Smart digital contracts:
Introduction

Fritz Henglein
University of Copenhagen, henglein@diku.dk

Deon Digital, henglein@deondigital.com

OPLSS 2019
June 25th, 2019

UNIVERSITY OF COPENHAGEN

mailto:henglein@diku.dk
mailto:henglein@deondigital.com

ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Select references

McCarthy, The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment, The Accounting
Review, 1982

Peyton Jones, Eber, Composing contracts: an adventure in financial
engineering (functional pearl), ICFP 2001

Andersen, Elsborg, Henglein, Simonsen, Stefansen, Compositional
specification of commercial contracts, International Journal on Software
Tools for Technology Transfer, 2006

Rambaud, Perez, Nehmer, Robinseon, Algebraic Models for Accounting
Systems, World Scientific, 2010

Henglein, Blockchain deconstructed (abstract), 2nd Symp. DLT, 2018

ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN] 3

Overview

Tue, 9:00-10:15: Distributed ledger technology and ‘smart contracts'’

Wed, 14:00-15:15: Algebraic foundations for resource management

Thu, 9:00-10:15: Compositional contracts and smart’ contract management

Thu, 2:00-3:15: Contract analysis (and other topics)

g Professor of Programming

= Languages and Systems
University of Copenhagen

Head of Research
Deon Digital AG

Areas of interest

« Programming language

technology

« Theoretical computer
science (algorithmes,
semantics, logic)
Blockchain technology
Contract management
Financial technology
Enterprise systems

Related background

* European Blockchain Consortium (ebcc.eu)

« Steering committee chair, Innovation network for

Finance IT (CFIR.dK)

* Principal investigator, Functional technology for high-

performance architectures (FUTHARK)

Academic background, affiliations, guest positions

TUm RUTGERS s

N
THE STATE UNIVERSITY
OF NEW JERSEY Universiteit Utrecht
= =]
v UNSW)
IT Universit s Y D N E Y UNIVERSITY OF
of Copenhageyn (0):42(0)23D)

o? UNIVERSITY OF COPENHAGEN
@vgcerf

Simple flowchart:

Why blockchain?

9:49 AM - 19 Jul 2018

11,219 Retweets 31,520 Likes Q 1:%'} & ° £ C"\ ‘» 0 3

o? CENBIEVEESRSS HE TV e G R CACH TR AN EIFAUGS E SN 6

Why blockchain?

Server-/data center hosted system

ira?
Decentralize: (trusted/privileged system provider)

yes

Point-to-point communicating systems: RPC, REST,
micro services
(trusted/privileged data managers)

Tamper-proof
logging?

yes

Store and
transfer Structured P2P storage systems with hash pointers

resources’?

Digital contracts: protocols for resource transfers
Automated contract managers/smart contracts:
Guaranteeing transactionality (tit-for-tat,
consideration)

yes

Blockchain/distributed ledger system

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Blockchain/distributed ledger system
A computer system characterized by

« organizational and technical decentralization,;

- tamper-proof recording of digitally signed (real-
world) events and their evidence;

 digital resource management:

 digital storage, transfer, transportation, transformation of
money, goods and services

It provides

« consistent, nonrepudiable information across all principals
(suppliers, partners, customers, regulators, etc.)

« guarantees against forging and double spending

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Organizational and technical decentralization

* Technical decentralization: A distributed peer-to-peer
system

« Organizational decentralization: No single or select
group of organizations controls/has privileged rights to
system

« Nonpermissioned ("blockchain”): open and self-authenticating,
anybody can host a node, be a user and have multiple/many
anonymous identities

 Permissioned’ nodes and users are authenticated and identified:;
may be private, but cannot have multiple identities

« Governance policy for regulating membership,
functionality, conflict resolution, etc.

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Intermezzo: Extended REA accounting model
* Resource (= asset): Money, licenses, physical objects (e.g. trucks),...
 Information: Data, invoices,...
« Agent: Person, company, institution, autonomous device,...
« Contract: Specification of obligations, permissions and prohibitions

e Event:
« Atomic event:

(Atransfers RtoB >

A transforms R to R’
« Ainforms B of I

« Complex event: Set of events that satisfies a given (sub)contract

McCarthy, The REA Accounting Model (1982)
Andersen et al, Compositional specification of commercial contracts (2006)

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN] 10

Tamper-proof recording of events and their evidence

* Event recording: Events are stored (eventually, probabilistically) consistently,
that is, every node in the distributed system gives the same answer when
queried about them

« Tamper-proof: Stored events cannot subsequently be altered or deleted

« Evidence

« for atomic events:
» signature (by sending agent), plus
« supporting evidence of event actually having happened, e.g. receipt signature, 3d party validation (‘payment has
been performed” [*], “parcel has been delivered”), DNA samples (“this is the same timber as received”), GPS-/time-
tagged pictures (“the parcel delivered in your driveway”), IoT device messages (“parcel has been scanned at this
time and location”), etc
« for complex events:

« (mathematical) proofthat a particular set of events constitutes a correct execution (by all involved parties) of a
particular, mathematically well-specified contract.

[*] In blockchain systems: Payment validation = recording on blockchain

o? [CENEIRVAEIRSS ST Ve COUHE CLC NS ETPAS G SN

Blockchain/DL systems as digital twins

Tamper-proof € e’ Physical assets
and
physical events
(oo
Phlsical world Physical evidence framework

@ Alternative state 1
X
4

N ﬁv\
/

Alternative state 2

L]
~—~—

Ve n/ \
=
L~

[~
now Contract n
=%
History in Blockchain/

Illustration by Boris Dudder

=

» time

ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Digital resource management

« System keeps track of ownership and location of resources

* Guarantees that digitally represented resources can only be transferred
and transported, never erroneously or maliciously duplicated

« Can be decomposed into

* resource preservation
 credit limit enforcement

12

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN] 13

Resource preservation and credit limit enforcement

Resource preservation: 7ransfers keep the sum of all resources invariant:

« A transfers 50 ETH to B: The sum of all ETH is the same. Atomically, after event, A has
50 ETH less; B has 50 ETH more.

« We allow negative numbers to be transferred and as account balances!

Credit limit enforcement: A transfer is only va/id (and effected) if the
credit limits of each agent are respected. For above transfer of 50 ETH:
 If A owns 60 ETH and has credit limit O0: Valid. (A owns 10 ETH after transfer.)

« If A owns 30 ETH and has credit limit O: Invalid. (No transfer. A still owns 30 ETH.)

« If A owns 30 ETH and has credit limit 20: Valid. (A "owns” -20 ETH after transfer.)

No-double-spend guarantee = all agents have credit limit 0.

UTxO = account where complete balance must be transferred.

Henglein, Blockchain deconstructed (2018), 2" Symp. on DLT

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN] 14

Why adaptive credit limits instead of just zero credit limit?

* Full-reserve monetary system: One agent (the central bank) has no credit
limit, all others have credit limit 0.

* Fractional-reserve monetary system: A designated set of agents ("banks”)
have a dynamic non-0 credit limit, all others have credit limit 0.
« Banks’ dynamic credit limits depend on other assets they own, including expected
future repayments as part of the contracts (loans, etc.) they have made.

 Demand-driven production of physical assets: A car manufacturer has no
credit limit (they produce cars on demand), all others have credit limit 0.

« A car transfer by a car manufacturer need not be validated (" 'do they even own it?"');
they can produce a new one.

ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Commutativity theorem, part 1

« Theorem: If every agent has an infinite credit limit, then all resource
transfers are valid and can be executed in arbitrary order. (Each order
results in the same state of ownership.)

« Corollary: Contract execution involving k£ agents with infinite credit limit

requires only consensus by the kagents (on the particular execution); no
event needs to be validated by a 3d party. Usually «=2.

» Loosely: The Internet with TLS for authentication, reliable message

delivery, and hashpointers for tamper-proof recording of authenticated
message exchanges /s a permissioned blockchain/DL system /f there are
no credit limits.

15

ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Commutative theorem, part 2

« If some agents have finite credit limits, outside validation of their
resource transfers is required.

» Point-to-point communication between the kagents only is /nsufficient.

e Some information about resource transfers must be "leaked” to other nodes for
validation.

Henglein, Blockchain deconstructed (abstract), SDLT 2018

16

R UGBV E SRS TS TV O A G AN HIPAUG E N 17

Total event ordering

Total event ordering: Distributed consensus by all non-Byzantine (= correctly

executing) nodes on a particular total/ order (= sequence) of events arriving at

any one non-Byzantine node

« Very hard problem (impossibility results, tricky algorithms, lower bounds on
rounds/complexity, need for randomization, synchronous communication etc.)

Total event ordering is sufficient for resource transfer validation:

« agree on total order of events, including resource transfers;

 validate a transfer if, /n that order, all agents’ credit limits are satisfied (= no double-spend).

Total event ordering is not necessary for resource transfer validation:
« Most resource transfers commute with each other:

transfer(A,B,R); transfer(C,D,Q) = transfer(C,D,Q); transfer(A,B,R) if {A,B} n {C,D} = ¢
Total event ordering is the main bottleneck in /arge distributed systems,
especially asynchronous ones; nonetheless it is used in most blockchain/DL
systems (Bitcoin, Ethereum, Fabric, etc.).

Contract-oriented business architecture with intermediaries
WOTOR VEHICIE OUSE
REGISTRATIO e e

18

N CENBIEVEESRSS HE TV e G R CACH TR AN EIFAUGS E SN 19

Standard blockchain architecture (without digital contracts)

Private front-end program I p——
(wallet management, (“dapp’)
trading strategy, etc)

Company B Company C

Public smart contracts Company A
(programs tied to
particular blockchain
system)

Front Front Front
end end end
program program program

Front

Public information e
(may be ‘off chain’, e.g. in
IPFS)

Public resource manager
(single blockchain system)

— W =

Smart contract. Smart contract.

Resource manager/settlement layer (blockchain/DL system)

Shared (public, governed, trusted party)

If decentralized:

Blockchain/DL system

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

SMART TERM

BLOCKCHAIN

SMART
CONTRACT
(CODE)

SMART
CONTRACT
(EXECUTING)

OBJECT
MESSAGES

A CRASH SLIDE ON
BLOCKCHAIN AND SMART CONTRACTS

WHAT IT ACTUALLY MEANS

DISTRIBUTED APPEND-ONLY
TRANSACTION LOG (LEDGER)

CLASS (IN JAVA-LIKE LANGUAGE)

PROCESS
(OBJECT [= CLASS INSTANCE])

ORDINARY MESSAGES
LINEAR RESOURCE TRANSFERS

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

The price of expressiveness:
unpredictability

« Smart contract: any program, written in Turing-complete,
feature-rich programming language (Solidity, Kotlin, Go, ---)

* + : Expressive, familiar

* -: Very undecidable properties (*), even with fu// access to
the source code

« Smart contracts without support for reasoning for gualitative
and quantitative safety are dangerous

 Move money, not just bits
* Invite honeypotting

(*) Undecidable and statically hard and/or cumbersome to analyze

o’ ENGRISVEESRSS ST Ve G ER G IR E NG ETCALGEAN]

Example: Ethereum Vulnerabilities

LUU, CHU, OLICKEL, SAXENA, HOBOR, MAKING SMART CONTRACTS SMARTER (2016)

* Transaction-order dependence: Messages may have different effect depending on their
order of arrival

* Who controls the process scheduler (= message sequencer)? Some miner. Front-running

* Time-stamp dependence: Smart contracts may have different executions depending on the
time stamp on a transaction block

* Who controls the time stamping of transaction blocks? Some miner: Clock manipulation

« Exception handling, gas management fragility: Subtle differences in exception semantics,
limited run-time stack

* Provoking out-of-stack and gas exhaustion exceptions: Any user
« Programming language complexities:

* Exception handling subtleties (send vs. call)

* Reentrancy vulnerability (DAO hack)

« Implicit method forwarding (multi-sig exploit)

o’ [CENEIRVAEIRSS ST Ve COUHE CLC NS ETPAS G SN

Example: Reentrancy vulnerability

lcontract SendBalance {
mapping (address => uint) userBalances;
bool withdrawn = false;
function getBalance(address u) constant returns(uint){
return userBalances[u];
}
function addToBalance () {
userBalances [msg.sender] += msg.value;
}
10 function withdrawBalance (){
11 if (!(msg.sender.call.value(

C OO Ok QN

12 userBalances [msg.sender])())) { throw; }
13 userBalances[msg.sender] = 0;
14 }}

Figure 7: An example of the reentrancy bug. The contract im-
plements a simple bank account.

LUU, CHU, OLICKEL, SAXENA, HOBOR, MAKING SMART CONTRACTS SMARTER (2016)

o? CENBIEVEESRSS HE TV e G R CACH TR AN EIFAUGS E SN 24

Contract-oriented IT architecture with digital contracts and
contract managers (generic smart contracts)

 Confidential contract
managers.

« Smart contracts for
escrow, trade finance,
public funding, etc.

« Secure cryptographic
exchanges and auction
systems

« Contract execution Confract Contract
. . . manager manager
monitoring (encompassing ,

Company A Company B Company C

Strategy Contract Strategy Strategy Contract Strategy

p rocure 'tO - pay) Resource manager/settlement layer (blockchain/DL system)

Shared (public, governed, trusted party)

o? CEINBTEVEFIRSS IS TV CU TR CLEN IR E NG P ALGH N

25

Contract-oriented IT architecture with digital contracts and
contract managers (generic smart contracts)

 Confidential contract
managers.

 Intelligent contract
management (monitoring,
arbitration, escrow,
collateral management,
etc.)

« Transactional resource
management of multiple
resource managers

Company A Company B Company C

Strategy Contract Strategy Strategy Contract Strategy

Contract Contract
manager manager

Smart contract Payment provider Notary/validation service

Resource manager 1 Resource manager 2 Resource manager 3
(blockchain system) (banking system) (property registry)

multiple resource managers

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Consequences

« Separation of contract life cycle management from contracts

« Contracts portable (CSL), quantitatively analyzable, domain-oriented ('zero
programming’)

« Contract life cycle managers generic (any contract), in any implementation
language (Kotlin, Go, Java, Haskell,...), instrumentable, changeable (adding escrow,
collateral management, etc., without changing contracts)

« Separation of resource management from contract management

» Increased scalability 1: Event log per contract, no/few dependencies across contracts

» Increased scalability 2: Aggressive partitioning of agents and resources (sharding,
channels, etc.)

* Increased privacy (contract and contract execution not disclosed to resource
manager)

* Precise, mathematical semantics
« Mathematical guarantees, formal verification, static analysis (no hacks possible)

ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Observations

* Popular blockchain and DL systems employ replicated state machine
architecture (unstructured P2P system): High redundancy, high message
traffic

« Total event order consensus: Distributed consensus on a specific total
order of transactions is sufficient, but not necessary for resource transfer
validation

« Many possibilities of distribution/parallelization by partitioning, increasingly
recognized (sharding, state channels)

« Hash pointer graphs have multiple uses.

» For tamper-proof, confidential recording of events making up execution of speci/fic
contract. (Note: Not confidential, but public, in Ethereum and similar blockchain
systems)

» For tamper-proof, public recording of total order of validated resource transfers.

24

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN] 28

Open problems

 Fully exploit resource transfer commutativity

Current blockchain/DL systems solve an unnecessarily hard problem: distributed
consensus on total order of a// events across a// contracts.

Exploit that (certain) subsets of transfers can be validated and effected independent of
each other.

* Ideas for specialized distributed consensus protocols for scalability:

Hierarchical clearing and settlement, as in banking systems with rea/-time gross
settlement via central bank (hierarchical "sharding” by partititioning of agent accounts)

Time- and resource-sensitive validation (bigger transfers require more time for
validation)

Insurance (appyling transaction fees to cover losses due to overdrafts detected too late)

o’ ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN] 29

Plan X

« Programmable platform for distributed storage and applications

« Data model: Raw data (bits), /mmutable location-independent references
(value references), mutable references (pointers), and sequences/stream
of such
« Key aspect: Value references, guaranteed immutable and location independent

 Architectural components:

« XMLStore: Programmable, compositional save/load-architecture for storing and
retrieving immutable and mutable data

« Mergelang: User-definable updating of mutable data, based on 3-way merging

« Distributed applications: XMLStore with exec-interface for executing code stored as
structured data in XMLStore

« Distributed garbage collection, deduplication, etc: Systems components for memory
deallocation, optimization, etc.

« Conceived of in 2001 at ITU. Projects in 2001-2004 at DIKU and ITU.
« 20 B.S. and M.S. projects, multiple faculty, ~1 GB of code and test data

CENBIEVEESRSS HE TV e G R CACH TR AN EIFAUGS E SN

XMLStore components

FileSystem In-memory
XMLStore XMLStore

Kademlia
router

SSD disk
controller

XMLStore constructors

Magnetic disk
controller

30

Multicast

router

Basic XMLStores

o? CENBIEVEESRSS HE TV e G R CACH TR AN EIFAUGS E SN 31

Example: Structured P2P store by composing XMLStore components

Kademlia
router

\

In-memory
XMLStore

FileSystem SSD disk Magnetic disk
XMLStore controller controller

Magnetic disk
controller

ENGRISVEESRSS ST Ve C) R G IR E NG ETPALGEAN]

Resource ownership consensus by 3-way merging

Maintain account balance in replicated updatable reference

Formulate updating as applying an update function to balance

« Merge multipe updates into joint update function during replica
synchronization

Observation: Almost all resource updates commute -> update joining is
(almost) commutative

32

o? CENBIEVEESRSS HE TV e G R CACH TR AN EIFAUGS E SN

To be continued...

henglein@diku.dk
henglein@deondigital.com

mailto:henglein@diku.dk

