Session-Typed Concurrent Programming
Lecture 3

Stephanie Balzer
Carnegie Mellon University

OPLSS 2021
June 25, 2021

Today’s lecture

loday’s lecture

Recap

e Type system and dynamics for the intuitionistic linear session types
language SILL

e Curry-Howard correspondence
e SILL readily guarantees session fidelity and deadlock-freedom

loday’s lecture

Recap

e Type system and dynamics for the intuitionistic linear session types
language SILL

e Curry-Howard correspondence
e SILL readily guarantees session fidelity and deadlock-freedom

Next

e Extend SILL with persistent truth (of coursel)
e Then, switch gears and introduce shared session types

Follow-up on Slack

Follow-up on Slack

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, Ao Fx+ P;Q::(z:0)

Follow-up on Slack

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q :: (z:0C))

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

Follow-up on Slack

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q :: (z:0C))

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

cl S=x < Pr;Qq

Follow-up on Slack

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q :: (z:0C))

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

Cl > S=x+ P,;:Q,

Follow-up on Slack

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, Ao Fx+ P;Q::(z:0)

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

Cl bcl SZCE%PQZ?QCE
S/:[a/x]Qx
N T =[a/X]P,

homework:

Follow-up on Slack make drawings for other

tensor and lolli!

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q :: (z:0C))

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

Cl bcl SZCE%PQZ?QCE
S/:[a/x]Qx
N T =[a/x]P,

Intuitionistic linear logic session types with |

Of course!

Of course!

-} one connective from linear logic still missing: persistent truth

Of course!

-} one connective from linear logic still missing: persistent truth

Types:
A, B

Al B
A" B
A! B
A" B

multiplicative conjunction
multiplicative implication
additive conjunction
additive disjunction

unit for !

Ochannel output(
Ochannel inputO
Oexternal choice
Ointernal choice(
OterminationO

Of course!

-} one connective from linear logic still missing: persistent truth

Types:
A, B

Al B
A" B
A! B
A" B
1
1A

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

Of course!

-} one connective from linear logic still missing: persistent truth

Types:
AB ! A! B
A" B
Al B
A" B
1
1A

-

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

a process of type A can be used arbitrarily often, I.e., can have

any number of clients

Of course!

What is the computational meaning of “of course”?

Of course!

What is the computational meaning of “of course”?

Of course!

What is the computational meaning of “of course”?

linear process

Of course!

What is the computational meaning of “of course”?

linear process .
persistent

pProcess

Of course!

What is the computational meaning of “of course”?

Of course!

What is the computational meaning of “of course”?

-> obtain a linear copy P’ of unrestricted process P

Of course!

What is the computational meaning of “of course”?

-> obtain a linear copy P’ of unrestricted process P

Of course!

What is the computational meaning of “of course”?

—
COpPY

| ca

linear copy

-> obtain a linear copy P’ of unrestricted process P

Of course!

What is the computational meaning of “of course”? keeps
access to P
—
copy
: lx:A
linear copy

-> obtain a linear copy P’ of unrestricted process P

Of course!

What is the computational meaning of “of course”? keeps
access to P
—
copy
: lx:A
linear copy

-> obtain a linear copy P’ of unrestricted process P

-> corresponds to replication in the pi-calculus

Of course!

What is the computational meaning of “of course”? keeps
access to P
—
copy
: lx:A
linear copy

-> obtain a linear copy P’ of unrestricted process P

-> corresponds to replication in the pi-calculus

-} let’s look at typing rules and dynamics

Of course!

What is the computational meaning of “of course”? keeps
access to P
—
copy
: lx:A
linear copy

-> obtain a linear copy P’ of unrestricted process P

-> corresponds to replication in the pi-calculus

let’s look at typing rules and dynamics

(*) copy rule operates on structural context, so it should be u: A because A is judgmentally persistent

Of course!

Types:
A, B

Al B
A" B
A! B
A" B
1
1A

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO
Oof courseO, persistent truth OreplicationO

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

" P (X A)

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

1" P a(x:A)

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

persistent channels

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

1" P a(x:A)

Of course!

Types:
AB | A! B multiplicative conjunction Ochannel outputc

A" B multiplicative implication Ochannel inputO
A! B additive conjunction Oexternal choice
A" B additive disjunction Ointernal choice(
1 unit for ! OterminationO
IA Oof courseO, persistent truth OreplicationO

Typing judgment:

1" P a(x:A)

persistent channels

structural context,
..e., permits weakening and
contraction

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

" P (X A)

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

1" 1P ao(x:A)

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

dyadic formulation

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

1" 1P ao(x:A)

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

dyadic formulation

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

1" 1P ao(x:A)

l = uy:Bq,...,Uy : B

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

dyadic formulation

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth OreplicationO

1" 1P ao(x:A)

l = u;:Bq,...,Uy : Bp

implicitly !-typed

Of course!

Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

dyadic formulation

multiplicative conjunction
multiplicative implication
additive conjunction
additive disjunction

unit for !

Oof courseO, persistept

Ochannel outputc
Ochannel inputO
Oexternal choice
Ointernal choiceC
OterminationO

persistent
channels in! are of
type A
" P a(x:A)
l = uy:Bq,...,Uy : B

implicitly !-typed

Judgmental rule copy

Judgmental rule copy

Typing rule:

LU A" XA Qxii(z:C)
L u A" 1 sendu (newx); Qyx 2 (z: C)

copy

Judgmental rule copy

Typing rule:

LU A" XA Qxii(z:C)
L u A" 1 sendu (newx); Qyx 2 (z: C)

copy

-> obtain a linear copy of a persistent server

Judgmental rule copy

Typing rule: contraction!

LU A" XA Qxii(z:C)
L U A" 1 osendu (newx); Qyx 2 (z: C)

copy

-> obtain a linear copy of a persistent server

Judgmental rule copy

Typing rule:

LU A" XA Qxii(z:C)
L u A" 1 sendu (newx); Qyx 2 (z: C)

copy

-> obtain a linear copy of a persistent server

Judgmental rule copy

Typing rule:

LU A" XA Qxii(z:C)
L u A" 1 sendu (newx); Qyx 2 (z: C)

copy

-> obtain a linear copy of a persistent server

Dynamics:

(D-copy) !produ,x ! recvu;Py),prodc,senau(newx); Qy)
H# proda, [a/x | Pyx), prodc,[a/x] Qx) (a fresh)

Judgmental rule copy

Typing rule:

LU A" XA Qxii(z:C)
L u A" 1 sendu (newx); Qyx 2 (z: C)

copy

-> obtain a linear copy of a persistent server

Dynamics: persistent!

(D-copy) !produ,x ! recvu,;Py),prodqc,senau(newx); Q)
H# proda, [a/x | Pyx), prodc,[a/x] Qx) (a fresh)

Judgmental rule copy

Typing rule:

LU A" XA Qxii(z:C)
L u A" 1 sendu (newx); Qyx 2 (z: C)

copy

-> obtain a linear copy of a persistent server

remains
available in post-state

Dynamics: persistent!

(D-copy) !produ,x ! recvu,;Py),prodqc,senau(newx); Q)
H# proda, [a/x | Pyx), prodc,[a/x] Qx) (a fresh)

Judgmental rule cut!

Judgmental rule cut!

Typing rule:

lsal Py i (X A) LUt A" D Qyii(z:C)

t!
" b u™ (X" recvu;Py); Qy - (z:C) o

Judgmental rule cut!

Typing rule:

lsal Py i (X A) LUt A" D Qyii(z:C)
" b u™ (X" recvu;Py); Qy - (z:C)

o d spawning a persistent server

cut!

Judgmental rule cut!

Typing rule:

lsal Py i (X A) LUt A" D Qyii(z:C)
" b u™ (X" recvu;Py); Qy - (z:C)

o d spawning a persistent server

Dynamics:

cut!

(D-cut!) proqc,u! (x! recvu;Py); Qu)
% lproda,Xx! recva;Py),prodc,[a/u]Qy) (a fresh)

Rules for of course

Rules for of course

Typing rule:
l;al Py i(y:A) |
| ;4! sendx (newu);!(y " recvu;Py) :: (x :1A) "

LLuA" T Qyii(z:C) |
" XA T u" recvx;Qu i (z:C)

Rules for of course

Typing rule:
ls;al Py ii(y:A) '
1 ;al sendx (newu);!I(y " recvu; Py) 1 (x :1A) "

LU A" D Qyii(z:C) |
" XA T u" recvx;Qu i (z:C)

-} spawning a persistent server

Rules for of course

Typing rule:
ls;al Py ii(y:A) '
1 ;al sendx (newu);!I(y " recvu; Py) 1 (x :1A) "

LLuA" T Qyii(z:C) |
" XA T u" recvx;Qu i (z:C)

-} spawning a persistent server

Dynamics:

(D-1) proda,senda(newu);!(y! recvu;Py)),prodqc,u! recva;Qy)
lprodb,y! recvb;Py),prodc,[b/u]Qy) (b fresh)

Taking stock

Taking stock

Replication — clients are shielded from each others effects

Taking stock

Replication — clients are shielded from each others effects

Taking stock

Replication — clients are shielded from each others effects

Taking stock

Replication — clients are shielded from each others effects

Taking stock

Replication — clients are shielded from each others effects

any communication of one client with its copy of P will not affect

-

the private copies of P of other clients

Taking stock

Replication — clients are shielded from each others effects

any communication of one client with its copy of P will not affect
the private copies of P of other clients

-

-} for some applications this copying semantics is appropriate

Taking stock

Replication — clients are shielded from each others effects

any communication of one client with its copy of P will not affect
the private copies of P of other clients

-

-} for some applications this copying semantics is appropriate

-} other applications need a true sharing semantics

Taking stock

Replication — clients are shielded from each others effects

— let’s explore next!

' any communication of one client with its copy g P will not affect
the private copies of P of other clients
-} for some applications this copying semantics is appropriate

-} other applications need a true sharing semantics

Manifest sharing

Manifest sharing — key ideas

Manifest sharing — key ideas

-} permit aliases, rather than ruling them out

Manifest sharing — key ideas

-} permit aliases, rather than ruling them out

-} to guarantee preservation

Manifest sharing — key ideas

-} permit aliases, rather than ruling them out

-} to guarantee preservation

-} exclusive access required prior any communication

Manifest sharing — key ideas

-} permit aliases, rather than ruling them out

-} to guarantee preservation

-} exclusive access required prior any communication

-} relinquish exclusive access in consistent state

Manifest sharing — key ideas

-} permit aliases, rather than ruling them out

-} to guarantee preservation

-} exclusive access required prior any communication
-} relinquish exclusive access in consistent state

-} manifest these ideas in type structure

Manifest sharing — key ideas

-} permit aliases, rather than ruling them out

-} to guarantee preservation

-} exclusive access required prior any communication
-} relinquish exclusive access in consistent state

-} manifest these ideas in type structure

.Il Stephanie Balzer and Frank Pfenning. Manifest Sharing with Session Types.

ICFP, 2017.

Copying versus sharing semantics

Copying versus sharing semantics

Copying semantics

Copying versus sharing semantics

Copying semantics Sharing semantics

Copying versus sharing semantics

Copying semantics Sharing semantics

persistent

Copying versus sharing semantics

Copying semantics Sharing semantics

persistent shared

Copying versus sharing semantics

Copying semantics Sharing semantics

persistent shared

Copying versus sharing semantics

Copying semantics Sharing semantics

Copying versus sharing semantics

Copying semantics Sharing semantics

Copying versus sharing semantics

Copying semantics Sharing semantics

Copying versus sharing semantics

Copying semantics Sharing semantics

private linear copy l

o

Copying versus sharing semantics

Copying semantics Sharing semantics

g g
|

private linear copy l

Copying versus sharing semantics

Copying semantics Sharing semantics

gy O G

private linear copy l

e >’>e

Copying versus sharing semantics

Copying semantics Sharing semantics

gy O G

private
private linear copy

linear channel

e >’>e

Key Idea 1: acquire-release

Key Idea 1: acquire-release

P

Key Idea 1: acquire-release

P

Key Idea 1: acquire-release

P

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

P

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

both
clients contend for
communicating with P

Legend: —e linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

both
clients contend for
communicating with P

Legend: —e linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

Legend: —e linear channel

‘ linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

Legend: —® linear channel

‘ linear process

----- » shared channel ‘ shared process

Key idea 1: acquire-release

Q1 has exclusive
access to P

.
,, AL
0‘.
‘e
0..
.
.
*
0“
*
*e

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key idea 1: acquire-release

Q1 has exclusive
access to P

communicates
.‘/\y:AL along private channel y

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

Legend: —® linear channel

‘ linear process

----- » shared channel ‘ shared process

Key idea 1: acquire-release

Q1 relinquishes
exclusive access to P

.
,, AL
0‘.
‘e
0.‘
.
.
*
0“
*
*e

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key idea 1: acquire-release

Q1 relinquishes
exclusive access to P

rel
/\y AL

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key idea 1: acquire-release

Q1 relinquishes
exclusive access to P

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

Legend: —® linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

Q1 must contend
again for P

Legend: —e linear channel linear process

----- » shared channel ‘ shared process

Key Idea 1: acquire-release

Q1 must contend
again for P

’ only acquire messages can be sent

along shared channels

Legend: —e linear channel linear process

----- » shared channel ‘ shared process

Key Idea 2: manifest acquire-release in types

Key Idea 2: manifest acquire-release in types

Observation:

Key Idea 2: manifest acquire-release in types

Observation:

processes are at one of two modes: either linear or shared

Key Idea 2: manifest acquire-release in types

Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

Key Idea 2: manifest acquire-release in types

Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L

Key Idea 2: manifest acquire-release in types

Observation:

processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L

ALB, ! '{T"A}IA #B 11!
| {T"A}!A." B,

Key Idea 2: manifest acquire-release in types

Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L

weakening t A |
contraction A S :

ALB, ! '{T"A}IA #B 11!
_ | {T"A}!A." B,

Key Idea 2: manifest acquire-release in types

Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L
-} connect layers with modalities going back and forth

weakening t A |
contraction A S :

ALB, ! '{T"A}IA #B 11!
_ | {T"A}!A." B,

Key Idea 2: manifest acquire-release in types

Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L
-} connect layers with modalities going back and forth

weakening t | 1S
contraction A AS : 'LAL

ALB, ! '{T"A}IA #B 11!
_ I {T"A} A" B, !#A

Key Idea 2: manifest acquire-release in types

Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L
-} connect layers with modalities going back and forth

weakening t | 1S
contraction A AS : 'LAL

ALB, ! '{T"A}IA #B 11!
_ I {T"A} A" B, !#A

-> support of sending shared channels along linear channels

Key Idea 2: manifest acquire-release in types

Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L
-} connect layers with modalities going back and forth

weakening t | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
) L{I"AJ TAL" BLI#AS!! XA B,

-> support of sending shared channels along linear channels

Example: shared queue

What should be the type of a shared queue”

Example: shared queue

What should be the type of a shared queue”

weakening
contraction

+
A

As |
A,B_. |

S
1A,

1
I

"AJTA #B 11$x"As.B, !
"AJTAL" BLI#AS!! X'As. B,

Example: shared queue

What should be the type of a shared queue”

weakening T | 1S
contraction A AS ' 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

queueAs = ! {enq!! x!As. queueAs,
deq! " {none! queueAg, some! #!As. queueAg}}

Example: shared queue

What should be the type of a shared queue”

weakening T | 1S
contraction A AS ' 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

queueAs = ! {enq!! x!As. queueAs,
deq! " {none! queueAg, some! #xIAs. queueAg}}

Example: shared queue

What should be the type of a shared queue”

weakening T | 1S
contraction A AS ' 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

queueAs =!°1 {enq!! x!As. queueAg,
deq! " {none! queueAg, some! #xIAs. queueAg}}

Example: shared queue

What should be the type of a shared queue”

weakening T | 1S
contraction A AS ' 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

queueAs =1°1 {enq!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAd}}

Example: shared queue

What should be the type of a shared queue”

weakening t | IS
contraction A AS ' 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAd}}

-

Example: shared queue

What should be the type of a shared queue”

weakening
contraction

+

A

As |
A,B_. |

S
1A,

1
I

"AJTA #B 11$x"As.B, !
"AJTAL" BLI#AS!! X'As. B,

queueAs =!>! {eng!! x!As. "> queueAs,

deq! " {none!"? queueAs, some! #x!As. "> queueAd}}

-

-} up-shift is an acquire

Example: shared queue

What should be the type of a shared queue”

weakening
contraction

+

A

As |
A,B_. |

S
1A,

1
I

"AJTA #B 11$x"As.B, !
"AJTAL" BLI#AS!! X'As. B,

queueAs =!>! {eng!! x!As. "> queueAs,

deq! " {none!"? queueAs, some! #x!As. "> queueAd}}

-

-} up-shift is an acquire

-} down-shift is a release

Key Idea 3: equi-synchronizing

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"> queueAs, some! #x!As. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"> queueAs, some! #x!As. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"> queueAs, some! #x!As. "> queueAs}}

process is released
back to same type previously
acquired

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAg}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAg}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAg}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!">!° 1, some! #x!As. "> queueAs}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAS,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!">!° 1, some! #x!As. "> queueAs}}

process is released
back to different type

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!">!° 1, some! #x!As. "> queueAs}}

process is released

back to different type next client to acquire

encounters protocol
violation!

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAg}}

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAS,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAg}}

equi-synchronizing: type wellformedness condition guaranteeing

-

that any release Is back to type at which previously acquired

Key Idea 3: equi-synchronizing

Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
deq! " {none!"? queueAs, some! #x!As. "> queueAs}}

queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAg}}

equi-synchronizing: type wellformedness condition guaranteeing

-

-} acquire-release and equi-synchronizing guarantee preservation

that any release Is back to type at which previously acquired

Typing jJudgments

Typing jJudgments

weakening T | 1S
contraction A AS ' 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

Typing jJudgments

weakening T | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

LTy P H(Xg!TAg) shared process P, providing session of type As
along Xs, using channels in !

;" 1y P I(X_ VAL linear process P, providing session of type AL
along x., using channelsin ! and "

| shared (structural) context

! linear context

Typing jJudgments

weakening T | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

LTy P I (XgTAg) shared process P, providing session of type As
along Xs, using channels in !

15" 1y P U(X.TAL) linear process P, providing session of type AL
along x., using channelsin ! and "

| shared (structural) context

! linear context

Typing jJudgments

weakening T | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

LTy P H(Xg!TAg) shared process P, providing session of type As
along Xs, using channels in !

;" 1y P I(X_ VAL linear process P, providing session of type AL
along x., using channelsin ! and "

| shared (structural) context

! linear context

Typing jJudgments

weakening T | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

LTy P (X !TAg) shared process P, providing session of type As
along Xs, using channels in !

;" 1y P I (X. VAL linear process P, providing session of type AL
along x., using channelsin ! and "

| shared (structural) context

! linear context

Typing jJudgments

weakening T | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

Ly P I(XsTAS) shared process P, providing session of type As
along Xs, using channels in !

;" by P I(X_ TAL) linear process P, providing session of type AL
along x., using channelsin ! and "

| shared (structural) context

! linear context

Typing jJudgments

weakening T | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
i L{I"AJ TAL" BLI#AS!! X'As. B,

LTy P (X !TAg) shared process P, providing session of type As
along Xs, using channels in !

;" 1y P I(X_ 1AL linear process P, providing session of type AL
along x., using channelsin ! and "

| shared (structural) context

! linear context

Acquire

Acquire

LoXsUP AL " XA Qy 1(zL1CY)

_ (T-100)
Loxs DAL " "y X # acquirexs ; Qx (z. 1C))

Acquire

L oXs UD AL " XA Qy 1(z 1CY)

_ (T-100)
L oxs DAL " "y X # acquirexs ; Qx (z. 1C))

Acquire

L oXs UD AL " XA Qy 1(z 1CY)

_ (T-100)
L oxs DAL " "y X # acquirexs ; Qx (z. 1C))

1 Py (XA

(T-#Rr)
I 1y x. " acceptxs ; Py, "'(Xs'"# AL)

Acquire

L oXs UD AL " XA Qy 1(z 1CY)

_ (T-100)
L oxs DAL " "y X # acquirexs ; Qx (z. 1C))

1 Py (X AL

(T-#Rr)
I 1y x. " acceptxs ; Py, "'(Xs'# AL)

Acquire

L oXs UD AL " XA Qy 1(z 1CY)

_ (T-100)
L oxs DAL " "y X # acquirexs ; Qx (z. 1C))

1 Py (X AL

(T-#Rr)
I 1y x. " acceptxs ; Py, "'(Xs'# AL)

(D-!7) prodas, X, " acceptas ; Py,),prodc,x, " acquireas; Qy,)
#b unvailas), proda,, [a./ X]Px,), prodc,[a/x] Qx,)

Release

Release

|, Xs1Ag " 11 Qy 11(z. 1 C)

(T_ "fl_)
1" X "D Ay Xs # releasex ; Qy (. I C)

Release

| Xs1Ag " 11 Qy 1(z.!C)

(T_ "fl_)
" X "D A Xs # releasex ; Qy (. I C)

Release

|, XsTAg " I Qg !1(z. !'C)
(T-"CL)
" X "D A Xs # releasex ; Qy (. I C)
(T-#R)

! , "! I XS ! detaChXL ;PXS ” (XL |#f As)

Release

|, XsTAg " I Qg !1(z. !'C)
(T-"CL)
" X "D A Xs # releasex ; Qy (. I C)
(T-#R)

! , "! I XS ! detaChXL ;PXS ” (XL I#f As)

Release

|, XsTAg " I Qg !1(z. !'C)
(T-"CL)
" X "D A Xs # releasex ; Qy (. I C)
(T-#R)

! , "! I XS ! detaChXL ;PXS ” (XL l#f As)

(D-!') proda,xs" detacha, ;Py.),prodc,xs" releases, ;Qx.),
unvail ay)

prodas, [as/ Xs] Pxs), Proa(c,, [as/ Xs] Qxs)

Let’s implement a shared queue in SlLLs

Taking stock

Taking stock

We have a session type system that allows shared and linear

-

channels to coexist and guarantees:

Taking stock

We have a session type system that allows shared and linear

-

channels to coexist and guarantees:

-} data-race-freedom (low-level and high-level)

Taking stock

We have a session type system that allows shared and linear

-

channels to coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-> protocol adherence

Taking stock

We have a session type system that allows shared and linear

-

channels to coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-> protocol adherence

-} What about deadlock-freedom?

Taking stock

We have a session type system that allows shared and linear

-

channels to coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-> protocol adherence

-} What about deadlock-freedom?

-} unfortunately we have lost deadlock-freedom

Taking stock

We have a session type system that allows shared and linear

-

channels to coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-> protocol adherence

-} What about deadlock-freedom??

-} unfortunately we have lost deadlock-freedom

next time!

