PLMW@POPL 2022

e Programming Languages Mentoring Workshop

e Co-located with ACM SIGPLAN Symposium on Principles of
Programming Languages
® Program:
e Research talks
e Graduate skills talks
® Panels
¢ Mentoring sessions

e Most likely run in hybrid mode

PLMW@POPL 2022

e Programming Languages Mentoring Workshop

e Co-located with ACM SIGPLAN Symposium on Principles of
Programming Languages
® Program:
e Research talks
e Graduate skills talks
® Panels
¢ Mentoring sessions

e Most likely run in hybrid mode

-} Application required. Monitor website for details.

Session-Typed Concurrent Programming
Lecture 4

Stephanie Balzer
Carnegie Mellon University

OPLSS 2021
June 26, 2021

Today’s lecture

loday’s lecture

Recap
e Extended SILL with replication

e Type system and dynamics for the intuitionistic linear and shared
session types language SlLLs

e SlLLs guarantees session fidelity but not deadlock-freedom

loday’s lecture

Recap

e Extended SILL with replication

e Type system and dynamics for the intuitionistic linear and shared
session types language SlLLs

e SlLLs guarantees session fidelity but not deadlock-freedom

Next
e Extend SlLLs with modal worlds to re-establish deadlock-freedom

Manifest deadlock-freedom

Recap: manifest sharing

Recap: manifest sharing

-} acquire-release (mutual exclusion):

' shared processes must be acquired before interaction ana

released afterwards

Recap: manifest sharing

-} acquire-release (mutual exclusion):

' shared processes must be acquired before interaction ana
released afterwards

-} equi-synchronizing session type:

process must be released back to the same session type at

which previously acquired

Recap: manifest sharing

-} acquire-release (mutual exclusion):

' shared processes must be acquired before interaction ana
released afterwards

-} equi-synchronizing session type:

' process must be released back to the same session type at

which previously acquired

queue = &{enq:int — queue,

deq : ®&{none: queue,some:int X queue}}

Recap: manifest sharing

-} acquire-release (mutual exclusion):

' shared processes must be acquired before interaction ana
released afterwards

-} equi-synchronizing session type:

' process must be released back to the same session type at

which previously acquired

acquire

|

queue = &{enq:int — queue,

deq : ®&{none: queue,some:int X queue}}

Recap: manifest sharing

-} acquire-release (mutual exclusion):

' shared processes must be acquired before interaction ana
released afterwards

-} equi-synchronizing session type:

' process must be released back to the same session type at

which previously acquired

acquire release

l l release
queue = &{enq:int — queue, |

deq : ®&{none: queue,some:int X queue}}

1

release

Recap: manifest sharing

acquire release

l l release
queue = &{enqg:int — queue, |

deq : ®{none: queue,some:int X queue}}

1

release

Recap: manifest sharing

Adjoint formulation:

As = DAL
A,B = ®{l:A}|A @B |1|3x:As. B, |
&{l : AL} | A — B | iEAs | IIz:As. B,
acquire release
l l release
queue = &{enqg:int — queue, |

deq : ®{none: queue,some:int X queue}}

1

release

Recap: manifest sharing

Adjoint formulation:

As = DAL
A,B = ®{l:A}|A @B |1|3x:As. B, |
&{l : AL} | A — B | iEAs | IIz:As. B,
acquire release
l l release
queue = &{enq:int — queue, |

deq : ®{none: queue,some:int X queue}}

1

release

Recap: manifest sharing

Adjoint formulation:

As = DAL
A,B = ®{l:A}|A @B |1|3x:As. B, |
&{l : AL} | A — B | iEAs | IIz:As. B,
acquire release
l l release
queue = 7 &{enq :int — queue, |

deq : ®{none: queue,some:int X queue}}

1

release

Recap: manifest sharing

Adjoint formulation:

As = DAL
A,B = ®{l:A}|A @B |1|3x:As. B, |
&{l : AL} | A — B | iEAs | IIz:As. B,
acquire release
l l release
queue = 1’ &{enq : int — |, queue, |

deq : ®{none : |, queue, some : int x | queue}}

1

release

Recap: manifest sharing

Adjoint formulation:
As
AL7 BL

>

AL
e{l: A} | AL® B |1]|3x:A4s. B, |
&{l: AL} | AL — Bl | [} As | Ilz:As. By

>

queue = 1’ &{enq : int — |, queue,

deq : ®{none : |, queue, some : int x | queue}}

Recap: manifest sharing

Adjoint formulation:
As
AL7 BL

AL
o{T- A} | A ® B |1|32:4s. B, |
&{l : AL} | AL — B | leAS | IIz:As. B,

>

>

queue = 1’ &{enq : int — |, queue,

deq : ®{none : |, queue, some : int x | queue}}

-} Take-away: up-arrow = acquire, down-arrow = release

Recap: manifest sharing

Recap: manifest sharing

Session type system that allows shared and linear processes to

-

coexist and guarantees:

Recap: manifest sharing

Session type system that allows shared and linear processes to

-

coexist and guarantees:

-} data-race-freedom (low-level and high-level)

preservation (a.k.a. session fidelity)

Recap: manifest sharing

Session type system that allows shared and linear processes to

-

coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-} preservation (a.k.a. session fidelity)

-} Implementations:
- 4 Ferrite DSL in Rust

@ Ferrite: ferrite-session Rust crate.

Recap: manifest sharing

Session type system that allows shared and linear processes to

-

coexist and guarantees:

-} data-race-freedom (low-level and high-level)

-} preservation (a.k.a. session fidelity)

-} Implementations:
- 4 Ferrite DSL in Rust

-} Unfortunately, deadlocks are possible now

@ Ferrite: ferrite-session Rust crate.

Expressiveness of manifest sharing

Expressiveness of manifest sharing

INn simply-typed lambda-calculus, addition of recursive types

-

recovers expressiveness of untyped lambda-calculus

Expressiveness of manifest sharing

INn simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

Expressiveness of manifest sharing

INn simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

both recursive types and shared session types are required

Expressiveness of manifest sharing

INn simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

both recursive types and shared session types are required

-} acquire-release introduces nondeterminism

Expressiveness of manifest sharing

INn simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

-
-

-} both recursive types and shared session types are required

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

-} acqguire-release introduces nondeterminism

-

N Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. A Universal Session

encoding of untyped asynchronous pi-calculus into SlLLs
and proof of operational and observational correspondence

Type for Untyped Asynchronous Communication. CONCUR 2018.

Curry-Howard correspondence revisited

Curry-Howard correspondence revisited

Linear session types without sharing:
® |inear propositions as session types

® Droofs as pProcesses
e cut reduction as communication

Curry-Howard correspondence revisited

Linear session types without sharing:
® |inear propositions as session types

® Droofs as pProcesses
e cut reduction as communication

Manitest sharing:
e correspondence does no longer uphold, but we get:
® |inear propositions as session types

® proofs as processes

* interleaving of proof construction (acquire), proof reduction
(communication), and proof deconstruction (release)

Curry-Howard correspondence revisited

Linear session types without sharing:
® |inear propositions as session types

® Droofs as pProcesses
e cut reduction as communication

Manitest sharing:
e correspondence does no longer uphold, but we get:
® |inear propositions as session types

® proofs as processes

* interleaving of proof construction (acquire), proof reduction
(communication), and proof deconstruction (release)

-} deadlock: failure of proof construction

Deadlock example: dining philosophers

Deadlock example: dining philosophers

not expressible with

inear session types

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :

c «— eating < left’, right’ c < thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire 7ight : left < release left’ :
c < eating < left', right’ c < thinking < left, right

thinking philosopher

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating + left’, right’ c < thinking < left, right

eating philosopher

Deadlock example: dining (it

acquired and released

Ifork = | sfork sfork = 1 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :

c < eating < left’, right’ c < thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :

c < eating + left’, right’ c < thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c +— eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :

c < eating + left’, right’ c < thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :

c < eating < left’, right’ c < thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating < left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :

c < eating < left’, right’ c < thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’' =
left’ < acquire left : right < release right’ ;
right’ < acquire 7ight : left < release left’ :

c < eating + left’, right’ c < thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’' =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left « release left’ :

c < eating + left’, right’ c + thinking < left, right

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; f» < fork_proc ;
po < thinking < fo,J1 ;
p1 < thinking < [1, /2 ;
p2 < thinking < f2, Jo ;

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; f» < fork_proc ;
po < thinking < fo, /1 ;
p1 < thinking < [1, /2 ;
p2 < thinking < f2, Jo ;

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; f» < fork_proc ;
po < thinking < fo, [1 ;
p; < thinking < 1, [» ;
po < thinking < fo, fo ;

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f1 < fork_proc ; fo < fork_proc ;
po < thinking < fo, [;
p1 < thinking < f1, f2 ; 2o

po < thinking < fo, fo ; fl
0

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; f» < fork_proc ;
po < thinking < fo, [1 ;

p; < thinking < 1, [» ; Po P+
po < thinking < fo, fo ; | |

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; f» < fork_proc ;

po < thinking < fo, [1 ;

p; < thinking < 1, [» ; Po P+ P2
po < thinking < fo, fo ; | | |

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f1 < fork_proc ; fo < fork_proc ;
po < thinking < fo, [;

p; < thinking < 1, [» ; o) ofF P2

0
po < thinking < fo, fo ; N |
fo f1 fo

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; fo < fork_proc ;
po < thinking < fo, [;
p1 thinking < f1, f2 ; P P P2

0 1
po < thinking < fo, fo ; fl \-jfl \-jfl
0 1 2

Deadlock example: dining philosophers

ifork = |} sfork sfork = 77 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; fo < fork_proc ;

po < thinking < fo, [1 ; —

p1 < thinking < f1, [» ; ol o} 02

po < thinking < fo, fo ; N TN

fo f1 fo

Deadlock example: dining philosophers

ifork = |} sfork sfork = 17 Ifork

thinking : {phil < sfork, sfork} eating : {phil < Ifork, Ifork}

c < thinking < left, right = c < eating « left’, right’ =
left’ < acquire left : right < release right’ ;
right’ < acquire right : left < release left’ :
c < eating < left’, right’ c < thinking < left, right

fo < fork_proc ; f; < fork_proc ; f» < fork_proc ;

po < thinking < fo, [1 ; —

p1 < thinking < f1, [» ; ol o} 02

po < thinking < fo, fo ; flov f|1 N flz

-} deadlock due to cyclic acquisitions

Another deadlock example

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {P{ping : 1} < sres}
O < OWNET < SI = C <— contester <— sr =

C <— contester < sr Ir <— acquire sr ;

Ir <— acquire s7 ; c.ping ;

case c of sr <— release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {P{ping : 1} <+ sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {P{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {@B{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester < sr ; Ir < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr < release Ir ;

close o

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =
C <— contester <— sr ; [r < acquire sr ;
[r < acquire sr ; c.ping ;
case cof sr < release Ir ;
| ping — wait ¢ ; close ¢
sr < release Ir ;
close o

T $— TeS_proc ;
0p <— owner < 1y ;

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =
C <— contester <— sr ; [r < acquire sr ;
[r < acquire sr ; c.ping ;
case cof sr < release Ir ;
| ping — wait ¢ ; close ¢
sr < release Ir ;
close o
ro <— TeS_proc ; 00 Co

Op <— owner <— 19 ;

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =
C <— contester <— sr ; [r < acquire sr ;
[r < acquire sr ; c.ping ;
case cof sr < release Ir ;
| ping — wait ¢ ; close ¢
sr < release Ir ;
close o
¥~ O\
ro <— TeS_proc ; 00 Co

Op <— owner <— 19 ;

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owWner <— sr = C <— contester <— sr =
C <— contester <— sr ; [r < acquire sr ;
[r < acquire sr ; c.ping ;
case cof sr < release Ir ;
| ping — wait ¢ ; close ¢
sr < release Ir ;
close o
¥~ O\
ro <— TeS_proc ; 00 Co
0p < owner < 1y ; | N

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owWner <— sr = C <— contester <— sr =
C <— contester <— sr ; [r < acquire sr ;
[r < acquire sr ; c.ping ;
case cof sr < release Ir ;
| ping — wait ¢ ; close ¢
sr < release [r ;
close o
¥~ O\
ro <— TeS_proc ; 00 Co
0p < owner < 1y ; | N
ro

-} deadlock due interdependent acquisitions and synchronizations

Another deadlock example

owner : {1 < sres} contester : {®{ping : 1} < sres}
0 <— owner <— sr = C <— contester <— sr =

C <— contester <— sr ; [r < acquire sr ;

[r < acquire sr ; c.ping ;

case cof sr < release Ir ;

| ping — wait ¢ ; close ¢
sr +— release Ir : deadlock
close o may occur both in
N synchronous and
T $— TeS_proc ; 00 Co asynchronous
0p < OWNer < ry ; | N semantics

-} deadlock due interdependent acquisitions and synchronizations

Why are linear session types deadlock-free”?

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

parent: client

AN
\ N

child: provider

Legend: —@ linear channel

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

7 AN
\ 4N

Legend: —@ linear channel

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

7 AN
\ 4N

What are the threats to progress?

Legend: —@ linear channel

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?

/ l \ * [wo scenarios:
\ /\

Legend: —@ linear channel

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?

/ l \ e [WO scenarios:

* provider ready to synchronize, client not

Legend: —@ linear channel

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?

/ l \ e [WO scenarios:

* provider ready to synchronize, client not
\ / \ e client ready to synchronize, provider not

Legend: —@ linear channel

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?
/ l \ e [WO scenarios:
e provider ready to synchronize, client not
\ / \ e client ready to synchronize, provider not

e | et’s visualize this waiting dependency
with a green arrow

Legend: —@ linear channel

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?
/ l \ e [WO scenarios:
e provider ready to synchronize, client not
\ / \ e client ready to synchronize, provider not

e | et’s visualize this waiting dependency
with a green arrow

Legend: —@ linear channel E— “a waits for b”

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?

& l (\\ * [woO scenarios:

* provider ready to synchronize, client not
\ e client ready to synchronize, provider not
\o / \ e | et’s visualize this waiting dependency

with a green arrow

Legend: —@ linear channel E— “a waits for b”

Why are linear session types deadlock-free”?

Linearity (“exactly one client”) turns process graph into a tree.

What are the threats to progress?

‘? l (\\ * [wo scenarios:

* provider ready to synchronize, client not
\ e client ready to synchronize, provider not
\- / \ e | et’s visualize this waiting dependency

with a green arrow

No green cycles: green arrows can only go along linear channels,

-

Legend: —@ linear channel E— “a waits for b”

and client and provider cannot both be waiting for each other.

L et’s add sharing

Let’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Legend: —® linear channel linear process ‘ shared process

----- » shared channel

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

.
‘.,
o, .
.....

Legend: —® linear channel linear process ‘ shared process

----- » shared channel

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

.
‘.,
N, .
"""

Legend: —® linear channel linear process ‘ shared process

----- » shared channel

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”

.
LR
", .
....

Legend: —® linear channel linear process ‘ shared process

----- » shared channel

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”

/ l \ e Possibility of cyclic dependencies

.
‘.,
N, .
"""

Legend: —® linear channel linear process ‘ shared process

----- » shared channel

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”

/ l \ e Possibility of cyclic dependencies

eree e | et’s visualize this waiting dependency
AT ~O with a red arrow
“\ N
Y.
Legend: —#@® linear channel linear process ‘ shared process

----- » shared channel

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”

/ l \ e Possibility of cyclic dependencies

eree e | et’s visualize this waiting dependency
AT ~O with a red arrow
“\ N
Y.
Legend: —#@® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”

i l \ e Possibility of cyclic dependencies

e e | et’s visualize this waiting dependency
AT ~O with a red arrow
“\ N
Y.
Legend: —#@® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”
i l Q, e Possibility of cyclic dependencies

e e | et’s visualize this waiting dependency
AT ~O with a red arrow
“\ N
Y.
Legend: —#@® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”
i l Q, e Possibility of cyclic dependencies

e e | et’s visualize this waiting dependency
AY . with a red arrow
N\ N
Y.
Legend: —#@® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”

L et’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Acquire-release amounts to “locking”
i l Q, e Possibility of cyclic dependencies

e e | et’s visualize this waiting dependency

AL R with a red arrow

14 e Note: red arrows can connect arbitrary
nodes in the tree

.
LR
", .
....

Legend: —® linear channel linear process ‘ shared process

----- » shared channel —> “a waits for b to release resource”

Two kinds of cycles

Two kinds of cycles

Two kinds of waiting dependencies:

e waiting to synchronize: —> “a walits for b to synchronize”
e waiting to release: (- — “a waits for b to release resource”

Two kinds of cycles

Two kinds of waiting dependencies:

e waiting to synchronize: —> “a walits for b to synchronize”
e waiting to release: (- — “a waits for b to release resource”

-
.
-
......

Two kinds of cycles

Two kinds of waiting dependencies:

* waiting to synchronize: M “a waits for b to synchronize”
* waiting to release: M “a waits for b to release resource”

Two kinds of cycles

Two kinds of waiting dependencies:

e waiting to synchronize: —> “a walits for b to synchronize”
e waiting to release: (- — “a waits for b to release resource”

Cycles can consist of red arrows only or a combination of red
and green arrows.

-

Two kinds of cycles

Two kinds of waiting dependencies:
e waiting to synchronize: —> “a walts for b to syncy

e waiting to release: (- —> “a waits for b 1o release @@ Iooklngl—ulp
IS not sufficient!

Cycles can consist of red arrows only or a combination of red
and green arrows.

-

|[dea: competitors and collaborators

|[dea: competitors and collaborators

-} Competitors: overlap in set of resources acquired

|[dea: competitors and collaborators

-} Competitors: overlap in set of resources acquired

-} Collaborators: do not overlap in set of resources acquired

|[dea: competitors and collaborators

-} Competitors: overlap in set of resources acquired

-} Collaborators: do not overlap in set of resources acquired

collaborators

A

/ \
/ \

< >

competitors

|[dea: competitors and collaborators

-} Competitors: overlap in set of resources acquired

-} Collaborators: do not overlap in set of resources acquired

collaborators = g competitors tend to be siblings

/ \
/ \

< >

competitors

|[dea: competitors and collaborators

-} Competitors: overlap in set of resources acquired

-} Collaborators: do not overlap in set of resources acquired

collabcA)rators -} competitors tend to be siblings
collaborators tend to be In the
/ \ same branch
/ \

competitors

Manitest deadlock-freedom

-} Define type system enforcing the following invariants:

collaborators

A

/ \
/ \

< >

competitors

Manitest deadlock-freedom

-} Define type system enforcing the following invariants:

A

collaborators e competitors employ locking-up for

resources they compete for

/ \
/ \

< >

competitors

Manitest deadlock-freedom

-} Define type system enforcing the following invariants:

collaborators e
A

/ \ @ collaborators acquire mutually disjoint

competitors employ locking-up for
resources they compete for

sets of resources

/ \

< >

competitors

Manitest deadlock-freedom

-} Define type system enforcing the following invariants:

collaborators Q
A

/ \ @ collaborators acquire mutually disjoint

competitors employ locking-up for
resources they compete for

sets of resources

/ \

L
&
& g
o -
P []
‘0 n
[]
q]
L]
L}
L
L4
&
.0’ 0.
V .. ‘0
Yo, *
....-l‘

< >

competitors

competitors have released all acquired
resources when synchronizing with
other competitors (“talking-up”)

Manitest deadlock-freedom

-} Define type system enforcing the following invariants:

collaborators Q
A

/ \ @ collaborators acquire mutually disjoint

competitors employ locking-up for
resources they compete for

sets of resources

[\ competitors have released all acquired
| G resources when synchronizing with
) e other competitors (“talking-up”)
competitors

A rules out red-arrow cycles, B and C rule out red-green-arrow

-

cycles.

Manitest deadlock-freedom

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial

order.

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wseis Lom])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

min

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wseis Lom])

Wmin

U, I & Ay P (x: Al wseis Lom])

Wmin

“Process P provides a session of type A,, along channel z,,,
using channels in I" (and ®; A).”

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U: Ty P (x5 0 As|wserr Joma])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

Wmin

“Process P provides a session of type A,, along channel z,,,
using channels in I" (and ®; A).”

.Il Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest Deadlock-

Freedom for Shared Session Types. ESOP 2019.

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs : As|wself Lom])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

min

worlds associated
with process

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wseis Lom])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

min

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wself Lom])

Wmin

U: T & Aby P (a0 Al wseif Jom])

min

self-world:
world at which process
resides

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wseis Lom])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

min

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wself Lom])

Wmin

U, T & Ay P (a AL[wselfizE?:])
min-world:
world of minimal resource
to be acquired

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wseis Lom])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

min

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wsels Jom])

Wmin

U, I &, Ay P (0 AL[wsewisz:])
max-world: world
of maximal resource to be
acquired

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs 0 As|wseis Lom])

Wmin

U: T & Aby P (a0 Al wseir Lom=])

min

Manitest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

-} Every process invariantly resides at a world.

-} Every process indicates the range of worlds it may acquire.

U, 'y P (xs: As|wseir Lom])

Wmin

U: T & Aby P (a0 Al wseir Jom=])

min

partial world order

Manitest deadlock-freedom

U, I'ky P (xs As[wselfizﬂfﬂ)
U, T 0 Abs P (a0 AL[wsewimf:])

Manitest deadlock-freedom

U, I'ky P (xs As[wse|f$mf:])
U, T 0 Abs P (a0 AL[wse|f$$:f:])

-} Express invariants A, B, and C in terms of:

Manitest deadlock-freedom

U, I'ky P (xs As[wse|f$mf:])
U, T 0 Abs P (a0 AL[wse|f$$:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

Manitest deadlock-freedom

U, I'ky P (xs As[wse|f$mf:])
U, T 0 Abs P (a0 AL[wse|f$$:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

-} max(parent) < min(child)

Manitest deadlock-freedom

~ collaborators

A

U: Ty P (2 1 As|wself] ('/ \

U, I &, Ay P (x 0 Aw,

-} Express invariants A, B, and C in terms « / \
-} min(parent) < self(acquired_child) < v
+ max(parent) < min(child) competitors

no vertical red arrows

Manitest deadlock-freedom

U, I'ky P (xs As[wse|f$mf:])
U, T 0 Abs P (a0 AL[wse|f$$:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

-} max(parent) < min(child)

Manitest deadlock-freedom

U; 'y P (s Ag [wse|f$wmax])
U, T 0 Abs P (a0 AL[wse|f$w:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

-} max(parent) < min(child)

-} for an acquire: lock-up

Manitest deadlock-freedom

U: I'Fx P (x5 1 As|wserr] collaborators
U, I &, Ay P (x 0 Aw,

(7\)

-} Express invariants A, B, and C in terms ¢

-} min(parent) < self(acquired_child) < / \'\/
-} max(parent) < min(child) v
-} for an acquire: lock-up competitors

no red cycles

Manitest deadlock-freedom

U; 'y P (s Ag [wse|f$wmax])
U, T 0 Abs P (a0 AL[wse|f$w:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

-} max(parent) < min(child)

-} for an acquire: lock-up

Manitest deadlock-freedom

U; 'y P (s Ag [wse|f$wmax])
U, T 0 Abs P (a0 AL[wse|f$w:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

-} max(parent) < min(child)

-} for an acquire: lock-up

-} right-rule: all resources released

Manitest deadlock-freedom

\I/; I I_E P (-Ts : As[wself$$2?:])

U, I &, Ay P (x: Aw

-} Express invariants A, B, and C in terms ¢

-} min(parent) < self(acquired_child) <

-} max(parent) < min(child)

-} for an acquire: lock-up

-} right-rule: all resources released

A

* collaborators

7\

LA |
4

L4
* .

*

. n
‘0 n
-]

>

competitors

no ingoing red and up-going green arrow

Manitest deadlock-freedom

U; 'y P (s Ag [wse|f$wmax])
U, T 0 Abs P (a0 AL[wse|f$w:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)

-} max(parent) < min(child)

-} for an acquire: lock-up

-} right-rule: all resources released

Manitest deadlock-freedom

U Ty P (2 0 As|wserr Tom])

Wmin

U, T 0 Abs P (a0 AL[wse|f$$:f:])

-} Express invariants A, B, and C in terms of:

-} min(parent) < self(acquired_child) < max(parent)
-} max(parent) < min(child)
- P
-} right-rule: all resources released

-} These low-level invariants are enforced by typing.

World and order creation

World and order creation

Uow; I @ Ay Qu i (o0 Alwn T90))

Wy

(T—NEWL)
U I'; &; A s w <+ new_world; Qy :: (z, : AL[wm$$Z])

World and order creation

Uow; I & Ay Qu i (o0 AlwnT90))

Wy

(T—NEWL)
U, I'; &; A s w <+ new_world; Q, :: (z, : AL[wm$$Z])

World and order creation

Uow; I @ Abs Qu i (20 Afwn T80])

(T—NEWL)
U, I'; @ A by w < new_world; Qy, = (z 1 A w57])
Wy, Wy € W (¥, w, < w,)T irreflexive
Vow, <wp Iy @ Ay Qi (00 Allwnm T5Y])
(T—ORDL)

U T @ Abs wy <we; Qi (z 0 Ajwn T90))

World and order creation

Uow; I @ Abs Qu i (20 Afwn T80])

(T—NEWL)
U, I'; @ A by w < new_world; Qy, = (z 1 A w57])
Wy, Wy € W (¥, w, < w,)T irreflexive
Vow, <wp; I's @ Ay Qi (w00 Allwn T50])
(T—ORDL)

U T @ Abs wy, <wp; Qi (0 AL[wm$sz])

Acquire

Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T] O o 0 Alwm T8] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by 2 = acquirezs ; Qg i (20 Culw; T97])

Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T] O o 0 Alwm T8] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])

Acquire

lock-up
[wliwr] cd:w < wn
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T oy @ Allwn T s A by Qg 1 (20 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])

Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T] O o 0 Alwm T8] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])

Acquire
min(parent) < self(acquired_child) < max(parent)

Yy, : BL[wﬂg;] EP:w < Wy
U* F owp <w,y, < wy Ut ow, < wy
U: T, x - EAL[wm$$Z]; ORGP AL[wmizz]; Ay Qu i (2 C’L[wj$$g])

(T-171)
U: T zs : WA w9]; @; A by 2z < acquirezs; Qy :: (2 : Cllw; onl)

u

Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T] O o 0 Alwm T8] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])

Acquire

max(parent) < min(child)
[wliwf] cd:w < w,
\P*I—wk<wm§wn Ut w, < w,y,
U Tws : WA Jwm 350] @20 Ao 350 A bs Qg (201 Culw; T7)

(T-1L)
U T as : A [wn T80] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])

Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T] O o 0 Alwm T8] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])

Acquire

[wﬂw?“] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T] b oz A w, T] Aby Qg i (2 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by @ < acquirezs ; Q4 i (20 : Clw; T87])

Acquire

Yy, : BL[wﬂg;] cd:w < wy,
U* F owp <w,y, < wy, Ut ow, < wy
U: T, x - TEAL[Wm$$Z]§ ORGP AL[wmizz]; Ay Qu i (2 C’L[wj$$g])

(T-1L)
U T as : A [wn T80] @5 A by 2 = acquirezs ; Qg i (20 Culw; T97])

[V R o e O AL[wmig;])

(T-1'r)
U: I' by o, < acceptas; Py i (zs 0 TV A [wim)

Acquire

Yy, : BL[wﬂg;] cd:w < wy,
U* F owp <w,y, < wy, Ut ow, < wy
U: T, x - TEAL[Wm$$Z]§ ORGP AL[wmizz]; Ay Qu i (2 C’L[wj$$g])

(T-1L)
U T as : A [wn T80] @5 A by 2 = acquirezs ; Qg i (20 Culw; T97])

[V R o e O AL[wmig;])

(T-1'r)
U: I' by o, < acceptas; Py, (xs 0 TV A [wim)

Acquire

[wliwf] cd:w < w,
\P*I—wk<wm§wn Ut ow, < wy
U: T, s : VA w, T] O o 0 Alwm T8] Abs Qq (2 Cllw; 32])

(T-1L)
U T as : A [wn T80] @5 A by 2 = acquirezs ; Qg i (20 Culw; T97])

[V R o e O AL[wmig;])

(T-1'r)
U; I' by o, « acceptas ; Py, = (s : ﬁAL[wmigz])

® must be empty

Remaining typing rules

Largely unchanged, except for
e right-rules, which must have an empty ©
e spawn, which must establish invariants

Compositionality
e Process definitions specify a process’ order
e Order of spawner must entail order of spawnee

58

Catching potential deadlock

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0p < 01 < 02 + 1[dg gﬂ < sres|d; gi]}
0[50%1] — owner < sr|d; g;] =
¢ : ®{ping : 1}[50%31] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {09 < 01 < 02 F ®{ping : 1}|dg gi] < sres|0; gZ]}
C[é@igi] contester < sr|dy ig;] —
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0p < 01 < 02 F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 62 F 1[dg gﬂ ¢ sres|d; $§§]}
0[50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ < sres|d; gi]}
0[(50%1] — owner < sr|d; g;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {0g < 01 < 02 B{ping : 1}[&)@1] ¢ sres|0; $§§]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {6 < 01 < 03 F B{ping : 1}|dg gi] < sres|d; $§§]}
c[éoigi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[51 gZ]}
cldo ﬁi] contester < sr|dy ig;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[50%31] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
¢ : ®{ping : 1}[5O$gi] < contester < sr;
[r <— acquire sr ;
case cof
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

c.ping ;
sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
ﬁ ¢ : B{ping : 1}[50%51] — contester < sr ;
[r <— acquire sr ;
case c of
| ping — wait ¢ ;
sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

ﬁ c.ping ;

sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; $§§]}
0[(50%1] — owner < sr|d; ig;] =
ﬁ ¢ : B{ping : 1}[50%51] — contester < sr ;
Ir < acquire sr ;

case c of
| ping — wait ¢ ; not a collaborator!

sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =
Ir < acquire sr ;

ﬁ c.ping ;

sr < release Ir ; close c

Catching potential deadlock

owner : {0y < 61 < 6o F 1[dg gﬂ ¢ sres|d; igj]}
0[(50%1] — owner < sr|d; ig;] =
ﬁ ¢ : B{ping : 1}[50%1] — contester < sr ;
Ir < acquire sr ;

case c of
| ping — wait ¢ ; not a collaborator!

sr < release Ir ; close o

contester : {50 <01 <09 F @{ping ; 1}[50@1] — sres[(51 ﬁz]}
cldo ﬁi] < contester < sr|d; ﬁ;] =

[r <— acquire sr ;
c.ping : not all resources released!
pIng ;

sr < release Ir ; close c

Taking stock

Taking stock

Type systems allows us to write interesting and common

-

programs that are guaranteed to be deadlock-free, e.q.,:

-} dining philosophers (see paper)

-} imperative queue (see paper)

Taking stock

Type systems allows us to write interesting and common

-

programs that are guaranteed to be deadlock-free, e.g.,:

-} dining philosophers (see paper)

-} imperative queue (see paper)

-} Currently not supported:
-} unbounded circular process networks
-

The end — or the beginning for you"?

Related work (not a comprehensive list!)

Session types and multiparty session types:
e Kohei Honda. Types for Dyadic Interaction. CONCUR 1998.

e Kohel Honda, Vasco Thudichum Vasconcelos, Makoto Kubo.
_anguage Primitives and Type Discipline for Structured
Communication-Based Programming. ESOP 1998.

e Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida,
Sophia Drossopoulou. Session Types for Object-Oriented
Languages. ECOOP 2006. Kohei Honda, Nobuko Yoshida, Marco
Carbone. Multiparty asynchronous session types. POPL 2008.

e Simon J. Gay, Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica 42(2-3): 191-225 (2005).

Related work (not a comprehensive list!)

Intuitionistic linear logic session types:

e |_uis Caires, Frank Pfenning. Session Types as Intuitionistic Linear
Propositions. CONCUR 2010.

e Bernardo Toninho, Luis Caires, Frank Pfenning. Higher-Order
Processes, Functions, and Sessions: A Monadic Integration. ESOP

2013.

e | uis Caires, Jorge A. Pérez, Frank Pfenning, Bernardo Toninho.
Behavioral Polymorphism and Parametricity in Session-Based
Communication. ESOP 2013.

Related work (not a comprehensive list!)

Classical linear logic session types:

e Philip Wadler. Propositions as sessions. ICFP 2012.

e Sam Lindley, J. Garrett Morris. A Semantics for Propositions as
Sessions. ESOP 2015.

e Sam Lindley, J. Garrett Morris. Talking bananas: structural recursion
for session types. ICFP 2016.

e Atsushi Igarashi, Peter Thiemann, Vasco 1. Vasconcelos, Philip
Wadler. Gradual session types. |ICFP 2017.

e /esen Qian, G. A. Kavwvos, and Lars Birkedal. Client-server sessions
in linear logic. To appear at ICFP 2021.

e Pedro Rocha and Luis Caires. Propositions-as-types and shared
state. To appear at ICFP 2021.

Related work (not a comprehensive list!)

Various:

e Ankush Das, Jan Hoffmann, Frank Pfenning. Work Analysis with
Resource-Aware Session Types. LICS 2018.

e Resource-aware session types for digital contracts. Ankush Das,
Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani
Santurkar. CSF 2021.

e Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session
Logical Relations for Noninterference. LICS 2021.

-} how to find papers?

g dblp (https://dblp.uni-trier.de/)

-} Google Scholar (https://scholar.google.com/)

https://dblp.uni-trier.de/
https://scholar.google.com/

