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Today’s lecture

Recap 
• Extended SILL with replication 
• Type system and dynamics for the intuitionistic linear and shared 

session types language SILLS 
• SILLS guarantees session fidelity but not deadlock-freedom

Next 
• Extend SILLS with modal worlds to re-establish deadlock-freedom
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Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

Adjoint formulation:

Take-away: up-arrow = acquire, down-arrow = release

AS � ↑SLAL

AL,BL � ⊕{l ∶ AL} � AL ⊗BL � 1 � ∃x∶AS.BL �
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Recap: manifest sharing

Session type system that allows shared and linear processes to 
coexist and guarantees:

data-race-freedom (low-level and high-level)

preservation (a.k.a. session fidelity)

Unfortunately, deadlocks are possible now

Implementations:

Ferrite DSL in Rust

Ferrite: ferrite-session Rust crate.
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Expressiveness of manifest sharing

both recursive types and shared session types are required

in simply-typed lambda-calculus, addition of recursive types 
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of 
the untyped pi-calculus for linear session types

Stephanie Balzer, Frank Pfenning, and Bernardo Toninho.  A Universal Session 
Type for Untyped Asynchronous Communication. CONCUR 2018.

acquire-release introduces nondeterminism

encoding of untyped asynchronous pi-calculus into SILLS 
and proof of operational and observational correspondence
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Curry-Howard correspondence revisited

Linear session types without sharing: 
• linear propositions as session types 
• proofs as processes 
• cut reduction as communication

Manifest sharing: 
• correspondence does no longer uphold, but we get: 

• linear propositions as session types 
• proofs as processes 
• interleaving of proof construction (acquire), proof reduction 

(communication), and proof deconstruction (release)

deadlock: failure of proof construction



Deadlock example: dining philosophers



Deadlock example: dining philosophers

not expressible with 
linear session types



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking philosopher

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

eating philosopher

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

fork, can be perpetually 
acquired and released

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

p0

f0

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

p0 p1

f0 f1

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

p0 p1 p2

f0 f1 f2

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

p0 p1 p2

f0 f1 f2

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

p0 p1 p2

f0 f1 f2

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

p0 p1 p2

f0 f1 f2

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;



Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking  left , right =

left 0  acquire left ;
right 0  acquire right ;
c eating  left 0, right 0

eating : {phil lfork, lfork}
c eating  left 0, right 0 =
right  release right 0 ;
left  release left 0 ;
c thinking  left , right

p0 p1 p2

f0 f1 f2

deadlock due to cyclic acquisitions

f0  fork proc ; f1  fork proc ; f2  fork proc ;
p0  thinking  f0 , f1 ;
p1  thinking  f1 , f2 ;
p2  thinking  f2 , f0 ;
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Another deadlock example

owner : {1 sres}
o owner  sr =

c contester  sr ;
lr  acquire sr ;
case c of
| ping! wait c ;

sr  release lr ;
close o

contester : {�{ping : 1} sres}
c contester  sr =

lr  acquire sr ;
c.ping ;
sr  release lr ;
close c

r0  res proc ;
o0  owner  r0 ;

deadlock due interdependent acquisitions and synchronizations

o0 c0

r0

deadlock 
may occur both in 
synchronous and 

asynchronous 
semantics
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Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not
• client ready to synchronize, provider not

• Let’s visualize this waiting dependency 
with a green arrow

a

b c d

e f g

Legend: linear channel a b “a waits for b”

No green cycles: green arrows can only go along linear channels, 
and client and provider cannot both be waiting for each other.

Linearity (“exactly one client”) turns process graph into a tree. 
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Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency 

with a red arrow
• Note: red arrows can connect arbitrary 

nodes in the tree

a b “a waits for b to release resource”
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Two kinds of cycles

Two kinds of waiting dependencies: 
• waiting to synchronize: 
• waiting to release:

a b “a waits for b to synchronize”
a b “a waits for b to release resource”

a

b c d

e f g

a

b d d

e f g

Cycles can consist of red arrows only or a combination of red 
and green arrows.

“locking-up” 
is not sufficient!
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Competitors: overlap in set of resources acquired

Collaborators: do not overlap in set of resources acquired

collaborators

a

b c

1 2

competitors

competitors tend to be siblings

collaborators tend to be in the 
same branch
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Manifest deadlock-freedom

Define type system enforcing the following invariants:

collaborators

a

b c

1 2

competitors

collaborators acquire mutually disjoint 
sets of resourcesB

competitors employ locking-up for 
resources they compete forA

competitors have released all acquired 
resources when synchronizing with 
other competitors (“talking-up”)

C

A rules out red-arrow cycles, B and C rule out red-green-arrow 
cycles.
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“Process P provides a session of type Am along channel xm,
using channels in � (and �;�).”

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning.  Manifest Deadlock-
Freedom for Shared Session Types. ESOP 2019.
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order.

partial world order

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

collaborators

a

b c

1 2

competitors

no vertical red arrows



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

collaborators

a

b c

1 2

competitors

no red cycles



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released



 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released

collaborators

a

b c

1 2

competitors

no ingoing red and up-going green arrow



Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])



Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released
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Φ must be empty



Remaining typing rules

Largely unchanged, except  for 
• right-rules, which must have an empty Φ 
• spawn, which must establish invariants 

Compositionality 
• Process definitions specify a process’ order  
• Order of spawner must entail order of spawnee
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Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1 ] sres[�1l�2�2 ]}
o[�0l�1�1 ] owner  sr [�1l�2�2 ] =

c : �{ping : 1}[�0l�1�1 ] contester  sr ;
lr  acquire sr ;
case c of
| ping! wait c ;

sr  release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1 ] sres[�1l�2�2 ]}
c[�0l�1�1 ] contester  sr [�1l�2�2 ] =

lr  acquire sr ;
c.ping ;
sr  release lr ; close c
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Type systems allows us to write interesting and common 
programs that are guaranteed to be deadlock-free, e.g.,:

dining philosophers (see paper)

imperative queue (see paper)



Taking stock

Type systems allows us to write interesting and common 
programs that are guaranteed to be deadlock-free, e.g.,:

dining philosophers (see paper)

imperative queue (see paper)

Currently not supported:

unbounded circular process networks

world inference



The end — or the beginning for you?
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