
Fritz Henglein
University of Copenhagen, henglein@diku.dk
Deon Digital, henglein@deondigital.com

OPLSS 2019
June 25th, 2019

Smart digital contracts:
Introduction

mailto:henglein@diku.dk
mailto:henglein@deondigital.com

Select references

• McCarthy, The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment, The Accounting
Review, 1982

• Peyton Jones, Eber, Composing contracts: an adventure in financial
engineering (functional pearl), ICFP 2001

• Andersen, Elsborg, Henglein, Simonsen, Stefansen, Compositional
specification of commercial contracts, International Journal on Software
Tools for Technology Transfer, 2006

• Rambaud, Perez, Nehmer, Robinseon, Algebraic Models for Accounting
Systems, World Scientific, 2010

• Henglein, Blockchain deconstructed (abstract), 2nd Symp. DLT, 2018

2

Overview

• Tue, 9:00-10:15: Distributed ledger technology and `smart contracts’
• Wed, 14:00-15:15: Algebraic foundations for resource management
• Thu, 9:00-10:15: Compositional contracts and `smart’ contract management
• Thu, 2:00-3:15: Contract analysis (and other topics)

3

Professor of Programming
Languages and Systems
University of Copenhagen

Head of Research
Deon Digital AG

Fritz Henglein

Related background

• European Blockchain Consortium (ebcc.eu)

• Steering committee chair, Innovation network for

Finance IT (CFIR.dk)

• Principal investigator, Functional technology for high-

performance architectures (FUTHARK)

Academic background, affiliations, guest positions

Areas of interest
• Programming language

technology
• Theoretical computer

science (algorithms,
semantics, logic)

• Blockchain technology
• Contract management
• Financial technology
• Enterprise systems

Why blockchain?

5

Why blockchain?
6

Tamper-proof
logging?

Decentralize?

Store and
transfer

resources?

Server-/data center hosted system
(trusted/privileged system provider)

Point-to-point communicating systems: RPC, REST,
micro services

(trusted/privileged data managers)

Structured P2P storage systems with hash pointers

Blockchain/distributed ledger system

no

no

no

yes

yes

yes Digital contracts: protocols for resource transfers
Automated contract managers/smart contracts:

Guaranteeing transactionality (tit-for-tat,
consideration)

Blockchain/distributed ledger system

• organizational and technical decentralization;
• tamper-proof recording of digitally signed (real-

world) events and their evidence;
• digital resource management:
• digital storage, transfer, transportation, transformation of

money, goods and services

It provides
• consistent, nonrepudiable information across all principals

(suppliers, partners, customers, regulators, etc.)
• guarantees against forging and double spending

7

A computer system characterized by

Organizational and technical decentralization

• Technical decentralization: A distributed peer-to-peer
system

• Organizational decentralization: No single or select
group of organizations controls/has privileged rights to
system
• Nonpermissioned (”blockchain”): open and self-authenticating,

anybody can host a node, be a user and have multiple/many
anonymous identities

• Permissioned: nodes and users are authenticated and identified;
may be private, but cannot have multiple identities

• Governance policy for regulating membership,
functionality, conflict resolution, etc.

8

Intermezzo: Extended REA accounting model
• Resource (= asset): Money, licenses, physical objects (e.g. trucks),...
• Information: Data, invoices,...
• Agent: Person, company, institution, autonomous device,...
• Contract: Specification of obligations, permissions and prohibitions
• Event:
• Atomic event:
• A transfers R to B
• A transforms R to R’
• A informs B of I
• ...

• Complex event: Set of events that satisfies a given (sub)contract

9

McCarthy, The REA Accounting Model (1982)
Andersen et al, Compositional specification of commercial contracts (2006)

Tamper-proof recording of events and their evidence
• Event recording: Events are stored (eventually, probabilistically) consistently;

that is, every node in the distributed system gives the same answer when
queried about them

• Tamper-proof: Stored events cannot subsequently be altered or deleted
• Evidence
• for atomic events:
• signature (by sending agent), plus
• supporting evidence of event actually having happened, e.g. receipt signature, 3d party validation (”payment has

been performed” [*], ”parcel has been delivered”), DNA samples (”this is the same timber as received”), GPS-/time-
tagged pictures (”the parcel delivered in your driveway”), IoT device messages (”parcel has been scanned at this
time and location”), etc

• for complex events:
• (mathematical) proof that a particular set of events constitutes a correct execution (by all involved parties) of a

particular, mathematically well-specified contract.

10

[*] In blockchain systems: Payment validation = recording on blockchain

Blockchain/DL systems as digital twins

time

Alternative state 1

Alternative state 2
e'

Contract

Physical evidence frameworkPhysical world

History in Blockchain

e

now

Physical assets
and

physical events

Illustration by Boris Düdder

Tamper-proof

Digital resource management

• System keeps track of ownership and location of resources
• Guarantees that digitally represented resources can only be transferred

and transported, never erroneously or maliciously duplicated
• Can be decomposed into
• resource preservation
• credit limit enforcement

12

Resource preservation and credit limit enforcement

• Resource preservation: Transfers keep the sum of all resources invariant:
• A transfers 50 ETH to B: The sum of all ETH is the same. Atomically, after event, A has

50 ETH less; B has 50 ETH more.
• We allow negative numbers to be transferred and as account balances!

• Credit limit enforcement: A transfer is only valid (and effected) if the
credit limits of each agent are respected. For above transfer of 50 ETH:
• If A owns 60 ETH and has credit limit 0: Valid. (A owns 10 ETH after transfer.)
• If A owns 30 ETH and has credit limit 0: Invalid. (No transfer. A still owns 30 ETH.)
• If A owns 30 ETH and has credit limit 20: Valid. (A ”owns” -20 ETH after transfer.)

• No-double-spend guarantee = all agents have credit limit 0.
• UTxO = account where complete balance must be transferred.

13

Henglein, Blockchain deconstructed (2018), 2nd Symp. on DLT

Why adaptive credit limits instead of just zero credit limit?

• Full-reserve monetary system: One agent (the central bank) has no credit
limit, all others have credit limit 0.

• Fractional-reserve monetary system: A designated set of agents (”banks”)
have a dynamic non-0 credit limit, all others have credit limit 0.
• Banks’ dynamic credit limits depend on other assets they own, including expected

future repayments as part of the contracts (loans, etc.) they have made.

• Demand-driven production of physical assets: A car manufacturer has no
credit limit (they produce cars on demand), all others have credit limit 0.
• A car transfer by a car manufacturer need not be validated (``do they even own it?’’);

they can produce a new one.

14

Commutativity theorem, part 1

• Theorem: If every agent has an infinite credit limit, then all resource
transfers are valid and can be executed in arbitrary order. (Each order
results in the same state of ownership.)

• Corollary: Contract execution involving k agents with infinite credit limit
requires only consensus by the k agents (on the particular execution); no
event needs to be validated by a 3d party. Usually k=2.

• Loosely: The Internet with TLS for authentication, reliable message
delivery, and hashpointers for tamper-proof recording of authenticated
message exchanges is a permissioned blockchain/DL system if there are
no credit limits.

15

Commutative theorem, part 2
• If some agents have finite credit limits, outside validation of their

resource transfers is required.
• Point-to-point communication between the k agents only is insufficient.
• Some information about resource transfers must be ”leaked” to other nodes for

validation.

16

Henglein, Blockchain deconstructed (abstract), SDLT 2018

Total event ordering
• Total event ordering: Distributed consensus by all non-Byzantine (= correctly

executing) nodes on a particular total order (= sequence) of events arriving at
any one non-Byzantine node
• Very hard problem (impossibility results, tricky algorithms, lower bounds on

rounds/complexity, need for randomization, synchronous communication etc.)

• Total event ordering is sufficient for resource transfer validation:
• agree on total order of events, including resource transfers;
• validate a transfer if, in that order, all agents’ credit limits are satisfied (= no double-spend).

• Total event ordering is not necessary for resource transfer validation:
• Most resource transfers commute with each other:

transfer(A,B,R); transfer(C,D,Q) = transfer(C,D,Q); transfer(A,B,R) if {A,B} ∩ {C,D} = ∅
• Total event ordering is the main bottleneck in large distributed systems,

especially asynchronous ones; nonetheless it is used in most blockchain/DL
systems (Bitcoin, Ethereum, Fabric, etc.).

17

Contract-oriented business architecture with intermediaries

18

Resource manager/settlement layer (blockchain/DL system)

Strategy Contract Strategy Strategy Contract Strategy

Company A

Shared (public, governed, trusted party)

Company CCompany B

Contract
manager

Contract
manager

Trusted third
parties:

Exchanges,
brokers, clearing

houses,..;
IT service and

platform providers;
government
institutions,...

Standard blockchain architecture (without digital contracts)

19

• Private front-end program
(wallet management,
trading strategy, etc)

• Public smart contracts
(programs tied to
particular blockchain
system)

• Public information
(may be ‘off chain’, e.g. in
IPFS)

• Public resource manager
(single blockchain system)

If decentralized:
Blockchain/DL system

Distributed application
(“dapp”)

20

S M A R T T E R M W H A T I T A C T U A L L Y M E A N S

B L O C K C H A I N D I S T R I B U T E D A P P E N D - O N L Y
T R A N S A C T I O N L O G (L E D G E R)

S M A R T
C O N T R A C T

(C O D E)
C L A S S (I N J A V A - L I K E L A N G U A G E)

S M A R T
C O N T R A C T

(E X E C U T I N G)

P R O C E S S
(O B J E C T [= C L A S S I N S T A N C E])

O B J E C T
M E S S A G E S

O R D I N A R Y M E S S A G E S
L I N E A R R E S O U R C E T R A N S F E R S

A C R A S H S L I D E O N
B L O C K C H A I N A N D S M A R T C O N T R A C T S

T h e p r i c e o f e x p r e s s i v e n e s s :
u n p r e d i c t a b i l i t y

• Smart contract: any program, written in Turing-complete,
feature-rich programming language (Solidity, Kotlin, Go, …)
• + : Expressive, familiar
• - : Very undecidable properties (*), even with full access to

the source code

• Smart contracts without support for reasoning for qualitative
and quantitative safety are dangerous
• Move money, not just bits
• Invite honeypotting

(*) Undecidable and statically hard and/or cumbersome to analyze

E x a m p l e : E t h e r e u m V u l n e r a b i l i t i e s

• Transaction-order dependence: Messages may have different effect depending on their
order of arrival

• Who controls the process scheduler (= message sequencer)? Some miner: Front-running

• Time-stamp dependence: Smart contracts may have different executions depending on the
time stamp on a transaction block

•Who controls the time stamping of transaction blocks? Some miner: Clock manipulation

• Exception handling, gas management fragility: Subtle differences in exception semantics,
limited run-time stack

• Provoking out-of-stack and gas exhaustion exceptions: Any user

• Programming language complexities:

• Exception handling subtleties (send vs. call)

•Reentrancy vulnerability (DAO hack)

• Implicit method forwarding (multi-sig exploit)

L U U , C H U , O L I C K E L , S A X E N A , H O B O R , M A K I N G S M A R T C O N T R A C T S S M A R T E R (2 0 1 6)

Example: Reentrancy vulnerability

L U U , C H U , O L I C K E L , S A X E N A , H O B O R , M A K I N G S M A R T C O N T R A C T S S M A R T E R (2 0 1 6)

Contract-oriented IT architecture with digital contracts and
contract managers (generic smart contracts)

24

• ...
• Confidential contract

managers:
• Smart contracts for

escrow, trade finance,
public funding, etc.

• Secure cryptographic
exchanges and auction
systems

• Contract execution
monitoring (encompassing
procure-to-pay)

Contract-oriented IT architecture with digital contracts and
contract managers (generic smart contracts)

25

• ...
• Confidential contract

managers:
• Intelligent contract

management (monitoring,
arbitration, escrow,
collateral management,
etc.)

• Transactional resource
management of multiple
resource managers

multiple resource managers

Consequences

• Separation of contract life cycle management from contracts
• Contracts portable (CSL), quantitatively analyzable, domain-oriented (`zero

programming’)
• Contract life cycle managers generic (any contract), in any implementation

language (Kotlin, Go, Java, Haskell,...), instrumentable, changeable (adding escrow,
collateral management, etc., without changing contracts)

• Separation of resource management from contract management
• Increased scalability 1: Event log per contract, no/few dependencies across contracts
• Increased scalability 2: Aggressive partitioning of agents and resources (sharding,

channels, etc.)
• Increased privacy (contract and contract execution not disclosed to resource

manager)

• Precise, mathematical semantics
• Mathematical guarantees, formal verification, static analysis (no hacks possible)

26

Observations

• Popular blockchain and DL systems employ replicated state machine
architecture (unstructured P2P system): High redundancy, high message
traffic

• Total event order consensus: Distributed consensus on a specific total
order of transactions is sufficient, but not necessary for resource transfer
validation
• Many possibilities of distribution/parallelization by partitioning, increasingly

recognized (sharding, state channels)

• Hash pointer graphs have multiple uses.
• For tamper-proof, confidential recording of events making up execution of specific

contract. (Note: Not confidential, but public, in Ethereum and similar blockchain
systems)

• For tamper-proof, public recording of total order of validated resource transfers.

27

Open problems

• Fully exploit resource transfer commutativity

• Current blockchain/DL systems solve an unnecessarily hard problem: distributed
consensus on total order of all events across all contracts.

• Exploit that (certain) subsets of transfers can be validated and effected independent of
each other.

• Ideas for specialized distributed consensus protocols for scalability:

• Hierarchical clearing and settlement, as in banking systems with real-time gross
settlement via central bank (hierarchical ”sharding” by partititioning of agent accounts)

• Time- and resource-sensitive validation (bigger transfers require more time for
validation)

• Insurance (appyling transaction fees to cover losses due to overdrafts detected too late)

• ...

28

Plan X
• Programmable platform for distributed storage and applications
• Data model: Raw data (bits), immutable location-independent references

(value references), mutable references (pointers), and sequences/stream
of such
• Key aspect: Value references, guaranteed immutable and location independent

• Architectural components:
• XMLStore: Programmable, compositional save/load-architecture for storing and

retrieving immutable and mutable data
• MergeLang: User-definable updating of mutable data, based on 3-way merging
• Distributed applications: XMLStore with exec-interface for executing code stored as

structured data in XMLStore
• Distributed garbage collection, deduplication, etc: Systems components for memory

deallocation, optimization, etc.

• Conceived of in 2001 at ITU. Projects in 2001-2004 at DIKU and ITU.
• 20 B.S. and M.S. projects, multiple faculty, ~1 GB of code and test data

29

XMLStore components

30

Async
write Caching

In-memory
XMLStore

SSD disk
controller

Magnetic disk
controller

FileSystem
XMLStore

Kademlia
router

Multicast
router

Basic XMLStores

XMLStore constructors

Example: Structured P2P store by composing XMLStore components

31

Async
write

Caching In-memory
XMLStore

SSD disk
controller

Magnetic disk
controller

FileSystem
XMLStore

Kademlia
router

Caching Caching

Async
write

Magnetic disk
controller

Caching

Async
write

Resource ownership consensus by 3-way merging

• Maintain account balance in replicated updatable reference
• Formulate updating as applying an update function to balance
• Merge multipe updates into joint update function during replica

synchronization
• Observation: Almost all resource updates commute -> update joining is

(almost) commutative

32

To be continued...

henglein@diku.dk
henglein@deondigital.com

33

mailto:henglein@diku.dk

