT ,�) bS@S cS SZS eS) (6)

We walk through the theorem in detail, starting with part (1), which is the central result. Given
the existence of ⇣, the theorem states that for any term eS in S and any pair (eT ,�) in the set of
permissible-to-link terms L, the following re�nement may hold. We say “may” because the linking
operation is assumed to be a partial function that may fail if a language-speci�c linking validation
failed (e.g., a type error if the language was typed). Provided this was not the case, and the result
is a whole program, the re�nement is de�ned, and semantics preservation holds from the source
term eS linked with the lifted target ⇣(eT ,�) to the compiled term CS

T (eS) linked with eT .
It is important to describe which parts of this de�nition the reader must understand. Theorems

are about trust, and trust is about understanding, thus the understanding burden is closely related
to how trustworthy the theorem is. In this case, the reader needs to understand the lifted languagebS and how linking of bS components with S terms works. On the other hand, the reader does not
need to understand how the particular ⇣ function works, just that it exists (and ful�lls various
side-conditions to the theorem which we will go over shortly); this is why it is existentially
quanti�ed. Finally, the reader needs to understand L, and in particular, if � is non-trivial, will need

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

The Next 700 Compiler Correctness Theorems (Functional Pearl)
[Patterson-Ahmed, ICFP 2019]

Implies whole-program compiler correctness &
separate compilation correctness
Can be instantiated with different formalisms…

CCC Properties

Implies whole-program compiler correctness &
separate compilation correctness
Can be instantiated with different formalisms…

CCC Properties

Pilsner

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn(e 0T , eT) =) e 0T TnT eT T@bS ⇣(e 0T ,�) bSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8eS . [·]bS bSnS eS bS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e 0T ,�) bSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a bSvS b , 8c . c bSnbS a bS@S c SnS b

4 EXISTING APPROACHES

L {(eT ,�) | � = source component eS & proof that eS ' eT }
bS unchanged source language S

bSnS unchanged source language linking

⇣(·) ⇣(eT , (eS , _)) = eS

L {(eT , _) | where eT is any target component }
bS a syntax that embeds source and target, equipped with interaction semantics

bSnS adding another module to combined syntax

⇣(·) ⇣(eT , _) = eT

L {(eT , _) | where eT is any target component }
bS source-target multi-language ST

bSnS e STnST eS

⇣(·) ⇣(eT , _) = ST(eT)

5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular

, Vol. 1, No. 1, Article . Publication date: December 2018.

Implies whole-program compiler correctness &
separate compilation correctness
Can be instantiated with different formalisms…

CCC Properties

Multi-language ST

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn(e 0T , eT) =) e 0T TnT eT T@bS ⇣(e 0T ,�) bSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8eS . [·]bS bSnS eS bS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e 0T ,�) bSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a bSvS b , 8c . c bSnbS a bS@S c SnS b

4 EXISTING APPROACHES

L {(eT ,�) | � = source component eS & proof that eS ' eT }
bS unchanged source language S

bSnS unchanged source language linking

⇣(·) ⇣(eT , (eS , _)) = eS

L {(eT , _) | where eT is any target component }
bS a syntax that embeds source and target, equipped with interaction semantics

bSnS adding another module to combined syntax

⇣(·) ⇣(eT , _) = eT

L {(eT , _) | where eT is any target component }
bS source-target multi-language ST

bSnS e STnST eS

⇣(·) ⇣(eT , _) = ST(eT)

5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular

, Vol. 1, No. 1, Article . Publication date: December 2018.

Implies whole-program compiler correctness &
separate compilation correctness
Can be instantiated with different formalisms…

CCC Properties

Compositional CompCert

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 Anon.

3 COMPOSITIONAL COMPILER CORRECTNESS
T������ 3.1 (CCC: C������������ C������� C����������).

9 ⇣. 8eS , eT . eS eT =) (1)
8(e 0T ,�) 2 L. okn(e 0T , eT) =) e 0T TnT eT T@bS ⇣(e 0T ,�) bSnS eS (1)

where ([·]T ,�[·]) 2 L (2)
8eS , eT . eS eT =) 9�. (eT ,�) 2 L (3)

⇣([·]T ,�[·]) = [·]bS (4)
8eS . [·]bS bSnS eS bS@S eS (5)

8(e 0T ,�) 2 L. 8eS , eT . eS eT =) e 0T TvT eT =) ⇣(e 0T ,�) bSvS eS (6)

Notation: a TvT b , 8c . c TnT a T@T c TnT b

a bSvS b , 8c . c bSnbS a bS@S c SnS b

4 EXISTING APPROACHES

L {(eT ,�) | � = source component eS & proof that eS ' eT }
bS unchanged source language S

bSnS unchanged source language linking

⇣(·) ⇣(eT , (eS , _)) = eS

L {(eT , _) | where eT is any target component }
bS semantics that embeds source and target, equipped with

interaction semantics

bSnS adding another module to combined semantics

⇣(·) ⇣(eT , _) = eT

L {(eT , _) | where eT is any target component }
bS source-target multi-language ST

bSnS e STnST eS

⇣(·) ⇣(eT , _) = ST(eT)

5 FULLY-ABSTRACT COMPILATION
6 DISCUSSION
Advantage of Parameters. The de�nition of CCC has the appealing characteristic that it makes

explicit the complexities of various approaches to compositional compiler correctness by forcing
them to be explicit parameters of the theorem. This both allows the reader to more readily com-
pare di�erent approaches, by simply comparing how the parameters are instantiated by di�erent
frameworks. For example, we could ask what are the target components in L that a particular

, Vol. 1, No. 1, Article . Publication date: December 2018.

Benefits of CCC for the Next 700...
• Sheds light on pros & cons of compiler correctness

formalisms

• Is a compositional compiler correctness theorem right?
Instantiate CCC with your compiler correctness
formalism & show that CCC follows as a corollary

• What's needed for better vertical compositionality /
easier transitivity? ...

i.e., when lift is a back-translation that maps every

 to some

Bonus of vertical comp: can verify different passes using
different formalisms to instantiate CCC

Fully abstract compilers have such back-translations!

when =

Vertical Compositionality for Free

eS

!

eT ∈ L

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

CCC(S,I) and CCC(I,T) =) CCC(S,T)
<latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit>

i.e., when lift is a back-translation that maps every

 to some

Bonus of vertical comp: can verify different passes using
different formalisms to instantiate CCC

Fully abstract compilers have such back-translations!

when =

Vertical Compositionality for Free

eS

!

eT ∈ L

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

CCC(S,I) and CCC(I,T) =) CCC(S,T)
<latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit>

i.e., when lift is a back-translation that maps every

 to some

Bonus of vertical comp: can verify different passes using
different formalisms to instantiate CCC

Fully abstract compilers have such back-translations!

when =

Vertical Compositionality for Free

eS

!

eT ∈ L

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

9 ⇣SI . 8e 2 S . 8eI 2 LI . okn (eI ,CSI (e)) =) eI InI CSI (e) I@S ⇣SI (eI) SnS e

where [·]T I 2 LI

8e . CSI (e) 2 LI

⇣SI ([·]I) = [·]S
8e . [·]S SnS e S@S e

8eI 2 LI . 8eS . eI IvI CSI (eS) =) ⇣SI (eI) SvS eS

(1)

and

9 ⇣IT . 8e 2 I . 8eT 2 LT . okn (eT ,CIT (e)) =) eT TnT CIT (e) T@I ⇣IT (eT) InI e

where [·]T 2 LT
8e . CIT (e) 2 LT

⇣IT ([·]T) = [·]I
8e . [·]I InI e I@I e

8eT 2 LT . 8eI . eT TvT CIT (eI) =) ⇣IT (eT) IvI eI

(2)

Where we have simpli�ed and inlined based on the fact that if the ⇣ functions are back-
translations, Ŝ is S and Î is I , and � is empty.

We now want to show that:

9 ⇣ST . 8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

where [·]T 2 LT
8e . CST (e) 2 LT

⇣ST ([·]T) = [·]S
8e . [·]S SnS e S@S e

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

(3)

We do this by de�ning ⇣ST to be the composition ⇣SI� ⇣IT and then showing the result.
We �rst show the main result, after which we show the side-conditions also hold. That is, we

must show:

8e 2 S . 8eT 2 LT . okn (eT ,CST (e)) =) eT TnT CST (e) T@S ⇣ST (eT) SnS e

First we instantiate (2) with CSI (eS) and eT to get:

eT TnT CIT (CSI (eS)) T@I ⇣IT (eT) SnS CSI (eS)
We next instantiate (1) with eS and ⇣IT (eT) to get:

⇣IT (eT) InI CSI (eS) I@S ⇣SI (⇣IT (eT)) SnS eS

These compose together to get the needed result.
We next prove the side-conditions. The �rst is trivial, given by (2), and the second and third

are straightforward compositions. The fourth follows trivially from (1). The last one is the only
non-trivial one. That is, we must show that:

8eT 2 LT . 8eS . eT TvT CST (eS) =) ⇣ST (eT) SvS eS

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

CCC(S,I) and CCC(I,T) =) CCC(S,T)
<latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit><latexit sha1_base64="vJFJKOj631cEieciAxL25MAMhSU=">AAACOXicbVC7SgNBFJ31GeMramkzmBUiSNi10VJMY7qIiQpJCLOTuzpkdnaZuSuGJb9l41/YCTYWitj6A04ehSYeGDiccy5z7wkSKQx63oszN7+wuLScW8mvrq1vbBa2tq9MnGoODR7LWN8EzIAUChooUMJNooFFgYTroFcZ+tf3oI2IVR37CbQjdqtEKDhDK3UKtRbCA5owq1Qqg5J76R66VfeAMtWlf52qderWcVsisouBcensqA10CkWv7I1AZ4k/IUUyQa1TeG51Y55GoJBLZkzT9xJsZ0yj4BIG+VZqIGG8x26haaliEZh2Nrp8QPet0qVhrO1TSEfq74mMRcb0o8AmI4Z3Ztobiv95zRTDk3YmVJIiKD7+KEwlxZgOa6RdoYGj7FvCuBZ2V8rvmGYcbdl5W4I/ffIsuToq+5ZfHBVPzyZ15Mgu2SMl4pNjckrOSY00CCeP5JW8kw/nyXlzPp2vcXTOmczskD9wvn8AOceoSw==</latexit>

Fully Abstract Compilers

• ensure a compiled component does not interact with
any target behavior that is inexpressible in S

 - this guarantees programmer can reason at source level

• Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers?

preserve equivalence

Fully Abstract Compilers

• ensure a compiled component does not interact with
any target behavior that is inexpressible in S

 - this guarantees programmer can reason at source level

• Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers?

preserve equivalence

Fully Abstract Compilers

• ensure a compiled component does not interact with
any target behavior that is inexpressible in S

 - this guarantees programmer can reason at source level

• Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers?

preserve equivalence

We want both!

Stepping Back…

Current State of PL Design

RustML Java

Target

Current State of PL Design

RustML Java

Target

Language specifications are incomplete!
Don’t account for linking

Current State of PL Design

RustML Java

Target

Language specifications are incomplete!
Don’t account for linking

C FFI unsafe JNI
escape
hatches

The Way Forward…

Rethink PL Design with Linking Types
RustML Java

C FFI unsafe JNI
escape
hatches

Rethink PL Design with Linking Types
RustML Java

C FFI unsafe JNI
escape
hatches

Design linking types extensions that support
safe interoperability with other languages

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too

[Patterson-Ahmed SNAPL’17]

PL Design, Linking Types

RustML
affine

Only need linking types extensions to
interact with behavior inexpressible in

your language

PL Design, Linking Types

RustML
affine

fine-grained
capabilities

Only need linking types extensions to
interact with behavior inexpressible in

your language

PL Design, Linking Types

RustML
affine

fine-grained
capabilities

Only need linking types extensions to
interact with behavior inexpressible in

your language

Gallina
pure

PL Design, Linking Types

RustML
affine

fine-grained
capabilities

Gallina
pure

Richly Typed Target

Type-preserving
fully abstract
compilers

! ! !

Linking Types
• Allow programmers to reason in almost their own source

language, even when building multi-language software

• Allow compilers to be fully abstract (and vertically
compositional), yet support multi-language linking

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too

[Patterson-Ahmed SNAPL’17]

Final Thoughts on Correct Compilation
• CompCert started a renaissance in compiler verification

- major advances in mechanized proof

• Next challenge: Compositional Compiler Correctness

- that applies to world of multi-language software

- but source-independent linking and vertical
compositionality are at odds

- generic CCC theorem sheds light on current/future results

Secure Compilation

References & Future Directions

Formal Approaches to Secure Compilation:
A Survey of Fully Abstract Compilation

[Patrignani--Ahmed-Clarke, ACM Computing Surveys 2019]

Challenge: Proving Full Abstraction

Suppose � � e1 : � � e1 and � � e2 : � � e2.

�+ � e1 �ctx
T e2 : �+

� � e1 �ctx
S e2 : �

e1

e1

e2

e2

Given:
No can
distinguish

Show:
Given arbitrary ,
it cannot distinguish

Need to be able to
“back-translate”
to an equivalent

CT

CT

CS

e1, e2

CS
e1, e2

e1 e2

Challenge: Back-translation
1. If target is not more expressive than source, use the same

language: back-translation can be avoided in lieu of
wrappers between and

• Closure conversion: System F with recursive types
[Ahmed-Blume ICFP’08]

• f* (STLC with refs, exceptions) to js* (encoding of
JavaScript in f*) [Fournet et al. POPL’13]

τ τ+

Challenge: Back-translation
2. If target is more expressive than source

(a) Both terminating: use back-translation by partial
evaluation

• Equivalence-preserving CPS from STLC to System F
[Ahmed-Blume ICFP’11]

• Noninterference for Free (DCC to F)
[Bowman-Ahmed ICFP’15]

(b) Both nonterminating: use ??
back-trans by partial evaluation is not well-founded!

ω

Challenge: Back-translation
2. If target is more expressive than source

(a) Both terminating: use back-translation by partial
evaluation

• Equivalence-preserving CPS from STLC to System F
[Ahmed-Blume ICFP’11]

• Noninterference for Free (DCC to F)
[Bowman-Ahmed ICFP’15]

(b) Both nonterminating: use ??
back-trans by partial evaluation is not well-founded!

ω

Observation: if source lang. has recursive types,
can write interpreter for target lang. in source lang.

Fully Abstract Closure Conversion
Source: STLC + types

Target: System F + types + types + exceptions

First full abstraction result where target has exceptions but
source does not.

Earlier work, due to lack of sufficiently powerful back-
translation techniques, added target features to source.

Proof technique: Universal Embedding
• Untyped embedding of target in source

• Mediate between strongly typed source and untyped
back-translation

∃
µ

µ

[New et al. ICFP’16]

Dynamic Secure Compilation

e1 e2

e1 e2

Dynamic Secure Compilation

1. Cryptographically enforced: concurrent, distributed langs.

• Join calculus to Sjoin with crypto primitives, preserves and
reflect weak bisimulation [Abadi et al. S&P’99, POPL'00, I&C'02]

• Pi-calculus to Spi-calculus [Bugliesi and Giunti, POPL'07]

• F# with session types to F# with crypto primitives [Corin et
al., J. Comp. Security'08]

• Distributed WHILE lang. with security levels to WHILE
with crypto and distributed threads [Fournet et al, CCS'09]

• TINYLINKS distributed language to F7 (ML w. refinement
types), preserves data and control integrity[Baltopoulos and
Gordon, TLDI'09]

Dynamic Secure Compilation

2. Dynamic Checks / Runtime Monitoring

• STLC with recursion to untyped lambda-calc, proved fully
abstract using approximate back-translation. Types erased
and replaced w. dynamic checks. [Devriese et al. POPL’16]

• f* (STLC with refs, exceptions) to js* (encoding of
JavaScript in f*). Defensive wrappers perform dynamic
type checks on untyped js* [Fournet et al. POPL’13]

• Lambda-calc to VHDL digital circuits, run-time monitors
check that external code respects expected
communication protocol [Ghica and Al-Zobaidi ICE'12]

Dynamic Secure Compilation

3. Memory Protection Techniques

(a) Address space layout randomization (ASLR)

• STLC w. abstract memory, to target with concrete
memory; show probabilistic full abstraction for large
memory [Abadi-Plotkin TISSEC'12]

• Added dynamic alloc, h.o. refs, call/cc, testing hash of
reference, to target with probref to reverse hash
[Jagadeesan et al. CSF'11]

Dynamic Secure Compilation

3. Memory Protection Techniques

(b) Protected Module Architectures (PMAs) (e.g., Intel SGX)
protected memory with code and data sections, and
unprotected memory

• Secure compilation of an OO language (with dynamic
allocation, exceptions, inner classes) to PMA; proved fully
abstract using trace semantics. Objects allocated in
secure memory partition [Patrignani et al. TOPLAS'15]

Dynamic Secure Compilation

3. Memory Protection Techniques

(c) PUMP Machine architecture tracks meta-data, registers
and memory locations have tags, checked during execution

• Secure compartmentalizing compiler with mutually
distrustful compartments that can be compromised by
attacker. OO lang to RISC with micro policies
[Juglaret et al. 2015]

Dynamic Secure Compilation

4. Capability Machines

• C to CHERI-like capability machine: give calling convention
that enforces well-bracketed control-flow and
encapsulation of stack frames using local capabilities
(subsequent work: linear capabilities); proved using logical
relation [Skorstengaard et al. ESOP'18, POPL'19]

Secure Compilation:
Open Problems

Secure Compilation:
Open Problems

1. Need languages / DSLs that allow programmers to easily
express security intent.

• Compilers need to know programmer intent so they can
preserve that intent (e.g., FaCT, a DSL for constant-time
programming [Cauligi et al. SecDev'17]

2. Performant secure compilers

• Static enforcement avoids performance overhead, could
run on stock hardware; need richly typed compiler IRs

• Dynamic enforcement when code from static/dynamic and
safe/unsafe languages interoperates (e.g., h/w support)

• Better integration of static and dynamic enforcement...

• Better integration of static and dynamic enforcement...

LLVM

Gradually Typed IR

RustML Scheme

secure
compilers

! ! ! GallinaC !!

!

!!
Intel SGX CHERI

Secure Compilation:
Open Problems

3. Preserve (weaker) security properties than contextual equiv.

• Full abstraction may preserve too many incidental/
unimportant equivalences and has high overhead for
dynamic enforcement

4. Security against side-channel attacks

• Requires reasoning about side channels in source language,
which is cumbersome. Can DSLs help?

• Correctness-Security Gap in Compiler Optimizations [D'Silva et
al. LangSec'15]. Make compilers aware of programmers'
security intent to take into account for optimizations.

Secure Compilation:
Open Problems

5. Cryptographically enforced secure compilation

• e.g., Obliv-C ensures memory-trace obliviousness using
garbled circuits, but no formal proof that it is secure

6. Concurrency (beyond message-passing, targeting untyped
multi-threaded assembly)

7. Easier proof techniques and reusable proof frameworks
(trace-based techniques, back-translation, logical relations,
bisimulation)

Final Thoughts

It's an exciting time to be working on secure compilation!

• Numerous advances in the last decade, in PL/formal
methods and systems/security.

• For performant secure compilers, will need to integrate
static and dynamic enforcement techniques, and provide
programmers with better languages for communicating
their security intent to compilers.

