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Recap

e Roadmap and learning objectives

* Message-passing concurrent programming
¢ pi-calculus as formal model
® nondeterminism

e Session types as types of message-passing concurrency
e challenge: preservation because type changes with protocol
e strategies: (a) disallow aliasing or (b) control aliasing

e |ntuitionistic linear logic as a foundation for session types

we’ll resume here
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Intuitionistic linear logic session types

Types:

A B 2 A®B multiplicative conjunction “channel output”
A—oB multiplicative implication  “channel input”
A& B additive conjunction “external choice”
A®B additive disjunction “internal choice”
1 unit for ® “termination”

Queue session type:

queue A = &{enq : A —o queue A,
deq : ®{none: 1,some : A ® queue A}}



Typing judgment and rules

Intuitionistic linear sequent:
r1: Ay, ..., xn Ay P(x: A)

“Process P offers a session of lype A along channel x using session Ai, ..., An
provided along channels x;, ..., Xn.’

Inference rule:

A

oremise A" F Q :(x: A"
conclusion A F P;Q ::(z: A)

bottom-up reading

Left and right rules:
Az :BF Q:(z:0) A"FQ:(x:B)

OL

Ax:AoB F P;Q:(z:C) AF P;Q:(x:AoB)




Connectives so far

At P:(x:B) Ax:By: Ak Qy:(2:0) o
Ay:AbFsendzy; P::(r: AR B) R Ax: AR B F y<+recva;Qy:: (2:0) .
Ay:AF P, (x:B) Ajz:BFQ:(z:0)
AFy<+revaz Py (r: A— B) " Ajx:A—oBy:AFsendzy;Q:: (2:C) -
AkF P:(x:A) A P:(x:B)
@Rl @RZ

AF zinl;P:(x: A® B) AF zinr;P:(z: ADB)

Ar: Al Qr:(z:0) Ajz:BFQy::(z:0)
Ayx:A® B F casexof (Q1,Q3) :: (z: C)

DL

AP (x: A At Py:(x:B)
A F casexof (P, P) :: (z: A&B)

&R

Ajz:AFQ:(z:0) Ajx:BFQ:(z:0)
Ayjz: A&B F x.inl;Q :: (z: C) Sy Ayz: A&B F x.inr;Q :: (2 : O)

&Ly
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Unit for multiplicative conjunction -
termination

1
- F closex :: (z:1) B

we have lost x!

AFQ:(z:0)
Ayxz:1F waitz;Q :: (z:C)

1y,

—} Nno unit for & and @, since must consist of at least one label
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Cut - spawning New Process:

A1 P:(x: A Ag,x:AF Q:(z:0)

Cut
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split context
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Judgmental rules

Cut - spawning New Process:

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q ::(z:0C) ¢

ldentity - forwarding:

NO orphan 17
providers y: AFfwdxy:(x: A

-

process offering along X terminates, client henceforth interacts

with process offering along y



Let’'s Implement the queue!

We use the formal language SILL used in research papers
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-

rules of intuitionistic linear logic

A P:(x:A)
AF zinl;P::(x: A® B)

DR,

At P:(x:B)
At zinr;P:(z: A®B

) DRrs

Ax:AF Qp:(z:0) Ayjx:BF Qq::(z:0)
Ajx:A® B F casexof (Q1,Q2) :: (2: C)

DL



The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

rules of intuitionistic linear logic

—>
AF xinbP:(x: A® B) PR AF AGB DR,
At P:(x:B) . AL B
A x.inr; P (z: A® B) 2 ) AF AGB DR,
Ar:AF Qr:(z:0) Ajx:BF Qs (z:0) AAEC A,BFC

Az:A®BF casenrof(Qr. Q) = (2:C) - —T—> AdeBrC  F
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The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

-} rewrite higher-order channel output with spawn/forward:

rules of intuitionistic linear logic

At P:(x:B)
Ajy:AFsendzy; P:: (x: A® B)

|

y: Ak fwdzy:(z:A) At P:(zx:B)
Ajy:AFsendz (z+fwdzy); P (z: AR B)

QR
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The connection to linear logic

If we erase process terms in typing rules, we get left and right

-

-} rewrite higher-order channel output with spawn/forward:

rules of intuitionistic linear logic

At P:(x:B)
Ajy:AFsendzy; P:: (x: A® B)

|

y: Ak fwdzy:(z:A) At P:(zx:B) AF A A+ B
Ayy:AbFsendz (z+fwdzy);P::(z: A® B) AAEF AR B

QR
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Curry-Howard correspondence

Correspondence between linear logic and session-typed pi-calculus

Logic: Type theory:
linear propositions session types
proofs programs

cut reduction communication

T Luis Caires and Frank Pfenning. Session types as intuitionistic linear
| propositions. CONCUR, 2010.

I|I Philip Wadler. Propositions as sessions. |CFP, 2012.
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Benefits of linear logic for programming

Linear logic is a substructural logic because it rejects the structural rules
of weakening and contraction:

I' = C . I'' A, A+ C i
F’A |— C wearen F’A |— C contrac
“drop resource’ “duplicate resource”

-} without weakening, every provider has at least one client
-} without contraction, every provider has at most one client

-} thus, every provider has exactly one client
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Benefits of linear logic for programming

Let’s identify absence of weakening and contraction in our rules:

1
- F closex :: (z:1) B

NO allases
created

A1 F P:(x: A Ag,x: AF Q:(z:0)

Cut
A1, Ay Fx+ P;Q ::(z:0C) )

NO resources

duplicated every provider has

at most one client
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Benefits of linear logic for programming

-} linear logic session types turn run-time process graph into a tree

-} for intuitionistic linear logic session types, tree Is directed

parent: client

X1 . A/ \Xn . An

child: provider

-} we will use directedness for deadlock-freedom
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& l (\\ e cvery provider has a unique client

Progress (a.k.a., deadlock-freedom)

\ / \\ * 2 possible threats to progress:

e provider ready to synchronize, client not
e client ready to synchronize, provider not

— “q waits for b” ' green arrows can only go along

edges, thus cannot form a cycle
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Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

Multiset rewriting rules:
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Type safety formalized

Type safety expresses coherence between statics (type system) and
dynamics of a language

-} let’s define the dynamics

code
Multiset rewriting rules: being executed

proc(a, P(a); P’), proc(c, Q(a); Q')
offering channel — proc(a, P’), proc(c, Q')

-} rewrite process tree only describing what changes
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Selected rules:

(D-®)  proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P)7 proc(c, [b/y] Qy) Synchrongus
dynamic

(D-&) proc(a,caseaof l = P),proc(c,a.ly; Q)
— proc(a, Pk’)? proc(c, Q)
both send and
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Dynamics

Selected rules:

(D-®)  proc(a,send a b; P), proc(c,y < recv a; Q)
— proc(a, P)7 proc(c, [b/y] Qy) Synchronous
dynamic

(D-&) proc(a,caseaofl = P),proc(c,a.ly; Q)

— proc(a, Pk)? proc(c, Q)
both send and

(D-1)  proc(a, close a), proc(c, wait a; Q) receive are blocking
— proc(c, Q)

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/z] Q) (a fresh)

-

(D-1d) Proc(a de a b) asynchronous semantics: spawns off

messages and links them with forward
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Configuration typing

In addition to typing process terms, we must type the run-time
configuration of processes (a.k.a. heap typing)

= () () al
['E QA Ay A FP,::(a:A) b.,/Ql \\.d el

= Q, proc(a, By) i+ (Az,a: A) A A A A
(2

typing imposes forest structure A;=b.cd A,=e
and tree structure at top level 7

-
-

a closed program offers a session of type 1, the top-level “main”

pProcess
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communication along
a and e, b/c no
clients
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Preservation and progress

Theorem (Preservation). IfE Q :: A and Q — ', then E Q' 0 A,

Theorem (Progress). If F Q :: A, then either

1. Q — Q, for some €Y, or
2. €) is poised.

a ls
every

Process poised 2 poised () cl';\a e D

process Is ready to

sync along offering ( A A’} As A’}

channel
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Taking stock

linear session type language

-} guarantees session fidelity and deadlock-freedom

-} corresponds to intuitionistic linear logic

-} one connective from linear logic still missing: persistent truth

A B £ A®B multiplicative conjunction “channel output”
A—oB multiplicative implication “channel input”
A&B additive conjunction “external choice”
ADB additive disjunction “internal choice”
1 unit for ® “termination”

lA ”of course”, persistent truth  “replication”



