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Recap

e Extended SILL with replication

e Type system and dynamics for the intuitionistic linear and shared
session types language SlLLs

e SlLLs guarantees session fidelity but not deadlock-freedom

Next
e Extend SlLLs with modal worlds to re-establish deadlock-freedom
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Adjoint formulation:
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Recap: manifest sharing

Adjoint formulation:
As
AL7 BL

AL
o{T- A} | A ® B |1|32:4s. B, |
&{l : AL} | AL — B | leAS | IIz:As. B,

>

>

queue = 1’ &{enq : int — |, queue,

deq : ®{none : |, queue, some : int x | queue}}

-} Take-away: up-arrow = acquire, down-arrow = release
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Recap: manifest sharing

Session type system that allows shared and linear processes to

-

coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-} preservation (a.k.a. session fidelity)

-} Implementations:
- 4 Ferrite DSL in Rust

-} Unfortunately, deadlocks are possible now

@ Ferrite: ferrite-session Rust crate.
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Expressiveness of manifest sharing

INn simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

-
-

-} both recursive types and shared session types are required

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

-} acqguire-release introduces nondeterminism

-

N Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. A Universal Session

encoding of untyped asynchronous pi-calculus into SlLLs
and proof of operational and observational correspondence

Type for Untyped Asynchronous Communication. CONCUR 2018.
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Linear session types without sharing:
® |inear propositions as session types

® Droofs as pProcesses
e cut reduction as communication

Manitest sharing:
e correspondence does no longer uphold, but we get:
® |inear propositions as session types

® proofs as processes

* interleaving of proof construction (acquire), proof reduction
(communication), and proof deconstruction (release)

-} deadlock: failure of proof construction
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-} deadlock due to cyclic acquisitions
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Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr +— release Ir : deadlock
close o may occur both in
N synchronous and
T $— TeS_proc ; 00 Co asynchronous
0p < OWNer < ry ; | N semantics

-} deadlock due interdependent acquisitions and synchronizations
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Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?

‘? l (\\ * [wo scenarios:

* provider ready to synchronize, client not
\ e client ready to synchronize, provider not
\- / \ e | et’s visualize this waiting dependency

with a green arrow

No green cycles: green arrows can only go along linear channels,

-

Legend: —@ linear channel E— “a waits for b”

and client and provider cannot both be waiting for each other.
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L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”
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L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”

/ l \ e Possibility of cyclic dependencies

eree e | et’s visualize this waiting dependency
AT ~O with a red arrow
“\ N
Y.
Legend: —#@® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”




L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”

i l \ e Possibility of cyclic dependencies

e e | et’s visualize this waiting dependency
AT ~O with a red arrow
“\ N
Y.
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L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.
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L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”
i l Q, e Possibility of cyclic dependencies

e e | et’s visualize this waiting dependency
AY . with a red arrow
N\ N
Y.
Legend: —#@® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”




L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”
i l Q, e Possibility of cyclic dependencies

e e | et’s visualize this waiting dependency

AL R with a red arrow

14 e Note: red arrows can connect arbitrary
nodes in the tree

.
LR
", .
....
-------

Legend: —® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”
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Two kinds of cycles

Two kinds of waiting dependencies:

e waiting to synchronize: —> “a walits for b to synchronize”
e waiting to release: (- — “a waits for b to release resource”

Cycles can consist of red arrows only or a combination of red
and green arrows.

-




Two kinds of cycles

Two kinds of waiting dependencies:
e waiting to synchronize: —> “a walts for b to syncy

e waiting to release: (- —> “a waits for b 1o release @@ Iooklngl—ulp
IS not sufficient!

Cycles can consist of red arrows only or a combination of red
and green arrows.

-
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|[dea: competitors and collaborators

-} Competitors: overlap in set of resources acquired

-} Collaborators: do not overlap in set of resources acquired

collabcA)rators -} competitors tend to be siblings
collaborators tend to be In the
/ \ same branch
/ \

competitors
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Manitest deadlock-freedom

-} Define type system enforcing the following invariants:

collaborators Q
A

/ \ @ collaborators acquire mutually disjoint

competitors employ locking-up for
resources they compete for

sets of resources
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resources when synchronizing with
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Manitest deadlock-freedom

-} Define type system enforcing the following invariants:

collaborators Q
A

/ \ @ collaborators acquire mutually disjoint

competitors employ locking-up for
resources they compete for

sets of resources

[\ competitors have released all acquired
| G resources when synchronizing with
) e other competitors (“talking-up”)
competitors

A rules out red-arrow cycles, B and C rule out red-green-arrow

-

cycles.
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Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U: Ty P (x5 0 As|wserr Joma])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

Wmin

“Process P provides a session of type A,, along channel z,,,
using channels in I" (and ®; A).”

.Il Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest Deadlock-

Freedom for Shared Session Types. ESOP 2019.
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Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wsels Jom])

Wmin

U, I &, Ay P (0 AL[wsewisz:])
max-world: world
of maximal resource to be
acquired
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Introduce modal worlds, abstract values equipped with a partial
order.
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-} Every process indicates the range of worlds it may acquire.
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Wmin
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Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs: As|wseir Lom])

Wmin

U: T & Aby P (a0 Al wseir Jom=])

min

partial world order
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U: I'Fx P (x5 1 As|wserr] collaborators
U, I &, Ay P (x 0 Aw,
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-} for an acquire: lock-up competitors

no red cycles
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U; 'y P (s Ag [wse|f$wmax])
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-} Express invariants A, B, and C in terms of:
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-} for an acquire: lock-up
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Manitest deadlock-freedom

\I/; I I_E P (-Ts : As[wself$$2?:])

U, I &, Ay P (x: Aw

-} Express invariants A, B, and C in terms ¢

-} min(parent) < self(acquired_child) <

-} max(parent) < min(child)

-} for an acquire: lock-up

-} right-rule: all resources released

A

* collaborators

7\
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L4
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- ]
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competitors

no ingoing red and up-going green arrow
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U; 'y P (s Ag [wse|f$wmax])
U, T 0 Abs P (a0 AL[wse|f$w:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

-} max(parent) < min(child)

-} for an acquire: lock-up

-} right-rule: all resources released



Manitest deadlock-freedom

U Ty P (2 0 As|wserr Tom])

Wmin

U, T 0 Abs P (a0 AL[wse|f$$:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)
-} max(parent) < min(child)
- P
-} right-rule: all resources released

-} These low-level invariants are enforced by typing.



World and order creation




World and order creation

Uow; I @ Ay Qu i (o0 Alwn T90))

Wy

(T—NEWL)
U I'; &; A s w <+ new_world; Qy :: (z, : AL[wm$$Z])
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Uow; I & Ay Qu i (o0 AlwnT90))

Wy

(T—NEWL)
U, I'; &; A s w <+ new_world; Q, :: (z, : AL[wm$$Z])
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World and order creation

Uow; I @ Abs Qu i (20 Afwn T80 ])

(T—NEWL)
U, I'; @ A by w < new_world; Qy, = (z 1 A w57 ])
Wy, Wy € W (¥, w, < w,)T irreflexive
Vow, <wp; I's @ Ay Qi (w00 Allwn T50])
(T—ORDL)

U T @ Abs wy, <wp; Qi (0 AL[wm$sz])
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Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T ] O o 0 Alwm T8 ] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80 ] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])



Acquire

lock-up
[wliwr] cd:w < wn
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T oy @ Allwn T s A by Qg 1 (20 Cllw; 32])

(T-1L)
U T as : A [wn T80 ] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])



Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T ] O o 0 Alwm T8 ] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80 ] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])



Acquire
min(parent) < self(acquired_child) < max(parent)

Yy, : BL[wﬂg;] EP:w < Wy
U* F owp <w,y, < wy Ut ow, < wy
U: T, x - EAL[wm$$Z]; ORGP AL[wmizz]; Ay Qu i (2 C’L[wj$$g])

(T-171)
U: T zs : WA w9 ]; @; A by 2z < acquirezs; Qy :: (2 : Cllw; onl)

u



Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T ] O o 0 Alwm T8 ] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80 ] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])



Acquire

max(parent) < min(child)
[wliwf] cd:w < w,
\P*I—wk<wm§wn Ut w, < w,y,
U Tws : WA Jwm 350 ] @20 Ao 350 A bs Qg (201 Culw; T7 )

(T-1L)
U T as : A [wn T80 ] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])



Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T ] O o 0 Alwm T8 ] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80 ] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])



Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T ] b oz A w, T ] Aby Qg i (2 Cllw; 32])

(T-1L)
U T as : A [wn T80 ] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])



Acquire

Yy, : BL[wﬂg;] cd:w < wy,
U* F owp <w,y, < wy, Ut ow, < wy
U: T, x - TEAL[Wm$$Z]§ ORGP AL[wmizz]; Ay Qu i (2 C’L[wj$$g])

(T-1L)
U T as : A [wn T80 ] @5 A by 2 = acquirezs ; Qg i (20 Culw; T97])

[V R o e O AL[wmig;])

(T-1'r)
U: I' by o, < acceptas; Py i (zs 0 TV A [wim )



Acquire

Yy, : BL[wﬂg;] cd:w < wy,
U* F owp <w,y, < wy, Ut ow, < wy
U: T, x - TEAL[Wm$$Z]§ ORGP AL[wmizz]; Ay Qu i (2 C’L[wj$$g])

(T-1L)
U T as : A [wn T80 ] @5 A by 2 = acquirezs ; Qg i (20 Culw; T97])

[V R o e O AL[wmig;])

(T-1'r)
U: I' by o, < acceptas; Py, (xs 0 TV A [wim )



Acquire

[wliwf] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T ] O o 0 Alwm T8 ] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80 ] @5 A by 2 = acquirezs ; Qg i (20 Culw; T97])

[V R o e O AL[wmig;])

(T-1'r)
U; I' by o, « acceptas ; Py, = (s : ﬁAL[wmigz])

® must be empty



Remaining typing rules

Largely unchanged, except for
e right-rules, which must have an empty ©
e spawn, which must establish invariants

Compositionality
e Process definitions specify a process’ order
e Order of spawner must entail order of spawnee

58
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Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c



Catching potential deadlock

owner : {0p < 01 < 02 + 1[dg gﬂ < sres|d; gi]}
0[50%1] — owner < sr|d; g;] =
¢ : ®{ping : 1}[50%31] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {09 < 01 < 02 F ®{ping : 1}|dg gi] < sres|0; gZ]}
C[é@igi]  contester < sr|dy ig;] —
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c
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contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c
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owner : {0y < 61 < 62 F 1[dg gﬂ ¢ sres|d; $§§]}
0[50%1] — owner < sr|d; ig;] =
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contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c
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owner : {0y < 61 < 6o F 1[dg gﬂ < sres|d; gi]}
0[(50%1] — owner < sr|d; g;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c



Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
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case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {0g < 01 < 02  B{ping : 1}[&)@1] ¢ sres|0; $§§]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c
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owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {6 < 01 < 03 F B{ping : 1}|dg gi] < sres|d; $§§]}
c[éoigi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c
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owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
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sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[51 gZ]}
cldo ﬁi]  contester < sr|dy ig;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c
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owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[50%31] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c
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owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c



Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
ﬁ ¢ : B{ping : 1}[50%51] — contester < sr ;
[r <— acquire sr ;
case c of
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

ﬁ c.ping ;

sr < release Ir ; close c



Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
ﬁ ¢ : B{ping : 1}[50%51] — contester < sr ;
Ir < acquire sr ;

case c of
| ping — wait ¢ ; not a collaborator!

sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

ﬁ c.ping ;

sr < release Ir ; close c



Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; igj]}
0[(50%1] — owner < sr|d; ig;] =
ﬁ ¢ : B{ping : 1}[50%1] — contester < sr ;
Ir < acquire sr ;

case c of
| ping — wait ¢ ; not a collaborator!

sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =

[r <— acquire sr ;
c.ping : not all resources released!
pIng ;

sr < release Ir ; close c
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Taking stock

Type systems allows us to write interesting and common

-

programs that are guaranteed to be deadlock-free, e.q.,:

-} dining philosophers (see paper)

-} imperative queue (see paper)




Taking stock

Type systems allows us to write interesting and common

-

programs that are guaranteed to be deadlock-free, e.g.,:

-} dining philosophers (see paper)

-} imperative queue (see paper)

-} Currently not supported:
-} unbounded circular process networks
-




The end — or the beginning for you"?
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