Compositional Compiler Verification
& Secure Compilation

Amal Ahmed

Northeastern University

Compiler Correctness

= semantics-preserving compilation

S«Tt —> S%Tt

compiles to same behavior

Compiler Verification

One of the “big problems” of computer science

* since McCarthy and Painter 1967
Correctness of a Compiler for Arithmetic Expressions

e see Dave 2003: Compiler Verification: A Bibliography

Compiler Verification since 2006...

Leroy "06 : Formal certification of a compiler back-end or:

brogramming a compiler with a proof assistant. CompCert

Lochbihler 10 : Verifying a compiler for Java threads.
Myreen °1 0 : Verified just-in-time compiler on x86.

Sevcik et al’l I: Relaxed-memory concurrency and CompCertTSO
verified compilation.

Zhao et al’l 3 : Formal verification of SSA-based vellvm]
optimizations for LLVYM

verified
LLVM

u
Kumar et al’l 4 : CakeML: A verified implementation
of ML

Why CompCert had such impact...

* Demonstrated that realistic verified compilers are both
feasible and bring tangible benefits

The striking thing about our CompCert results is that the

middle-end bugs we found

in all other compilers are

absent. As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack

of trying: we have devotec
task. The apparent unbrea

about six CPU-years to the
kability of CompCert supports a

strong argument that deve
within a proof framework,
and machine-checked, has

loping compiler optimizations
where safety checks are explicit
tangible benefits for compiler

users. (Yang et al. PLDI 2011)

http://www.cs.utah.edu/~regehr/papers/pldi11-preprint.pdf

Why CompCert had such impact...

* Demonstrated that realistic verified compilers are both
feasible and bring tangible benefits [Yang et al. PLDI’| |]

* Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes

- proof using simulations

external preprocessor

lexing and parsing (¥)

type-checking and elaboration

printing

external assembler
Object file

external linker

validation by the cchecklink tool

Not verified yet
(*) the parser is formally verified

pull side effects out of expressions

type climination; simplification of control

stack allocation

instruction selection

construction of a CFG

function inlining

tail call optimization

constant propagation

common subexpression elimination
dead code elimination

live range splitting

register allocation, spilling, reloading

lincarization of the CFG

layout of the stack frame

generation of Asm code

Formally verified

[CompCert manual 2015]

Why CompCert had such impact...

* Demonstrated that realistic verified compilers are both
feasible and bring tangible benefits [Yang et al. PLDI’| |]

* Provided a proof architecture for others to follow/build on
- CompCert memory model, uniform across passes

- proof using simulations

But the simplicity of the proof architecture
comes at a price...

Problem: Whole-Program Assumption

Correct compilation guarantee only applies to
whole programs!

CompCert’s ... “formal guarantees of
semantics preservation apply only to whole
brograms that have been compiled as a
whole by [the] CompCert C

[compiler]” (Leroy 2014)

Ps

Problem: Whole-Program Assumption

Correct compilation guarantee only applies to
whole programs!

Ps

low-level
libraries

.
;
_

Problem: Whole-Program Assumption

Correct compilation guarantee only applies to

whole programs!
i from
dlfferent

compiler &
.1 ’o ang

Ps

“Compositional” Compiler Verification

This Lecture...
* why specifying compositional compiler
correctness theorems is hard

* survey recent results

* generic CCC theorem to guide future
compiler correctness theorems

* lessons for formalizing linking &
verifying multi-pass compilers

Compiler Correctness

S ~> T > S =1

T

expressed how!

Whole-Program Compiler Correctness

PSWPt >PSQ5Pt
T

expressed how!
“closed” simulations

CompCert

Pi— ...+— P+ P

Whole-Program Compiler Correctness

PSWPt > Pt:PS
T

behavior refinement

Correct Compilation of Components?

€g ~ €T

T

expressed how!

Correct Compilation of Components?

g ~ e
" 1
i expressed how!
€t ’
r j et

Correct Compilation of Components?

€g ~ €T

T

expressed how!

€t ’
r j et

“Compositional” Compiler Correctness

€t ’
r j et

€g ~ €T

T

expressed how!

“Compositional” Compiler Correctness

€g ~ €T
& |

expressed how!?!

Cs

~Produced by

/- same compiler,
e, »; - diff cqmpiler fgr S,
€: - compiler for diff lang R,

- R that’s very diff from S?

Is behavior of €/ expressible in S?

“Compositional” Compiler Correctness

If we want to verify realistic compilers...

€g ~ €T

|

Definition should:

Cs

e permit linking with
target code of arbitrary

provenance
Ct o/ support verification of
t multi-pass compilers

Next

* Survey of “compositional” compiler correctness results

- how to express €9 =~ €T

* How does the choice affect:

what we can link with (horizontal compositionality)

how we check if some e:: is okay to link with

effort required to prove transitivity for multi-pass
compilers (vertical compositionality)

effort required to have confidence in theorem
statement

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Separate Compilation

SepCompCert
[Kang et al.’| 6]

R A

Approach: Separate Compilation

SepCompCert
[Kang et al.’| 6]

Level A correctness:
exactly same compiler

i i i Level B correctness:
can omit some intra-language

. . . (RTI_) OPtimiZGtiOnS

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Cross-Language Relations

Cross-language relation

!
€g ~ €T

Approach: Cross-Language Relations

Cross-language relation

!
€g ~ €T

Compiling ML-like langs:
Logical relations
- [Benton-Hur ICFP’09]

- [Hur-Dreyer POPL’ | []
/

Approach: Cross-Language Relations

Cross-language relation

|
e =~ €

Compiling ML-like langs:
i Logical relations

_ [No transitivity!]
€t ’
r j €t

Approach: Cross-Language Relations

Cross-language relation

!
€g ~ €T

Compiling ML-like langs:

Logical relations

[No transitivity!]

j o’ Parametric inter-language
t simulations (PILS)

- [Neis et al. ICFP’[5]

Approach: Cross-Language Relations

Cross-language relation

!
€g ~ €T

Compiling ML-like langs:

Logical relations

[No transitivity!]

j o’ Parametric inter-language
t simulations (PILS)

\

"1 Prove transitivity,
but requires effort!

. J

Cross-Language Relation (Pilsner)

X:T Fe:7T~e = x:7T'Fe~ei:T

T

cross-language relation

Vel,ei. Fel~el : 7 = Feel/x]~eilel/x]:T

Cross-Language Relation (Pilsner)

Have x: 7' Fe.~e;: 7
€t ’
r*et

Cross-Language Relation (Pilsner)

Have x: 7' Fe.~e;: 7
Cs
4)

Does the compiler
\E correctness theorem
permit linking with e ?

_ J
€t ’

Cross-Language Relation (Pilsner)

Have x: 7' Fe.~e;: 7
5 s T

cross-language relation

Vel,ei. Fel~el : 7 = Feglel/x| ~eife]/x]:T

Ct ’
r jet

Cross-Language Relation (Pilsner)

Have x: 7' Fe.~e;: 7
€t ’
r*et

Cross-Language Relation (Pilsner)

Have x: 7' Fe.~e;: 7
/
¢)
€t ’

Cross-Language Relation (Pilsner)

e X:7T'Fe~e;:T

Hav
/
¢)
€t ’

Cross-Language Relation (Pilsner)

e X:7T'Fe.~ei:T

Hav
- eslel/x| ~ egley /x| i T
€t ’
rjet

Cross-Language Relation (Pilsner)

e X: 7T Fe.~e.:T

Hav
I S o
"j T EeT

- eslel/x| ~ egley /x| i T

* Need to come up with es
et j o -- not feasible in practice!
t | e Cannot link with e::

whose behavior cannot
be expressed in source.

Horizontal
Compositionality Linking

Horizontal
Compositionality

Horizontal
Compositionality

e/

Linking

Linking

NT

Source-Independent
Linking

NT

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

Correct Compilation of Components?

g ~ e
" 1
i expressed how!
€t ’
r j et

Correct Compilation of Components?

e =~ €
e; T
i expressed how!
€t ’
r j et

Correct Compilation of Components?

€g ~ €T
e; T

expressed how!

Need a semantics

of source-target
e, , in.terope.rability: |
€t |- interaction semantics

- source-target multi-language

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ | 4

Approach: Interaction Semantics

Compositional CompCert [Stewart et al. POPL’I 5]

* Language-independent linking

at_external

Q

initial_core ——>» running interference
halted after_external
Semantlcs (G C M : Type) : Type =
initial_core : G —V —listV— option C
at_external : C — option (F X list V)
{ after_external : optionV — C — option C
halted : C — option V
| corestep : G>C—->M-—->C— M — Prop

Figure 2. Interaction semantics interface. The types G (global
environment), C' (core state), and M (memory) are parameters to
the interface. F is the type of external function identifiers. V is the

type of CompCert values.

Approach: Interaction Semantics

Compositional CompCert [Stewart et al. POPL’I 5]

* Language-independent linking

e Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality

Approach: Interaction Semantics

Compositional CompCert [Stewart et al. POPL’I 5]

* Language-independent linking

e Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality

- transitivity relies on compiler passes performing restricted
set of memory transformations

Approach: Interaction Semantics

Compositional CompCert [Stewart et al. POPL’I 5]

* Language-independent linking

- uniform CompCert memory model across all languages

- not clear how to scale to richer source langs (e.g., ML),
compilers with different source/target memory models

e Structured simulation: support rely-guarantee
relationship between the different languages while
retaining vertical compositionality

- transitivity relies on compiler passes performing restricted
set of memory transformations

What we can link with

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner

Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

Approach: Source-Target Multi-lang.

[Perconti-Ahmed ESOP’14]

Specify semantics
of source-target

interoperability:

S Tet TS S

Multi-language semantics:
a la Matthews-Findler °07

Approach: Source-Target Multi-lang.

[Perconti-Ahmed ESOP’14]

Specify semantics
of source-target

interoperability:

S Tet TS S

Multi-language semantics:
a la Matthews-Findler °07

/
t

Approach: Source-Target Multi-lang.
TS (es (STe)

[Perconti-Ahmed ESOP’14]
STe
%cta: et et
€t ’
r j et

Approach: Source-Target Multi-lang.

[Perconti-Ahmed ESOP’14]

Multi-Language Semantics Approach

Multi-Language Semantics Approach

‘@

Multi-Language Semantics Approach

Multi-Language Semantics Approach

Multi-Language Semantics Approach

Compiler Correctness

eS:

i €g ~ClT SIQI

Multi-Lang. Approach: Multi-pass v

Compiler Correctness

eS:

s =~ ST e,

i e =TT er

Multi-Lang. Approach: Multi-pass v*

Compiler Correctness

GS:

i eg ~t* ST

e

i STer = ST(ITer)

GT‘

Multi-Lang. Approach: Multi-pass v

Compiler Correctness

eS‘

i €g S SZGI

€1 |H

i STer = ST(ITer)

GT‘

es =T ST T er

Multi-Lang. Approach:

Linking v

/

eS

€t ’
r j et

Multi-Lang. Approach:

Linking v

SITe;
€t ’
r j et

Compiler Correctness: F to TAL

CF

Closure Conversion 7€

€C

Allocation T

€A

Code Generation T

er

X
X
X

Combined language FCAT

[Perconti-Ahmed ESOP’14]
[Patterson et al. PLDI’17]

e Boundaries mediate between
& A T&TT

T&T

* Operational semantics
CFer—*"CF'VI—

TFCe —* TFCv —— v

* Boundary cancellation

TFCCFTe = e 1
CF "FCe =" & : T

Interoperabllity: F and C

CF™(n) —s

ntrEC — n

Interoperabllity: F and C

(T = 1) = T

/
CFT7Tvi—

where

T T FCV s A(x:7).T FC

CF™x

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap, e.g., AC

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap, e.g., AC

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

Challenges

F+C: Interoperability
semantics with type abstraction
in both languages

C+A: Interoperability when
compiler pass allocates code &
tuples on heap, e.g., AC

A+T: What is e? What is v!?
How to define contextual
equiv. for TAL components!?
How to define logical relation?

What is a component in TAL?

e. T ~~ €

c

What is a component in TAL?

e. T v~ e basic block = instruction sequence

l

Equivalence of components in TAL?

e. T ~~ €

€1
related inputs — -

Equivalence of components in TAL?

e. T ~~ €

related inputs — -
related outputs —

Equivalence of components in TAL?

e. T e
€1
related inputs — -

related outputs — -

central challenge: interoperability between
high-level (direct-style) language &
assembly (continuation style)

FunTAL: Reasonably Mixing a Functional Language
with Assembly [Patterson et al. PLDI’| 7]

CompCompCert vs. Multi-language

. structured all passes use
Transitivity . . : ctx
simulation multi-lang &
. satisfies
satisfies expected type
Check okay-to-link-with CompCert P /P

memory model

(translation of
source type)

Requires uniform memory
model across compiler IRs

yes

no

Allows linking with
behavior inexpressible in S

no

yes

Proving Transitivity

same diff compiler, compiled from compiled from

n?thmg compiler same S diff lang R very diff R
CompCert
SepCompCert
Kang et al’l 6 Pilsner -
+ Neis et al’l 5
Transitivity Compositional CompCert
requires E Stewart et al’l 5 :
effort / E Multi-language ST :

engineering ™. Perconti-Ahmed’| 4 .

Vertical
Compositionality Transitivity

Vertical
Compositionality

Vertical
Compositionality

L.
}

X

S

: >
$
K

2

I'r

€1
eT

Transitivity
CompCompCert & Multi-lang

Horizontal
Compositionality

Source-Independent
Linking

Compositional CompCert

Pilsner Stewart et al.’ | 5
Neis et al.’l 5
Multi-language ST
Perconti-Ahmed’| 4
Vertical Transitivity

Compositionality

Pilsner
Neis et al’l 5

Compositional CompCert
Stewart et al’l 5

Multi-language ST
Perconti-Ahmed’ [4

To Understand if Theorem is Correct...

Pilsner

Neis et al’l 5 - source-target PILS

Compositional CompCert - interaction semantics
Stewart et al’l 5 & structured simulations

Multi-language ST

Perconti-Ahmed’ | 4 - source-target multi-language

To Understand if Theorem is Correct...

Pilsner
. , - source-target PILS
Neis et al’l 5 5
Compositional CompCert - interaction semantics
Stewart et al.’l 5 & structured simulations

Multi-language ST

Perconti-Ahmed’ | 4 - source-target multi-language

Is there a generic CCC theorem!?

- J

Generic CCC Theorem?

€g ~ €T

T

expressed how!

Generic CCC Theorem?

g ~ e
" KN
}/ expressed how!
€t ’
r j et

Generic CCC Theorem?

g ~ e
" KN

expressed how!

.‘:i o g el — g

€g ~ €T

Generic CCC Theorem?
|

expressed how!
." o FRESy

Generic CCC Theorem?

[source-target linking med:um]

€s ~ €T
. N

expressed how!

€
t .‘ j el ¢ €[L — finkingset

Generic CCC Theorem?

[source-target linking med:um]

€g ~ €T
. LA

expressed how!

1 —{lift (from Lto §)

€
t " j el ¢ €[L — finkingset

Generic CCC Theorem?

[source-target linking med:um]

eSNeT

T

expressed how!

«—{hft (from Lto 5)

.‘i et p €[— inkinget
T"<T

Generic CCC Theorem

3?
l!‘:es o

T ift (fom Lto $)

Ct
.‘jewé L
T

Generic CCC Theorem

A1
l!‘:es

T ift (fom Lto $)

et.‘:ie;,we/:

TP
...and “lift” is inverse of “compile” on compiler output

Generic CCC Theorem (Formally)

d%. Ves € S. V(er,p) € L.
er v 7 Ci?(eS) rC35 Fer, @) 545 es

...and “lift” is inverse of “compile” on compiler output

V(BT, QD) e L. Ves.
(VCT. CT 7P €T T|:T CT 7Pl T C;(ES)) —
(Ves. cs gpag Fer, @) s cs Mg es)

The Next 700 Compiler Correctness Theorems (Functional Pearl)
[Patterson-Ahmed, ICFP 201 9]

CCC Properties

Implies whole-program compiler correctness &
separate compilation correctness

Can be instantiated with different formalisms...

CCC Properties

Implies whole-program compiler correctness &
separate compilation correctness

Can be instantiated with different formalisms...

Pilsner

L {(er,) | ¢ = source component es & proof that e ~ et}

AN

S unchanged source language S

< ¢ unchanged source language linking

?() e, (es,) = es

CCC Properties

Implies whole-program compiler correctness &
separate compilation correctness

Can be instantiated with different formalisms...

Multi-language ST

L {(er,_) | where er is any target component }

~

S source-target multi-language ST

s € g7gsT €5

?() Her,) = ST (er)

CCC Properties

Implies whole-program compiler correctness &
separate compilation correctness

Can be instantiated with different formalisms...

Compositional CompCert

L {(er,_) | where et is any target component }

A~

S semantics that embeds source and target, equipped with
interaction semantics

< ¢ adding another module to combined semantics

() Mer,_) =er

Benefits of CCC for the Next 700...

* Sheds light on pros & cons of compiler correctness
formalisms

* |s a compositional compiler correctness theorem right!?
Instantiate CCC with your compiler correctness
formalism & show that CCC follows as a corollary

* What's needed for better vertical compositionality /
easier transitivity? ...

Vertical Compositionality for Free

CCC(S,I) and CCC(I,T) = CCC(S,T)
when Fsr = Forofr

i.e., when lift T is a back-translation that maps every

er € L tosome €g

Bonus of vertical comp: can verify different passes using
different formalisms to instantiate CCC

Vertical Compositionality for Free

CCC(S,I) and CCC(I,T) = CCC(S,T)
when Fsr = Forofr

i.e., when lift T is a back-translation that maps every

er € L tosome €g

Bonus of vertical comp: can verify different passes using
different formalisms to instantiate CCC

Vertical Compositionality for Free

CCC(S,I) and CCC(I,T) = CCC(S,T)
when Fsr = Forofr

i.e., when lift T is a back-translation that maps every

er € L tosome €g

Bonus of vertical comp: can verify different passes using
different formalisms to instantiate CCC

Fully abstract compilers have such back-translations!

Fully Abstract Compillers

el

preserve equivalence -
compile

el

~uCtX

~S

~uCtX

~T

e2

compile

e2

* ensure a compiled component does not interact with

any target behavior that is inexpressible in S

- this guarantees programmer can reason at source level

Fully Abstract Compillers

el ~F |e2

preserve equivalence - -
compile compile

el| ~& |e2

* ensure a compiled component does not interact with
any target behavior that is inexpressible in S

- this guarantees programmer can reason at source level

* Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers?

Fully Abstract Compillers

el ~F |e2

preserve equivalence - -
compile compile

el| ~& |e2

* ensure a compiled component does not interact with
any target behavior that is inexpressible in S

- this guarantees programmer can reason at source level

* Do we want to link with behavior inexpressible in S?
Or do we want fully abstract compilers?

We want both!

Stepping Back...

Current State of PL Design

Current State of PL Design

e)
Language specifications are incomplete!

Don’t account for linking
N y

Current State of PL Design

hatches

4)
Language specifications are incomplete!

Don’t account for linking
N y

The Way Forward...

Rethink PL Design with Linking Types

hatches

Rethink PL Design with Linking Types

hatches

Design linking types extensions that support
safe interoperability with other languages

Linking Types for Multi-Language Software:

Have Your Cake and Eat it Too
[Patterson-Ahmed SNAPL’ | 7]

PL Design, Linking Types

-
X 4) 3
Y, L Y

1

: affine

Only need linking types extensions to
interact with behavior inexpressible in
your language

PL Design, Linking Types

w Wy
N
:' s
1

: affine

Only need linking types extensions to
interact with behavior inexpressible in
your language

PL Design, Linking Types

w hy
X 4) 3
Y, L

1

: affine
ML T ! Rust' Gallina
' pure |

Only need linking types extensions to
interact with behavior inexpressible in
your language

PL Design, Linking Types

- hy

. aff‘ne -

)
pure , fne gralnved
capabllltbes
Type-preserving
fully abstract

compilers

Richly Typed Target

Linking Types

* Allow programmers to reason in almost their own source
language, even when building multi-language software

* Allow compilers to be fully abstract (and vertically
compositional), yet support multi-language linking

Linking Types for Multi-Language Software:
Have Your Cake and Eat it Too

[Patterson-Ahmed SNAPL’| 7]

Final Thoughts on Correct Compilation

* CompCert started a renaissance in compiler verification

- major advances in mechanized proof

* Next challenge: Compositional Compiler Correctness
- that applies to world of multi-language software

- but source-independent linking and vertical
compositionality are at odds

- generic CCC theorem sheds light on current/future results

Secure Compilation

References & Future Directions

Formal Approaches to Secure Compilation:
A Survey of Fully Abstract Compilation

[Patrignani-Ahmed-Clarke, ACM Computing Surveys 2019]

Challenge: Proving Full Abstraction

Suppose ' Fe; :T~ejand I'FHey : T~ €)
Given:

ke =% er: T No Cg can
distinguish €1, €2

Show:
Given arbitrary Ct
it cannot distinguishe1, €7

Need to be able to
“back-translate” Ct
to an equivalent Cg

' ke~ th:z: ey T

Challenge: Back-translation

|. If target is not more expressive than source, use the same
language: back-translation can be avoided in lieu of
wrappers between T and T

* Closure conversion: System F with recursive types
[Ahmed-Blume ICFP’08]

o f* (STLC with refs, exceptions) to js* (encoding of
JavaScript in f*) [Fournet et al. POPL’| 3]

Challenge: Back-translation

2. If target is more expressive than source

(a) Both terminating: use back-translation by partial
evaluation

* Equivalence-preserving CPS from STLC to System F
[Ahmed-Blume ICFP’[|]

* Noninterference for Free (DCC to Fw)
[Bowman-Ahmed ICFP’| 5]

(b) Both nonterminating: use ??
back-trans by partial evaluation is not well-founded!

Challenge: Back-translation

2. If target is more expressive than source
(a) Both terminating: use back-translation by partial
evaluation

* Equivalence-preserving CPS from STLC to System F
[Ahmed-Blume ICFP’[|]

* Noninterference for Free (DCC to Fw)
[Bowman-Ahmed ICFP’| 5]

(b) Both nonterminating: use ??
back-trans by partial evaluation is not well-founded!

Observation: if source lang. has recursive types,
can write interpreter for target lang. in source lang.

Fully Abstract Closure Conversion
Source: STLC + 1 types [New et al. ICFP’16]

Target: System F + d types + 1 types + exceptions

First full abstraction result where target has exceptions but
source does not.

Earlier work, due to lack of sufficiently powerful back-
translation techniques, added target features to source.

Proof technique: Universal Embedding
* Untyped embedding of target in source

* Mediate between strongly typed source and untyped
back-translation

Dynamic Secure Compilation

el e

Dynamic Secure Compilation

|. Cryptographically enforced: concurrent, distributed langs.

* Join calculus to Sjoin with crypto primitives, preserves and
reflect weak bisimulation [Abadi et al. S&P’99, POPL'00, I&C'02]

* Pi-calculus to Spi-calculus [Bugliesi and Giunti, POPL'07]

* F# with session types to F# with crypto primitives [Corin et
al,,]. Comp. Security'08]

* Distributed WHILE lang. with security levels to VWHILE
with crypto and distributed threads [Fournet et al, CCS'09]

* TINYLINKS distributed language to F/ (ML w. refinement

types), preserves data and control integrity[Baltopoulos and
Gordon, TLDI'09]

Dynamic Secure Compilation

2. Dynamic Checks / Runtime Monitoring

* STLC with recursion to untyped lambda-calc, proved fully
abstract using approximate back-translation. Types erased
and replaced w. dynamic checks. [Devriese et al. POPL’| 6]

o f* (STLC with refs, exceptions) to js* (encoding of
JavaScript in f¥). Defensive wrappers perform dynamic
type checks on untyped js* [Fournet et al. POPL’| 3]

* Lambda-calc to VHDL digital circuits, run-time monitors
check that external code respects expected
communication protocol [Ghica and A-Zobaidi ICE'l 2]

Dynamic Secure Compilation

3. Memory Protection Techniques
(a) Address space layout randomization (ASLR)

 STLC w. abstract memory, to target with concrete
memory; show probabilistic full abstraction for large
memory [Abadi-Plotkin TISSEC'| 2]

* Added dynamic alloc, h.o. refs, call/cc, testing hash of

reference, to target with probref to reverse hash
[Jagadeesan et al. CSF'I |]

Dynamic Secure Compilation

3. Memory Protection Techniques

(b) Protected Module Architectures (PMAs) (e.g., Intel SGX)
protected memory with code and data sections, and
unprotected memory

* Secure compilation of an OO language (with dynamic
allocation, exceptions, inner classes) to PMA; proved fully
abstract using trace semantics. Objects allocated in
secure memory partition [Patrignani et al. TOPLAS'| 5]

Dynamic Secure Compilation

3. Memory Protection Techniques

(c) PUMP Machine architecture tracks meta-data, registers
and memory locations have tags, checked during execution

* Secure compartmentalizing compiler with mutually
distrustful compartments that can be compromised by

attacker. OO lang to RISC with micro policies
[Juglaret et al. 2015]

Dynamic Secure Compilation

4. Capability Machines

* C to CHERI-like capability machine: give calling convention
that enforces well-bracketed control-flow and
encapsulation of stack frames using local capabilities
(subsequent work: linear capabilities); proved using logical
relation [Skorstengaard et al. ESOP'I 8, POPL'| 9]

Secure Compilation:
Open Problems

Secure Compilation:
Open Problems

|. Need languages / DSLs that allow programmers to easily
express security intent.

 Compilers need to know programmer intent so they can
preserve that intent (e.g., FaCT, a DSL for constant-time
programming [Cauligi et al. SecDev'l 7]

2. Performant secure compilers

* Static enforcement avoids performance overhead, could
run on stock hardware; need richly typed compiler IRs

* Dynamic enforcement when code from static/dynamic and
safe/unsafe languages interoperates (e.g., h/w support)

* Better integration of static and dynamic enforcement...

* Better integration of static and dynamic enforcement...

SGCUI’G}/ i i i \f/

compilers
Gradually Typed IR

Secure Compilation:
Open Problems

3. Preserve (weaker) security properties than contextual equiv.

* Full abstraction may preserve too many incidental/

unimportant equivalences and has high overhead for
dynamic enforcement

4. Security against side-channel attacks

* Requires reasoning about side channels in source language,
which is cumbersome. Can DSLs help!?

* Correctness-Security Gap in Compiler Optimizations [D'Silva et
al. LangSec'l 5]. Make compilers aware of programmers’
security intent to take into account for optimizations.

Secure Compilation:
Open Problems

5. Cryptographically enforced secure compilation

e e.g., Obliv-C ensures memory-trace obliviousness using
garbled circuits, but no formal proof that it is secure

6. Concurrency (beyond message-passing, targeting untyped
multi-threaded assembly)

/. Easier proof techniques and reusable proof frameworks
(trace-based techniques, back-translation, logical relations,
bisimulation)

Final Thoughts

It's an exciting time to be working on secure compilation!

* Numerous advances in the last decade, in PL/formal
methods and systems/security.

* For performant secure compilers, will need to integrate
static and dynamic enforcement techniques, and provide
programmers with better languages for communicating
their security intent to compilers.

