Session-Typed Concurrent Programming
Lecture 3

Stephanie Balzer
Carnegie Mellon University

OPLSS 2021
June 25, 2021



Today’s lecture




loday’s lecture

Recap

e Type system and dynamics for the intuitionistic linear session types
language SILL

e Curry-Howard correspondence
e SILL readily guarantees session fidelity and deadlock-freedom



loday’s lecture

Recap

e Type system and dynamics for the intuitionistic linear session types
language SILL

e Curry-Howard correspondence
e SILL readily guarantees session fidelity and deadlock-freedom

Next

e Extend SILL with persistent truth (of coursel)
e Then, switch gears and introduce shared session types
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Follow-up on Slack

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, Ao Fx+ P;Q::(z:0)

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

Cl bcl SZCE%PQZ?QCE
S/:[a/x]Qx
N T =[a/X]P,




homework:

Follow-up on Slack make drawings for other

tensor and lolli!

A1 P:(x: A Ag,x: A Q:(z:0)

Cut
A1, A Fx+ P;Q :: (z:0C) )

(D-Cut) proc(c,x < P.; Q%)
— proc(a, |a/x| P.), proc(c, |a/x] Q) (a fresh)

Cl bcl SZCE%PQZ?QCE
S/:[a/x]Qx
N T =[a/x]P,
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Types:
AB ! A! B
A" B
Al B
A" B
1
1A

-

multiplicative conjunction Ochannel output(
multiplicative implication Ochannel inputO
additive conjunction Oexternal choice
additive disjunction Ointernal choice(
unit for ! OterminationO

Oof courseO, persistent truth  OreplicationO

a process of type A can be used arbitrarily often, I.e., can have

any number of clients
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Of course!

What is the computational meaning of “of course”? keeps
access to P
—
copy
: lx:A
linear copy

-> obtain a linear copy P’ of unrestricted process P

-> corresponds to replication in the pi-calculus

let’s look at typing rules and dynamics

(*) copy rule operates on structural context, so it should be u: A because A is judgmentally persistent
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Types:
AAB ! Al B
A" B
Al B
A" B
1
IA
Typing judgment:

dyadic formulation

multiplicative conjunction
multiplicative implication
additive conjunction
additive disjunction

unit for !

Oof courseO, persistept

Ochannel outputc
Ochannel inputO
Oexternal choice
Ointernal choiceC
OterminationO

persistent
channels in! are of
type A
" P a(x:A)
l = uy:Bq,...,Uy : B

implicitly !-typed
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Judgmental rule copy

Typing rule:

LU A" XA Qxii(z:C)
L u A" 1 sendu (newx); Qyx 2 (z: C)

copy

-> obtain a linear copy of a persistent server

remains
available in post-state

Dynamics: persistent!

(D-copy) !produ,x ! recvu,;Py),prodqc,senau(newx); Q)
H#  proda, [a/x | Pyx), prodc,[a/x ] Qx) (a fresh)
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Judgmental rule cut!

Typing rule:

lsal Py i (X A) LUt A" D Qyii(z:C)
" b u™ (X" recvu;Py); Qy - (z:C)

o d spawning a persistent server

Dynamics:

cut!

(D-cut!) proqc,u! (x! recvu;Py); Qu)
% lproda,Xx! recva;Py),prodc,[a/u]Qy) (a fresh)
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Rules for of course

Typing rule:
ls;al Py ii(y:A) '
1 ;al sendx (newu);!I(y " recvu; Py) 1 (x :1A) "

LLuA" T Qyii(z:C) |
" XA T u" recvx;Qu i (z:C)

-} spawning a persistent server

Dynamics:

(D-1) proda,senda(newu);!(y! recvu;Py)),prodqc,u! recva;Qy)
# lprodb,y! recvb;Py),prodc,[b/u]Qy) (b fresh)
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Taking stock

Replication — clients are shielded from each others effects

— let’s explore next!

' any communication of one client with its copy g P will not affect
the private copies of P of other clients
-} for some applications this copying semantics is appropriate

-} other applications need a true sharing semantics
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Manifest sharing — key ideas

-} permit aliases, rather than ruling them out

-} to guarantee preservation

-} exclusive access required prior any communication
-} relinquish exclusive access in consistent state

-} manifest these ideas in type structure

.Il Stephanie Balzer and Frank Pfenning. Manifest Sharing with Session Types.

ICFP, 2017.
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Copying semantics Sharing semantics

gy O G

private
private linear copy

linear channel

e >’>e
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Key Idea 1: acquire-release

Q1 must contend
again for P

’ only acquire messages can be sent

along shared channels

Legend: —e linear channel linear process

----- » shared channel ‘ shared process
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Observation:

-} processes are at one of two modes: either linear or shared

Adjoint stratification of session types:

-} stratify session types into a linear and shared layer, s.t. S > L
-} connect layers with modalities going back and forth

weakening  t | 1S
contraction A AS : 'LAL

A,B. ! T{I"A}TA #B 11!$x'As.B. !
) L{I"AJ TAL" BLI#AS!! XA B,

-> support of sending shared channels along linear channels
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Example: shared queue

What should be the type of a shared queue”

weakening
contraction

+

A

As |
A,B_. |

S
1A,

1
I

"AJTA #B 11$x"As.B, !
"AJTAL" BLI#AS!! X'As. B,

queueAs =!>! {eng!! x!As. "> queueAs,

deq! " {none!"? queueAs, some! #x!As. "> queueAd}}

-

-} up-shift is an acquire

-} down-shift is a release
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Is mutual exclusion enough for restoring preservation”?

queueAs =!>! {eng!! x!As. "> queueAs,
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queueAs =!>! {eng!! x!As. "> queueAs,
deqg! " {none!">!> 1, some! #!Aq. "> queueAg}}

equi-synchronizing: type wellformedness condition guaranteeing

-

-} acquire-release and equi-synchronizing guarantee preservation

that any release Is back to type at which previously acquired
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Let’s implement a shared queue in SlLLs
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Taking stock

We have a session type system that allows shared and linear

-

channels to coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-> protocol adherence

-} What about deadlock-freedom??

-} unfortunately we have lost deadlock-freedom

next time!



