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Overview

Tue, 9:00-10:15: Distributed ledger technology and ‘smart contracts'’

Wed, 14:00-15:15: Algebraic foundations for resource management

Thu, 9:00-10:15: Compositional contracts and smart’ contract management

Thu, 2:00-3:15: Contract analysis (and other topics)
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Why blockchain?

Server-/data center hosted system

ira?
Decentralize: (trusted/privileged system provider)

yes

Point-to-point communicating systems: RPC, REST,
micro services
(trusted/privileged data managers)

Tamper-proof
logging?

yes

Store and
transfer Structured P2P storage systems with hash pointers

resources’?

Digital contracts: protocols for resource transfers
Automated contract managers/smart contracts:
Guaranteeing transactionality (tit-for-tat,
consideration)

yes

Blockchain/distributed ledger system
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Blockchain/distributed ledger system
A computer system characterized by

« organizational and technical decentralization,;

- tamper-proof recording of digitally signed (real-
world) events and their evidence;

 digital resource management:

 digital storage, transfer, transportation, transformation of
money, goods and services

It provides

« consistent, nonrepudiable information across all principals
(suppliers, partners, customers, regulators, etc.)

« guarantees against forging and double spending
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Organizational and technical decentralization

* Technical decentralization: A distributed peer-to-peer
system

« Organizational decentralization: No single or select
group of organizations controls/has privileged rights to
system

« Nonpermissioned ("blockchain”): open and self-authenticating,
anybody can host a node, be a user and have multiple/many
anonymous identities

 Permissioned’ nodes and users are authenticated and identified:;
may be private, but cannot have multiple identities

« Governance policy for regulating membership,
functionality, conflict resolution, etc.
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Intermezzo: Extended REA accounting model
* Resource (= asset): Money, licenses, physical objects (e.g. trucks),...
 Information: Data, invoices,...
« Agent: Person, company, institution, autonomous device,...
« Contract: Specification of obligations, permissions and prohibitions

e Event:
« Atomic event:

(Atransfers RtoB >

A transforms R to R’
« Ainforms B of I

« Complex event: Set of events that satisfies a given (sub)contract

McCarthy, The REA Accounting Model (1982)
Andersen et al, Compositional specification of commercial contracts (2006)
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Tamper-proof recording of events and their evidence

* Event recording: Events are stored (eventually, probabilistically) consistently,
that is, every node in the distributed system gives the same answer when
queried about them

« Tamper-proof: Stored events cannot subsequently be altered or deleted

« Evidence

« for atomic events:
» signature (by sending agent), plus
« supporting evidence of event actually having happened, e.g. receipt signature, 3d party validation (‘payment has
been performed” [*], “parcel has been delivered”), DNA samples (“this is the same timber as received”), GPS-/time-
tagged pictures (“the parcel delivered in your driveway”), IoT device messages (“parcel has been scanned at this
time and location”), etc
« for complex events:

« (mathematical) proofthat a particular set of events constitutes a correct execution (by all involved parties) of a
particular, mathematically well-specified contract.

[*] In blockchain systems: Payment validation = recording on blockchain
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Blockchain/DL systems as digital twins
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Digital resource management

« System keeps track of ownership and location of resources

* Guarantees that digitally represented resources can only be transferred
and transported, never erroneously or maliciously duplicated

« Can be decomposed into

* resource preservation
 credit limit enforcement

12
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Resource preservation and credit limit enforcement

Resource preservation: 7ransfers keep the sum of all resources invariant:

« A transfers 50 ETH to B: The sum of all ETH is the same. Atomically, after event, A has
50 ETH less; B has 50 ETH more.

« We allow negative numbers to be transferred and as account balances!

Credit limit enforcement: A transfer is only va/id (and effected) if the
credit limits of each agent are respected. For above transfer of 50 ETH:
 If A owns 60 ETH and has credit limit O0: Valid. (A owns 10 ETH after transfer.)

« If A owns 30 ETH and has credit limit O: Invalid. (No transfer. A still owns 30 ETH.)

« If A owns 30 ETH and has credit limit 20: Valid. (A "owns” -20 ETH after transfer.)

No-double-spend guarantee = all agents have credit limit 0.

UTxO = account where complete balance must be transferred.

Henglein, Blockchain deconstructed (2018), 2" Symp. on DLT



o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN] 14

Why adaptive credit limits instead of just zero credit limit?

* Full-reserve monetary system: One agent (the central bank) has no credit
limit, all others have credit limit 0.

* Fractional-reserve monetary system: A designated set of agents ("banks”)
have a dynamic non-0 credit limit, all others have credit limit 0.
« Banks’ dynamic credit limits depend on other assets they own, including expected
future repayments as part of the contracts (loans, etc.) they have made.

 Demand-driven production of physical assets: A car manufacturer has no
credit limit (they produce cars on demand), all others have credit limit 0.

« A car transfer by a car manufacturer need not be validated (" 'do they even own it?"');
they can produce a new one.
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Commutativity theorem, part 1

« Theorem: If every agent has an infinite credit limit, then all resource
transfers are valid and can be executed in arbitrary order. (Each order
results in the same state of ownership.)

« Corollary: Contract execution involving k£ agents with infinite credit limit

requires only consensus by the kagents (on the particular execution); no
event needs to be validated by a 3d party. Usually «=2.

» Loosely: The Internet with TLS for authentication, reliable message

delivery, and hashpointers for tamper-proof recording of authenticated
message exchanges /s a permissioned blockchain/DL system /f there are
no credit limits.

15
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Commutative theorem, part 2

« If some agents have finite credit limits, outside validation of their
resource transfers is required.

» Point-to-point communication between the kagents only is /nsufficient.

e Some information about resource transfers must be "leaked” to other nodes for
validation.

Henglein, Blockchain deconstructed (abstract), SDLT 2018

16
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Total event ordering

Total event ordering: Distributed consensus by all non-Byzantine (= correctly

executing) nodes on a particular total/ order (= sequence) of events arriving at

any one non-Byzantine node

« Very hard problem (impossibility results, tricky algorithms, lower bounds on
rounds/complexity, need for randomization, synchronous communication etc.)

Total event ordering is sufficient for resource transfer validation:

« agree on total order of events, including resource transfers;

 validate a transfer if, /n that order, all agents’ credit limits are satisfied (= no double-spend).

Total event ordering is not necessary for resource transfer validation:
« Most resource transfers commute with each other:

transfer(A,B,R); transfer(C,D,Q) = transfer(C,D,Q); transfer(A,B,R) if {A,B} n {C,D} = ¢
Total event ordering is the main bottleneck in /arge distributed systems,
especially asynchronous ones; nonetheless it is used in most blockchain/DL
systems (Bitcoin, Ethereum, Fabric, etc.).



Contract-oriented business architecture with intermediaries
WOTOR VEHICIE OUSE
REGISTRATIO e e

18
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Standard blockchain architecture (without digital contracts)

Private front-end program I p——
(wallet management, (“dapp’)
trading strategy, etc)

Company B Company C

Public smart contracts Company A
(programs tied to
particular blockchain
system)

Front Front Front
end end end
program program program

Front

Public information e
(may be ‘off chain’, e.g. in
IPFS)

Public resource manager
(single blockchain system)

— W =

Smart contract. Smart contract.

Resource manager/settlement layer (blockchain/DL system)

Shared (public, governed, trusted party)

If decentralized:

Blockchain/DL system
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SMART TERM

BLOCKCHAIN

SMART
CONTRACT
(CODE)

SMART
CONTRACT
(EXECUTING)

OBJECT
MESSAGES

A CRASH SLIDE ON
BLOCKCHAIN AND SMART CONTRACTS

WHAT IT ACTUALLY MEANS

DISTRIBUTED APPEND-ONLY
TRANSACTION LOG (LEDGER)

CLASS (IN JAVA-LIKE LANGUAGE)

PROCESS
(OBJECT [= CLASS INSTANCE])

ORDINARY MESSAGES
LINEAR RESOURCE TRANSFERS
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The price of expressiveness:
unpredictability

« Smart contract: any program, written in Turing-complete,
feature-rich programming language (Solidity, Kotlin, Go, ---)

* + : Expressive, familiar

* -: Very undecidable properties (*), even with fu// access to
the source code

« Smart contracts without support for reasoning for gualitative
and quantitative safety are dangerous

 Move money, not just bits
* Invite honeypotting

(*) Undecidable and statically hard and/or cumbersome to analyze
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Example: Ethereum Vulnerabilities

LUU, CHU, OLICKEL, SAXENA, HOBOR, MAKING SMART CONTRACTS SMARTER (2016)

* Transaction-order dependence: Messages may have different effect depending on their
order of arrival

* Who controls the process scheduler (= message sequencer)? Some miner. Front-running

* Time-stamp dependence: Smart contracts may have different executions depending on the
time stamp on a transaction block

* Who controls the time stamping of transaction blocks? Some miner: Clock manipulation

« Exception handling, gas management fragility: Subtle differences in exception semantics,
limited run-time stack

* Provoking out-of-stack and gas exhaustion exceptions: Any user
« Programming language complexities:

* Exception handling subtleties (send vs. call)

* Reentrancy vulnerability (DAO hack)

« Implicit method forwarding (multi-sig exploit)
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Example: Reentrancy vulnerability

lcontract SendBalance {
mapping (address => uint) userBalances;
bool withdrawn = false;
function getBalance(address u) constant returns(uint){
return userBalances[u];
}
function addToBalance () {
userBalances [msg.sender] += msg.value;
}
10 function withdrawBalance (){
11 if (!(msg.sender.call.value(

C OO Ok QN

12 userBalances [msg.sender])())) { throw; }
13 userBalances[msg.sender] = 0;
14  }}

Figure 7: An example of the reentrancy bug. The contract im-
plements a simple bank account.

LUU, CHU, OLICKEL, SAXENA, HOBOR, MAKING SMART CONTRACTS SMARTER (2016)
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Contract-oriented IT architecture with digital contracts and
contract managers (generic smart contracts)

 Confidential contract
managers.

« Smart contracts for
escrow, trade finance,
public funding, etc.

« Secure cryptographic
exchanges and auction
systems

« Contract execution Confract Contract
. . . manager manager
monitoring (encompassing ,

Company A Company B Company C

Strategy Contract Strategy Strategy Contract Strategy

p rocure 'tO - pay) Resource manager/settlement layer (blockchain/DL system)

Shared (public, governed, trusted party)
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Contract-oriented IT architecture with digital contracts and
contract managers (generic smart contracts)

 Confidential contract
managers.

 Intelligent contract
management (monitoring,
arbitration, escrow,
collateral management,
etc.)

« Transactional resource
management of multiple
resource managers

Company A Company B Company C

Strategy Contract Strategy Strategy Contract Strategy

Contract Contract
manager manager

Smart contract Payment provider Notary/validation service

Resource manager 1 Resource manager 2 Resource manager 3
(blockchain system) (banking system) (property registry)

multiple resource managers
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Consequences

« Separation of contract life cycle management from contracts

« Contracts portable (CSL), quantitatively analyzable, domain-oriented ('zero
programming’)

« Contract life cycle managers generic (any contract), in any implementation
language (Kotlin, Go, Java, Haskell,...), instrumentable, changeable (adding escrow,
collateral management, etc., without changing contracts)

« Separation of resource management from contract management

» Increased scalability 1: Event log per contract, no/few dependencies across contracts

» Increased scalability 2: Aggressive partitioning of agents and resources (sharding,
channels, etc.)

* Increased privacy (contract and contract execution not disclosed to resource
manager)

* Precise, mathematical semantics
« Mathematical guarantees, formal verification, static analysis (no hacks possible)
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Observations

* Popular blockchain and DL systems employ replicated state machine
architecture (unstructured P2P system): High redundancy, high message
traffic

« Total event order consensus: Distributed consensus on a specific total
order of transactions is sufficient, but not necessary for resource transfer
validation

« Many possibilities of distribution/parallelization by partitioning, increasingly
recognized (sharding, state channels)

« Hash pointer graphs have multiple uses.

» For tamper-proof, confidential recording of events making up execution of speci/fic
contract. (Note: Not confidential, but public, in Ethereum and similar blockchain
systems)

» For tamper-proof, public recording of total order of validated resource transfers.

24
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Open problems

 Fully exploit resource transfer commutativity

Current blockchain/DL systems solve an unnecessarily hard problem: distributed
consensus on total order of a// events across a// contracts.

Exploit that (certain) subsets of transfers can be validated and effected independent of
each other.

* Ideas for specialized distributed consensus protocols for scalability:

Hierarchical clearing and settlement, as in banking systems with rea/-time gross
settlement via central bank (hierarchical "sharding” by partititioning of agent accounts)

Time- and resource-sensitive validation (bigger transfers require more time for
validation)

Insurance (appyling transaction fees to cover losses due to overdrafts detected too late)
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Plan X

« Programmable platform for distributed storage and applications

« Data model: Raw data (bits), /mmutable location-independent references
(value references), mutable references (pointers), and sequences/stream
of such
« Key aspect: Value references, guaranteed immutable and location independent

 Architectural components:

« XMLStore: Programmable, compositional save/load-architecture for storing and
retrieving immutable and mutable data

« Mergelang: User-definable updating of mutable data, based on 3-way merging

« Distributed applications: XMLStore with exec-interface for executing code stored as
structured data in XMLStore

« Distributed garbage collection, deduplication, etc: Systems components for memory
deallocation, optimization, etc.

« Conceived of in 2001 at ITU. Projects in 2001-2004 at DIKU and ITU.
« 20 B.S. and M.S. projects, multiple faculty, ~1 GB of code and test data
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XMLStore components

FileSystem In-memory
XMLStore XMLStore

Kademlia
router

SSD disk
controller

XMLStore constructors

Magnetic disk
controller

30

Multicast

router

Basic XMLStores
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Example: Structured P2P store by composing XMLStore components

Kademlia
router

\

In-memory
XMLStore

FileSystem SSD disk Magnetic disk
XMLStore controller controller

Magnetic disk
controller
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Resource ownership consensus by 3-way merging

Maintain account balance in replicated updatable reference

Formulate updating as applying an update function to balance

« Merge multipe updates into joint update function during replica
synchronization

Observation: Almost all resource updates commute -> update joining is
(almost) commutative

32
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To be continued...
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