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About this class

Session-type concurrent programming

e concurrency (as opposed to parallelism)
e nondeterminism

Roadmap

® message-passing concurrent programming

® session types as types for message-passing concurrency
® |inear logic and session types

e manifest sharing (controlled form of aliasing)

e deadlock-freedom
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| progress |
session type contraction
weakening
higher-order channels
affine
aliasing
Curry-Howard correspondence
identity i P
preservation cut
deadlock-freedom
session fidelity pi-calculus

sequent calculus
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[ earning objectives

* How to program in a message-passing, concurrent style

e \What session types are about

e Benefits of linear logic for programming

e How to accommodate sharing in a logically motivated way

* How to reason about deadlocks in the presence of aliasing
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Hands-on session

Tutorial by Soares Chen (Ruo Fel)
e Friday (6/25) and Saturday (6/26) from 12:20 pm - 1:50 pm

Ferrite session type library in Rust
e writing session-typed programs in Rust
e support of linear and shared session types

What you’ll learn

e technigues used for session types embedding
® how to use the library

e practice with prepared exercises
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Message-passing programming model

Computation by a processes that exchange messages along channels

n-ary channels: ¢ shared

& among P3, P4, and P5
% \d

nondeterminism: if P3
sends message along c, either
P4 or PS5 can get it

Legend: process =—— channel
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Message-passing programming model

Computation by a processes that exchange messages along channels

-} underlying formal model: process calculus (e.g., pi-calculus)

-} universality: encoding of lambda-calculus into pi-calculus

T Robin Milner. Communicating and mobile systems: the pi-calculus. Cambridge
I® University Press, 1999.

T Robin Milner. Functions as processes. Mathematical Structures in Computer
| Science, 1992.
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A message-passing queue

Here, we’ve exchanged basic values (e.g., characters).

In original pi-calculus, only channel references can lbe exchanged.

client

—} “mobility” in pi-calculus

“higher-order channels” in session types
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Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

termination: close session and terminate

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.
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Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

recursive session types

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.
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Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.
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Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: !{char|.queue

4“0”
‘ q W W

client queue




Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue
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client queue




Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue

‘q B A B2

client queue

-} type of channel/process changes with message exchange
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Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

protocol violation
client 1

Q
deq Queue

client 2

q: ?[char].queue
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Protocol verification

Preservation: expectation for type of client and provider match

client 1

client 2

Strategies for recovery:

-} employ linearity/ownership to restrict to single client

= d disalow multiple clients

-} allow multiple clients but control aliasing (manifest sharing)
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Linear logic is a so-called substructural logic that tracks ownership.

-

them formally

Types:

A B 2 A®B mu!
A—oB mul

A& B adc

tiplicative conjunction
tiplicative implication

1tive conjunction

A® B adc

1tive disjunction

1 unit for ®

higher-order channels

we first discover characteristics programmatically, then revisit

“channel output”
“channel input”

“external choice”
“Internal choice”

“termination”

for simplicity, we restrict to binary external/internal choice and to
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Linear logic from a programming perspective

Types:

A B 2 A®B multiplicative conjunction “channel output”
A—oB multiplicative implication  “channel input”
A& B additive conjunction “external choice”
AD B additive disjunction “internal choice”
1 unit for ® “termination”

Queue session type: polymorphic

queue A = &{enq : A —o queue A,
deq : ®{none: 1,some : A ® queue A}}



Typing judgment and rules




Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)



Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’



Typing judgment and rules

antecedent
Intuitionistic linear sequent:

ry: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’



Typing judgment and rules

antecedent
Intuitionistic linear sequent: succedent

r1: Ay, ..., xn Ay E P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’



Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:
A'FQ:(x: A
AF P;Q:(x:A




Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:
A'FQ:(x: A
conclusion A F P;Q ::(z: A)




Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:
oremise A" F Q :(x: A"
conclusion A F P;Q :: (x: A)




Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading




Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(x: A)

bottom-up reading

current



Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

continuation
Inference rule:

A

oremise A" F Q : (x: A"
conclusion A F P;Q ::(x: A)

bottom-up reading

current



Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules:
Az :BF Q:(z:0) A"FQ:(x:B)

OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)




Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules: client

A,z :BFQ:(z:0) A"FQ:(x:B)
OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)




Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules: client provider

A,z :BFQ:(z:0) A"FQ:(x:B)
OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)

R
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Multiplicative conjunction - channel output

A+ P:(x:B)
Ajy:AFsendxy; P::(r: AR B)

ROR

Ajx:By:AF Q,:(2:0C)
Ax:ARB F y<+recvz;Q, :: (2: C)

XL
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Multiplicative implication - channel input

Ay:AF P, (x: B)
AFy<+revaz; P, (x: A—o B)

°R

we have lost y!

Az:BFQ:(z:0)
Ax:A—oBy:AFsendzy;Q ::(z:C)

L
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Additive disjunction — internal choice

AFP:(x:A
AF zinbP:(x: A® B)

DR,

A+ P:(x:B)
AF zinr; P (x: A® B)

DR,

Ax: A Qp:(z:0) Ax:BEF Qs (z:0)
Ax:A®B F casexof(Q1,Q2) :: (2: C)

DL

-} internal choice: provider chooses. (Generalize to n-ary choice
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Additive conjunction — external choice

AF P :(x: A AF Py:(x:B)
A casexof (P, P;) :: (x: A&B)

&R

Az:AFQ:(z:0)
Ax: AB F x.inl;Q :: (z: O)

&Iy

Ax:BFQ:(z:0)
Ax:AB F z.inrQ :: (z: C)

&Ly

-} external choice: client chooses. Generalize to n-ary choice




