Session-Typed Concurrent Programming
Lecture 2

Stephanie Balzer
Carnegie Mellon University

OPLSS 2021
June 24, 2021

Recap

Recap

e Roadmap and learning objectives

Recap

e Roadmap and learning objectives

* Message-passing concurrent programming
¢ pi-calculus as formal model
® nondeterminism

Recap

e Roadmap and learning objectives

* Message-passing concurrent programming
¢ pi-calculus as formal model
® nondeterminism

e Session types as types of message-passing concurrency
e challenge: preservation because type changes with protocol
e strategies: (a) disallow aliasing or (b) control aliasing

Recap

e Roadmap and learning objectives

* Message-passing concurrent programming
¢ pi-calculus as formal model
® nondeterminism

e Session types as types of message-passing concurrency
e challenge: preservation because type changes with protocol
e strategies: (a) disallow aliasing or (b) control aliasing

e |ntuitionistic linear logic as a foundation for session types

Recap

e Roadmap and learning objectives

* Message-passing concurrent programming
¢ pi-calculus as formal model
® nondeterminism

e Session types as types of message-passing concurrency
e challenge: preservation because type changes with protocol
e strategies: (a) disallow aliasing or (b) control aliasing

e |ntuitionistic linear logic as a foundation for session types

we’ll resume here

Intuitionistic linear logic session types

Intuitionistic linear logic session types

Types:

A B 2 A®B multiplicative conjunction “channel output”
A—oB multiplicative implication “channel input”
A& B additive conjunction “external choice”
A®B additive disjunction “internal choice”
1 unit for ® “termination”

Queue session type:

queue A = &{enq : A —o queue A,
deq : ®{none: 1,some : A ® queue A}}

Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules:
Az :BF Q:(z:0) A"FQ:(x:B)

OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)

Connectives so far

At P:(x:B) Ax:By: Ak Qy:(2:0) o
Ay:AbFsendzy; P::(r: AR B) R Ax: AR B F y<+recva;Qy:: (2:0) .
Ay:AF P, (x:B) Ajz:BFQ:(z:0)
AFy<+revaz Py (r: A— B) " Ajx:A—oBy:AFsendzy;Q:: (2:C) -
AkF P:(x:A) A P:(x:B)
@Rl @RZ

AF zinl;P:(x: A® B) AF zinr;P:(z: ADB)

Ar: Al Qr:(z:0) Ajz:BFQy::(z:0)
Ayx:A® B F casexof (Q1,Q3) :: (z: C)

DL

AP (x: A At Py:(x:B)
A F casexof (P, P) :: (z: A&B)

&R

Ajz:AFQ:(z:0) Ajx:BFQ:(z:0)
Ayjz: A&B F x.inl;Q :: (z: C) Sy Ayz: A&B F x.inr;Q :: (2 : O)

&Ly

Unit for multiplicative conjunction -
termination

Unit for multiplicative conjunction -
termination

1
- close x :: (x: 1) B

Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

No orphan providers

Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

FQ:(z:0)
Ayxz:1F waitz;Q :: (z:C)

1y,

Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

AFQ:(z:0)
Ayxz:1F waitz;Q :: (z:C)

1y,

Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

we have lost x!

AFQ:(z:0)
Ayxz:1F waitz;Q :: (z:C)

1y,

Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

we have lost x!

AFQ:(z:0)
Ayxz:1F waitz;Q :: (z:C)

1y,

—} Nno unit for & and @, since must consist of at least one label

Judgmental rules

Judgmental rules

Cut - spawning New Process:

Judgmental rules

Cut - spawning New Process:

FQ:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C) ¢

Judgmental rules

Cut - spawning New Process:

r:AFQ:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C) ¢

Judgmental rules

Cut - spawning New Process:

- P:(x: A r:AFQ:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C) ¢

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A r:AFQ:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C))

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C))

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x:AF Q:(z:0)

Cut
A1, Ay Fx+ P;Q :: (z:0C))

split context

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C))

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)
A1, Ay Fx+ P;Q::(z:0)

Cut

|dentity - forwarding:

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C))

|dentity - forwarding:

Id
Ffwdz oy (x: A)

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C) ¢

ldentity - forwarding:

Id

Ffwdz oy (x: A)

process offering along X terminates, client henceforth interacts

with process offering along y

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C) ¢

ldentity - forwarding:

Id

y:AFfwdxy:(z:A)

process offering along X terminates, client henceforth interacts

with process offering along y

Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C) ¢

ldentity - forwarding:

NO orphan 17
providers y: AFfwdxy:(x: A

-

process offering along X terminates, client henceforth interacts

with process offering along y

Let’'s Implement the queue!

We use the formal language SILL used in research papers

The connection to linear logic

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

rules of intuitionistic linear logic

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

rules of intuitionistic linear logic

A P:(x:A)
AF zinl;P::(x: A® B)

DR,

At P:(x:B)
At zinr;P:(z: A®B

) DRrs

Ax:AF Qp:(z:0) Ayjx:BF Qq::(z:0)
Ajx:A® B F casexof (Q1,Q2) :: (2: C)

DL

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

rules of intuitionistic linear logic

—>
AF xinbP:(x: A® B) PR AF AGB DR,
At P:(x:B) . AL B
A x.inr; P (z: A® B) 2) AF AGB DR,
Ar:AF Qr:(z:0) Ajx:BF Qs (z:0) AAEC A,BFC

Az:A®BF casenrof(Qr. Q) = (2:C) - —T—> AdeBrC F

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

rules of intuitionistic linear logic

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

-} rewrite higher-order channel output with spawn/forward:

rules of intuitionistic linear logic

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

-} rewrite higher-order channel output with spawn/forward:

rules of intuitionistic linear logic

At P:(x:B)
Ajy:AFsendzy; P:: (x: A® B)

QR

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

-} rewrite higher-order channel output with spawn/forward:

rules of intuitionistic linear logic

At P:(x:B)
Ajy:AFsendzy; P:: (x: A® B)

|

y: Ak fwdzy:(z:A) At P:(zx:B)
Ajy:AFsendz (z+fwdzy); P (z: AR B)

QR

QR

The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

-} rewrite higher-order channel output with spawn/forward:

rules of intuitionistic linear logic

At P:(x:B)
Ajy:AFsendzy; P:: (x: A® B)

|

y: Ak fwdzy:(z:A) At P:(zx:B) AF A A+ B
Ayy:AbFsendz (z+fwdzy);P::(z: A® B) AAEF AR B

QR

Curry-Howard correspondence

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:

inear propositions

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:

inear propositions session types

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:

inear propositions session types

Proofs

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:

inear propositions session types

proofs programs

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:
inear propositions session types
proofs programs

cut reduction

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:
inear propositions session types
proofs programs

cut reduction communication

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:
linear propositions session types
proofs programs

cut reduction communication

g Luis Caires and Frank Pfenning. Session types as intuitionistic linear

propositions. CONCUR, 2010.

Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:
linear propositions session types
proofs programs

cut reduction communication

T Luis Caires and Frank Pfenning. Session types as intuitionistic linear
| propositions. CONCUR, 2010.

I|I Philip Wadler. Propositions as sessions. |CFP, 2012.

Benefits of linear logic for programming

Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

T+ C T AAFC
weaken contract

T AF C T AF C

Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

T+ C T AAFC
weaken contract

T AF C T AF C

“drop resource’

Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

T+ C T AAFC
weaken contract

T AF C T AF C

“drop resource’ “duplicate resource”

Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

I' = C . I'' A, A+ C i
F’A |— C wearen F’A |— C contrac
“drop resource’ “duplicate resource”

-} without weakening, every provider has at least one client

Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

I' = C . I'' A, A+ C i
F’A |— C wearen F’A |— C contrac
“drop resource’ “duplicate resource”

-} without weakening, every provider has at least one client

-} without contraction, every provider has at most one client

Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

I' = C . I'' A, A+ C i
F’A |— C wearen F’A |— C contrac
“drop resource’ “duplicate resource”

-} without weakening, every provider has at least one client
-} without contraction, every provider has at most one client

-} thus, every provider has exactly one client

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

NO resources
can be dropped . F close :: (z : 1)

1r

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

NO resources
can be dropped . F close :: (z : 1)

1r

every provider has
at least one client

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

A1 P:(x: A Ag,z: AF Q:(z:0)

Cut
A1, A Fax+ P;Q ::(z:0C))

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

A1 F P:(x: A Ag,x: AF Q:(z:0)

Cut
A1, Ay Fx+ P;Q ::(z:0C))

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

A1 F P:(x: A Ag,x: AF Q:(z:0)

Cut
A1, Ay Fx+ P;Q ::(z:0C))

NO resources
duplicated

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

NO allases
created

A1 F P:(x: A Ag,x: AF Q:(z:0)

Cut
A1, Ay Fx+ P;Q ::(z:0C))

NO resources
duplicated

Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

NO allases
created

A1 F P:(x: A Ag,x: AF Q:(z:0)

Cut
A1, Ay Fx+ P;Q ::(z:0C))

NO resources

duplicated every provider has

at most one client

Benefits of linear logic for programming

Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

-} for intuitionistic linear logic session types, tree Is directed

Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

-} for intuitionistic linear logic session types, tree Is directed

r1: A, xn A F P(x: A)

Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

-} for intuitionistic linear logic session types, tree Is directed

Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

-} for intuitionistic linear logic session types, tree Is directed

Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

-} for intuitionistic linear logic session types, tree Is directed

parent: client

X1 . A/ \Xn . An

child: provider

Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

-} for intuitionistic linear logic session types, tree Is directed

parent: client

X1 . A/ \Xn . An

child: provider

-} we will use directedness for deadlock-freedom

Benefits of linear logic for programming

Benefits of linear logic for programming

-} type safety holds easily:

Benefits of linear logic for programming

-} type safety holds easily:

/AN
\ /N

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity)
RN

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity)

/ l \ e every provider has a unigque client

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity) v

/ l \ e every provider has a unigque client

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity) v

/ l \ e gvery provider has a unique client

Progress (a.k.a., deadlock-freedom)

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity) v

/ l \ e gvery provider has a unique client

Progress (a.k.a., deadlock-freedom)

\ / \ e ? possible threats to progress:
e provider ready to synchronize, client not

e client ready to synchronize, provider not

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity) v

/ l \ e gvery provider has a unique client

Progress (a.k.a., deadlock-freedom)

\ / \ e ? possible threats to progress:
e provider ready to synchronize, client not

e client ready to synchronize, provider not

—> “a waits for b”

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity) v

& l (\\ e cvery provider has a unique client

Progress (a.k.a., deadlock-freedom)

\ / \\ * 2 possible threats to progress:

e provider ready to synchronize, client not
e client ready to synchronize, provider not

—> “a waits for b”

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity) v

& l (\\ e cvery provider has a unique client

Progress (a.k.a., deadlock-freedom)

\ / \\ * 2 possible threats to progress:

e provider ready to synchronize, client not
e client ready to synchronize, provider not

— “q waits for b” ' green arrows can only go along

edges, thus cannot form a cycle

Benefits of linear logic for programming

-} type safety holds easily:

Preservation (a.k.a., session fidelity) v

& l (\\ e cvery provider has a unique client

Progress (a.k.a., deadlock-freedom)

\ / \\ * 2 possible threats to progress:

e provider ready to synchronize, client not
e client ready to synchronize, provider not

— “q waits for b” ' green arrows can only go along

edges, thus cannot form a cycle

Type safety formalized

Type safety formalized

Type safety expresses coherence between statics (type system) ana
dynamics of a language

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules: before rewrite

proc(a, P{a); P"), proc(c, Q(a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

after rewrite

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules: provider

proc(a, P(a); P’), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules: client

proc(a, P{a); P'), proc(c, Q(a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q{a); Q")
— proc(a, P"), proc(c, Q")

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:

proc(a, P(a); P'), proc(c, Q(a); Q')
offering channel — proc(a, P’), proc(c, Q')

-} rewrite process tree only describing what changes

Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

code
Multiset rewriting rules: being executed

proc(a, P(a); P’), proc(c, Q(a); Q')
offering channel — proc(a, P’), proc(c, Q')

-} rewrite process tree only describing what changes

Dynamics

Selected rules:

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P), proc(c, [b/y] Qy)

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P), proc(c, [b/y] Qy)

(D-&) proc(a,caseaof l = P),proc(c,a.ly; Q)
— proc(a, Pk)? proc(c, Q)

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P), proc(c, [b/y] Qy)

(D-&) proc(a,caseaof l = P),proc(c,a.ly; Q)
— proc(a, Pk)? proc(c, Q)

(D-1) proc(a,close a), proc(c, wait a; Q)
— proc(c, Q)

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P), proc(c, [b/y] Qy)

(D-&) proc(a,caseaof l = P),proc(c,a.ly; Q)
— proc(a, Pk)? proc(c, Q)

(D-1) proc(a,close a), proc(c, wait a; Q)
— proc(c, Q)

(D-Cut) proc(c,z + Py; Q)
— proc(a, |a/x] P.), proc(c, [a/x] Q)

(a fresh)

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P), proc(c, [b/y] Qy)

(D-&) proc(a,caseaof l = P),proc(c,a.ly; Q)
— proc(a, Pk)? proc(c, Q)

(D-1) proc(a,close a), proc(c, wait a; Q)
— proc(c, Q)

(D-Cut) proc(c,z + Py; Q)
— proc(a, |a/x] P.), proc(c, [a/x] Q)

(D-1d) proc(a,fwd a b)
— (a = b)

(a fresh)

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P)7 proc(c, [b/y] Qy) Synchrongus
dynamic

(D-&) proc(a,caseaof l = P),proc(c,a.ly; Q)
— proc(a, Pk)? proc(c, Q)

(D-1) proc(a,close a), proc(c, wait a; Q)
— proc(c, Q)

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

(D-1d) proc(a,fwd a b)
— (a = b)

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P)7 proc(c, [b/y] Qy) Synchrongus
dynamic

(D-&) proc(a,caseaof l = P),proc(c,a.ly; Q)
— proc(a, Pk’)? proc(c, Q)
both send and

(D-1) proc(a, close a), proc(c, wait a; Q) receive are blocking
— proc(c, Q)

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

(D-1d) proc(a,fwd a b)
— (a = b)

Dynamics

Selected rules:

(D-®) proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P)7 proc(c, [b/y] Qy) Synchronous
dynamic

(D-&) proc(a,caseaofl = P),proc(c,a.ly; Q)

— proc(a, Pk)? proc(c, Q)
both send and

(D-1) proc(a, close a), proc(c, wait a; Q) receive are blocking
— proc(c, Q)

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/z] Q) (a fresh)

-

(D-1d) Proc(a de a b) asynchronous semantics: spawns off

messages and links them with forward

Configuration typing

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () ()

FlZQIZ/\l,/\Q All—Pa::(a:A)
= Q, proc(a, P,) :: (Ag,a: A)

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () () al
I'EQ A A, A1 F P, (a:A) b/Cl\d el
= Q, proc(a, P,) :: (Ag,a: A)
A A A A

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () () al

'EQ A A, A1 F Py(a:A) b(/Ql \\.d el

=0, proc(a, Fa) = (Ag,a: A) A A A A
()

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () () al

'EQ A A, A1 F Py(a:A) b(/Ql \\.d el

=0, proc(a, Fa) = (Ag,a: A) A A A A
()

Al :b,C,d

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () () al

'EQ A A, A1 F Py(a:A) b.,/Ql \\.d el

=0, proc(a, Fa) = (Ag,a: A) A A A A
()

A;1=b,c,d Ay =c¢e

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () () al

F |: Q .. /\17/\2 Al I— Pa . (a . A) b(/Ql \\.d el

= Q, proc(a, By) i+ (Az,a: A) A A A A
(2

typing imposes forest structure A;=b.cd A,=e

-

and tree structure at top level

Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () () al
['E QA Ay A FP,::(a:A) b.,/Ql \\.d el

= Q, proc(a, By) i+ (Az,a: A) A A A A
(2

typing imposes forest structure A;=b.cd A,=e
and tree structure at top level 7

-
-

a closed program offers a session of type 1, the top-level “main”

pProcess

Preservation and progress

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' 0 A,

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' .1 A.

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' .1 A.

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' .1 A.

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' .1 A.

NO
communication along
a and e, b/c no
clients

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' 0 A,

Theorem (Progress). If F Q :: A, then either

1. Q — Y, for some Y, or
2. €) is poised.

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' 0 A,

Theorem (Progress). If F Q :: A, then either

1. Q — Y, for some Y, or
2. €) is poised.

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' 0 A,

Theorem (Progress). If F Q :: A, then either

1. Q — Y, for some Y, or
2. €) is poised.

every
Process poised

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' 0 A,

Theorem (Progress). If F Q :: A, then either

1. Q — ', for some ', or
2. €) is poised.

every

Process poised |
a poised

process is ready to
sync along offering
channel

Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' 0 A,

Theorem (Progress). If F Q :: A, then either

1. Q — Q, for some €Y, or
2. €) is poised.

a ls
every

Process poised 2 poised () cl';\a e D

process Is ready to

sync along offering (A A’} As A’}

channel

Taking stock

Taking stock

-} linear session type language

Taking stock

-} linear session type language

guarantees session fidelity and deadlock-freedom

Taking stock

-} linear session type language

-} guarantees session fidelity and deadlock-freedom

-} corresponds to intuitionistic linear logic

Taking stock

-} linear session type language

guarantees session fidelity and deadlock-freedom

-} corresponds to intuitionistic linear logic

-} one connective from linear logic still missing: persistent truth

Taking stock

linear session type language

-} guarantees session fidelity and deadlock-freedom

-} corresponds to intuitionistic linear logic

-} one connective from linear logic still missing: persistent truth

A B £ A®B multiplicative conjunction “channel output”
A—oB multiplicative implication “channel input”
A&B additive conjunction “external choice”
ADB additive disjunction “internal choice”

1 unit for ® “termination”

Taking stock

linear session type language

-} guarantees session fidelity and deadlock-freedom

-} corresponds to intuitionistic linear logic

-} one connective from linear logic still missing: persistent truth

A B £ A®B multiplicative conjunction “channel output”
A—oB multiplicative implication “channel input”
A&B additive conjunction “external choice”
ADB additive disjunction “internal choice”
1 unit for ® “termination”

lA ”of course”, persistent truth “replication”

