Session-Typed Concurrent Programming
L ecture 1

Stephanie Balzer
Carnegie Mellon University

OPLSS 2021
June 23, 2021

About this class

About this class

Session-type concurrent programming

e concurrency (as opposed to parallelism)
e nondeterminism

About this class

Session-type concurrent programming

e concurrency (as opposed to parallelism)
e nondeterminism

Roadmap

® message-passing concurrent programming

® session types as types for message-passing concurrency
® |inear logic and session types

e manifest sharing (controlled form of aliasing)

e deadlock-freedom

Terminology that will be meaningful to you

Terminology that will be meaningful to you

| progress |
session type contraction
weakening
higher-order channels
affine
aliasing
Curry-Howard correspondence
identity i P
preservation cut
deadlock-freedom
session fidelity pi-calculus

sequent calculus

[earning objectives

[earning objectives

* How to program in a message-passing, concurrent style

[earning objectives

* How to program in a message-passing, concurrent style

e \What session types are about

[earning objectives

* How to program in a message-passing, concurrent style
e \What session types are about

e Benefits of linear logic for programming

[earning objectives

e How to program in a message-passing, concurrent style
e \What session types are about
e Benefits of linear logic for programming

e How to accommodate sharing in a logically motivated way

[earning objectives

* How to program in a message-passing, concurrent style

e \What session types are about

e Benefits of linear logic for programming

e How to accommodate sharing in a logically motivated way

* How to reason about deadlocks in the presence of aliasing

Hands-on session

Hands-on session

Tutorial by Soares Chen (Ruo Fel)
e Friday (6/25) and Saturday (6/26) from 12:20 pm - 1:50 pm

Hands-on session

Tutorial by Soares Chen (Ruo Fel)
e Friday (6/25) and Saturday (6/26) from 12:20 pm - 1:50 pm

Ferrite session type library in Rust
e writing session-typed programs in Rust
e support of linear and shared session types

Hands-on session

Tutorial by Soares Chen (Ruo Fel)
e Friday (6/25) and Saturday (6/26) from 12:20 pm - 1:50 pm

Ferrite session type library in Rust
e writing session-typed programs in Rust
e support of linear and shared session types

What you’ll learn

e technigues used for session types embedding
® how to use the library

e practice with prepared exercises

Message-passing concurrent programming

Message-passing programming model

Message-passing programming model

Computation by a processes that exchange messages along channels

Message-passing programming model

Computation by a processes that exchange messages along channels

Legend: process

Message-passing programming model

Computation by a processes that exchange messages along channels

Legend: process =—— channel

Message-passing programming model

Computation by a processes that exchange messages along channels

Legend: process =—— channel

Message-passing programming model

Computation by a processes that exchange messages along channels

n-ary channels: ¢ shared

& among P3, P4, and P5
% \d

Legend: process =—— channel

Message-passing programming model

Computation by a processes that exchange messages along channels

n-ary channels: ¢ shared

& among P3, P4, and P5
% \d

nondeterminism: if P3
sends message along c, either
P4 or PS5 can get it

Legend: process =—— channel

Message-passing programming model

Computation by a processes that exchange messages along channels

Message-passing programming model

Computation by a processes that exchange messages along channels

-} underlying formal model: process calculus (e.g., pi-calculus)

T Robin Milner. Communicating and mobile systems: the pi-calculus. Cambridge

University Press, 19909.

Message-passing programming model

Computation by a processes that exchange messages along channels

-} underlying formal model: process calculus (e.g., pi-calculus)

-} universality: encoding of lambda-calculus into pi-calculus

T Robin Milner. Communicating and mobile systems: the pi-calculus. Cambridge
I® University Press, 1999.

T Robin Milner. Functions as processes. Mathematical Structures in Computer
| Science, 1992.

A message-passing queue

A message-passing queue

Queue of character processes:

A message-passing queue

Queue of character processes:

dequeue

l

A message-passing queue

Queue of character processes:

dequeue engueue

l l

A message-passing queue

Queue of character processes:

dequeue engueue

l l
® Y. Y. ¥

client

A message-passing queue

Queue of character processes:

client

A message-passing queue

Queue of character processes:

enq “S”
. >

client

A message-passing queue

Queue of character processes:

enq “S”
. >

client NEW Process

A message-passing queue

Queue of character processes:

client

A message-passing queue

Queue of character processes:

o

client

A message-passing queue

Queue of character processes:

o——
“O”

client

A message-passing queue

Queue of character processes:

client

A message-passing queue

A message-passing queue

Here, we’ve exchanged basic values (e.g., characters).

A message-passing queue

Here, we’ve exchanged basic values (e.g., characters).

In original pi-calculus, only channel references can lbe exchanged.

A message-passing queue

Here, we’ve exchanged basic values (e.g., characters).

In original pi-calculus, only channel references can lbe exchanged.

client

A message-passing queue

Here, we’ve exchanged basic values (e.g., characters).

In original pi-calculus, only channel references can lbe exchanged.

client

A message-passing queue

Here, we’ve exchanged basic values (e.g., characters).

In original pi-calculus, only channel references can lbe exchanged.

client

—} “mobility” in pi-calculus

A message-passing queue

Here, we’ve exchanged basic values (e.g., characters).

In original pi-calculus, only channel references can lbe exchanged.

client

—} “mobility” in pi-calculus

“higher-order channels” in session types

SESsSsIon types

Types for protocols of message exchange

Types for protocols of message exchange

Session types

NP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

NP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = 2T]A |T].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

Input: receive message of type T, continue as type A

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = 2T]A |T].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = Al int|...

Input: receive message of type T, continue as type A

types can be session (higher-order channels) or basic types

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]A |NT]LA" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

output: send message of type T, continue as type A’

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
ily : Ay, il At | B{l1: Ay, ..l Ayt
end | X | uX.A

T = A|int]...

external choice: receive label li, continue as type A

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | B{lL: Ar, ..l s At
end | X | uX.A

T = A|int]...

Internal choice: send label li, continue as type A

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

termination: close session and terminate

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

recursive session types

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

Queue session type:

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Types for protocols of message exchange

Session types

A = ?T]LA |NT].A" |
{ly : Avyooiily At | Bl Ar, ..l Ayt
end | X | uX.A

T = A|int]...

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

AP Kohei Honda. Types for dyadic interaction. CONCUR 1993.

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

‘q B A 2

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel q:

‘q B A 2

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue

‘q B A 2

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: ?|char|.queue

‘q B A 2

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: ?|char|.queue

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue

‘q W W

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: @{none : end, some : ![char|.queue}

‘q W W

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: @{none : end, some : ![char|.queue}

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: !{char|.queue

‘q W W

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: !{char|.queue

4“0”
‘ q W W

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue

‘q B A B2

client queue

Queue session type in action

Queue session type:

queue = &{enq : ?[char|.queue,
deq : ®{none : end, some :!|char|.queue}}

Type of channel g: queue

‘q B A B2

client queue

-} type of channel/process changes with message exchange

Protocol verification

Protocol verification

-} session types ensure protocol adherence by type-checking

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

client 1 ‘_

g
queue

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

client 1

client 2

queue

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

client 1

client 2

queue

Q: queue

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

client 1

client 2

queue

Q: queue

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

client 1

client 2

queue

q: ?[char].queue

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

client 1

Q
deq Queue

client 2

q: ?[char].queue

Protocol verification

-} session types ensure protocol adherence by type-checking

-} session fidelity (a.k.a. preservation)

Challenges for preservation:

protocol violation
client 1

Q
deq Queue

client 2

q: ?[char].queue

Protocol verification

client 1

client 2

Protocol verification

Preservation: expectation for type of client and provider match

client 1

client 2

queue

Protocol verification

Preservation: expectation for type of client and provider match

client 1

client 2

queue

Strategies for recovery:

Protocol verification

Preservation: expectation for type of client and provider match

client 1

client 2

Strategies for recovery:

-} employ linearity/ownership to restrict to single client

Protocol verification

Preservation: expectation for type of client and provider match

client 1

client 2

Strategies for recovery:

-} employ linearity/ownership to restrict to single client

= d disalow multiple clients

Protocol verification

Preservation: expectation for type of client and provider match

client 1

client 2

Strategies for recovery:

-} employ linearity/ownership to restrict to single client

= d disalow multiple clients

-} allow multiple clients but control aliasing (manifest sharing)

Intuitionistic linear logic session types

Linear logic from a programming perspective

Linear logic from a programming perspective

Linear logic is a so-called substructural logic that tracks ownership.

Linear logic from a programming perspective

Linear logic is a so-called substructural logic that tracks ownership.

-

we first discover characteristics programmatically, then revisit

them formally

Linear logic from a programming perspective

Linear logic is a so-called substructural logic that tracks ownership.

-

them formally

Types:

A B 2 A®B mu!
A—oB mul

A& B adc

tiplicative conjunction
tiplicative implication

1tive conjunction

A® B adc

1tive disjunction

1 unit for ®

we first discover characteristics programmatically, then revisit

“channel output”
“channel input”

“external choice”
“Internal choice”

“termination”

Linear logic from a programming perspective

Linear logic is a so-called substructural logic that tracks ownership.

-

them formally

Types:

A B 2 A®B mu!
A—oB mul

A& B adc

tiplicative conjunction
tiplicative implication

1tive conjunction

A® B adc

1tive disjunction

1 unit for ®

higher-order channels

we first discover characteristics programmatically, then revisit

“channel output”
“channel input”

“external choice”
“Internal choice”

“termination”

for simplicity, we restrict to binary external/internal choice and to

Linear logic from a programming perspective

Types:

A B 2 A®B multiplicative conjunction “channel output”
A—oB multiplicative implication “channel input”
A& B additive conjunction “external choice”
A®B additive disjunction “internal choice”

1 unit for ® “termination”

Linear logic from a programming perspective

Types:

A B 2 A®B
A—oB
A& B
AD B
1

Queue session type:

multiplicative conjunction “channel output”

multiplicative implication “channel input”
additive conjunction “external choice”
additive disjunction “Internal choice”
unit for ® “termination”

Linear logic from a programming perspective

Types:

A B 2 A®B multiplicative conjunction “channel output”
A—oB multiplicative implication “channel input”
A& B additive conjunction “external choice”
A®B additive disjunction “internal choice”
1 unit for ® “termination”

Queue session type:

queue A = &{enq : A —o queue A,
deq : ®{none: 1,some : A ® queue A}}

Linear logic from a programming perspective

Types:

A B 2 A®B multiplicative conjunction “channel output”
A—oB multiplicative implication “channel input”
A& B additive conjunction “external choice”
AD B additive disjunction “internal choice”
1 unit for ® “termination”

Queue session type: polymorphic

queue A = &{enq : A —o queue A,
deq : ®{none: 1,some : A ® queue A}}

Typing judgment and rules

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Typing judgment and rules

antecedent
Intuitionistic linear sequent:

ry: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Typing judgment and rules

antecedent
Intuitionistic linear sequent: succedent

r1: Ay, ..., xn Ay E P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:
A'FQ:(x: A
AF P;Q:(x:A

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:
A'FQ:(x: A
conclusion A F P;Q ::(z: A)

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:
oremise A" F Q :(x: A"
conclusion A F P;Q :: (x: A)

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(x: A)

bottom-up reading

current

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

continuation
Inference rule:

A

oremise A" F Q : (x: A"
conclusion A F P;Q ::(x: A)

bottom-up reading

current

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules:
Az :BF Q:(z:0) A"FQ:(x:B)

OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules: client

A,z :BFQ:(z:0) A"FQ:(x:B)
OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules: client provider

A,z :BFQ:(z:0) A"FQ:(x:B)
OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)

R

Multiplicative conjunction - channel output

Multiplicative conjunction - channel output

- P:u(x:)
Fsendxy; P (x: AR B)

ROR

Multiplicative conjunction - channel output

- P:(x:B)
Fsendxy; P (x: AR B)

ROR

Multiplicative conjunction - channel output

- P:(x:B)
Ajy:AFsendxy; P::(r: AR B)

ROR

Multiplicative conjunction - channel output

A+ P:(x:B)
Ajy:AFsendxy; P::(r: AR B)

ROR

Multiplicative conjunction - channel output

we have lost y!

A+ P:(x:B)
Ajy:AFsendxy; P::(r: AR B)

ROR

Multiplicative conjunction - channel output

A+ P:(x:B)
Ajy:AFsendxy; P::(r: AR B)

ROR

A, = Qy i (2:0)
Ax:ARB F y<+recvz;Q, :: (2: C)

XL

Multiplicative conjunction - channel output

A+ P:(x:B)
Ajy:AFsendxy; P::(r: AR B)

ROR

Ax:B = Qy i (2:0)
Ax:ARB F y<+recvz;Q, :: (2: C)

XL

Multiplicative conjunction - channel output

A+ P:(x:B)
Ajy:AFsendxy; P::(r: AR B)

ROR

Ajx:By:AF Q,:(2:0C)
Ax:ARB F y<+recvz;Q, :: (2: C)

XL

Multiplicative implication - channel input

Multiplicative implication - channel input

A - P, (z:)
AFy<+revaz; P, (x: A—o B)

°R

Multiplicative implication - channel input

A - P, (z:DB)
AFy<+revaz; P, (x: A—o B)

°R

Multiplicative implication - channel input

Ay:AF P, (x: B)
AFy<+revaz; P, (x: A—o B)

°R

Multiplicative implication - channel input

Ay:AF P, (x: B)
AFy<+revaz; P, (x: A—o B)

°R

Ax: FQ:(z:0C)
Ax:A—oB - send x y;Q :: (z: C)

L

Multiplicative implication - channel input

Ay:AF P, (x: B)
AFy<+revaz; P, (x: A—o B)

°R

Ajx:BFQ:(z:0)
Ax:A—oB - send x y;Q :: (z: C)

L

Multiplicative implication - channel input

Ay:AF P, (x: B)
AFy<+revaz; P, (x: A—o B)

°R

Ajx:BFQ:(z:0)
Ax:A—oBy:AFsendzy;Q ::(z:C)

L

Multiplicative implication - channel input

Ay:AF P, (x: B)
AFy<+revaz; P, (x: A—o B)

°R

we have lost y!

Az:BFQ:(z:0)
Ax:A—oBy:AFsendzy;Q ::(z:C)

L

Additive disjunction — internal choice

Additive disjunction — internal choice

- Po(x:)
AF zinbP:(x: A® B)

DR,

- P:o(x:)
AF zinr; P (x: A® B)

DR,

Additive disjunction — internal choice

- P:u(x: A)
AF zinbP:(x: A® B) D
= P:(x:
(z:) o

AF zinr; P (x: A® B)

Additive disjunction — internal choice

- P:u(x: A)

AF zinbP:(x: A® B) D
- P:(x: B

(z : B) o

AF zinr; P (x: A® B)

Additive disjunction — internal choice

AFP:(x:A
AF zinbP:(x: A® B) D

A+ P:(x:B)
DR,

AF zinr,P:(x: A® B)

Additive disjunction — internal choice

AFP:(x:A
AF zinbP:(x: A® B)

DR,

A+ P:(x:B)
AF zinr,P:(x: A® B)

DR,

Ax: FQp:i(z:0) Ax: FQy:(z:C)
Ax:A®B F casexof(Q1,Q2) :: (2: C)

DL

Additive disjunction — internal choice

AFP:(x:A
AF zinbP:(x: A® B)

DR,

A+ P:(x:B)
AF zinr,P:(x: A® B)

DR,

Az AF Qr:(z:0) Ax: FQy:(z:C)
Ax:A®B F casexof(Q1,Q2) :: (2: C)

DL

Additive disjunction — internal choice

AFP:(x:A
AF zinbP:(x: A® B)

DR,

A+ P:(x:B)
AF zinr,P:(x: A® B)

DR,

Az AF Qr:(z:0) Ax:BEF Qs (z:0)
Ax:A®B F casexof(Q1,Q2) :: (2: C)

DL

Additive disjunction — internal choice

AFP:(x:A
AF zinbP:(x: A® B)

DR,

A+ P:(x:B)
AF zinr; P (x: A® B)

DR,

Ax: A Qp:(z:0) Ax:BEF Qs (z:0)
Ax:A®B F casexof(Q1,Q2) :: (2: C)

DL

-} internal choice: provider chooses. (Generalize to n-ary choice

Additive conjunction — external choice

Additive conjunction — external choice

- Poo(x:) - Py(x:)
A casexof (P, P;) :: (x: A&B)

&R

Additive conjunction — external choice

- P(x: A) - Py(x:)
A casexof (P, P;) :: (x: A&B)

&R

Additive conjunction — external choice

- P(x: A) - Py (x: B)
A casexof (P, P;) :: (x: A&B)

&R

Additive conjunction — external choice

AF P :(x: A AF Py:(x:B)
A casexof (P, P;) :: (x: A&B)

&R

Additive conjunction — external choice

AF P :(x: A AF Py:(x:B)
A casexof (P, P;) :: (x: A&B)

&R

Ax: FQ:(z:0)
Ax: AB F x.inl;Q :: (z: O)

&Iy

Ax: FQ:(z:0)
Ax:AB F z.inrQ :: (z: C)

&Ly

Additive conjunction — external choice

AF P :(x: A AF Py:(x:B)
A casexof (P, P;) :: (x: A&B)

&R

Ax:AFQ:(z:0)
Ax: AB F x.inl;Q :: (z: O)

&Iy

Ax: FQ:(z:0)
Ax:AB F z.inrQ :: (z: C)

&Ly

Additive conjunction — external choice

AF P :(x: A AF Py:(x:B)
A casexof (P, P;) :: (x: A&B)

&R

Ax:AFQ:(z:0)
Ax: AB F x.inl;Q :: (z: O)

&Iy

Ax:BFQ:(z:0)
Ax:AB F z.inrQ :: (z: C)

&Ly

Additive conjunction — external choice

AF P :(x: A AF Py:(x:B)
A casexof (P, P;) :: (x: A&B)

&R

Az:AFQ:(z:0)
Ax: AB F x.inl;Q :: (z: O)

&Iy

Ax:BFQ:(z:0)
Ax:AB F z.inrQ :: (z: C)

&Ly

-} external choice: client chooses. Generalize to n-ary choice

