
PLMW@POPL 2022

• Programming Languages Mentoring Workshop

• Co-located with ACM SIGPLAN Symposium on Principles of
Programming Languages

• Program:
• Research talks
• Graduate skills talks
• Panels
• Mentoring sessions

• Most likely run in hybrid mode

PLMW@POPL 2022

• Programming Languages Mentoring Workshop

• Co-located with ACM SIGPLAN Symposium on Principles of
Programming Languages

• Program:
• Research talks
• Graduate skills talks
• Panels
• Mentoring sessions

• Most likely run in hybrid mode

Application required. Monitor website for details.

Session-Typed Concurrent Programming
Lecture 4

Stephanie Balzer
Carnegie Mellon University

OPLSS 2021
June 26, 2021

Today’s lecture

Today’s lecture

Recap
• Extended SILL with replication
• Type system and dynamics for the intuitionistic linear and shared

session types language SILLS
• SILLS guarantees session fidelity but not deadlock-freedom

Today’s lecture

Recap
• Extended SILL with replication
• Type system and dynamics for the intuitionistic linear and shared

session types language SILLS
• SILLS guarantees session fidelity but not deadlock-freedom

Next
• Extend SILLS with modal worlds to re-establish deadlock-freedom

Manifest deadlock-freedom

Recap: manifest sharing

Recap: manifest sharing

acquire-release (mutual exclusion):

shared processes must be acquired before interaction and
released afterwards

Recap: manifest sharing

acquire-release (mutual exclusion):

shared processes must be acquired before interaction and
released afterwards

equi-synchronizing session type:

process must be released back to the same session type at
which previously acquired

Recap: manifest sharing

acquire-release (mutual exclusion):

shared processes must be acquired before interaction and
released afterwards

equi-synchronizing session type:

process must be released back to the same session type at
which previously acquired

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

Recap: manifest sharing

acquire-release (mutual exclusion):

shared processes must be acquired before interaction and
released afterwards

equi-synchronizing session type:

process must be released back to the same session type at
which previously acquired

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

acquire

Recap: manifest sharing

acquire-release (mutual exclusion):

shared processes must be acquired before interaction and
released afterwards

equi-synchronizing session type:

process must be released back to the same session type at
which previously acquired

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

acquire release
release

release

Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

acquire release
release

release

Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

acquire release
release

release

AS � ↑SLAL

AL,BL � ⊕{l ∶ AL} � AL ⊗BL � 1 � ∃x∶AS.BL �
N{l ∶ AL} � AL � BL � ↓SLAS � ⇧x∶AS.BL

Adjoint formulation:

Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

acquire release
release

release

AS � ↑SLAL

AL,BL � ⊕{l ∶ AL} � AL ⊗BL � 1 � ∃x∶AS.BL �
N{l ∶ AL} � AL � BL � ↓SLAS � ⇧x∶AS.BL

Adjoint formulation:

Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

acquire release
release

release

AS � ↑SLAL

AL,BL � ⊕{l ∶ AL} � AL ⊗BL � 1 � ∃x∶AS.BL �
N{l ∶ AL} � AL � BL � ↓SLAS � ⇧x∶AS.BL

Adjoint formulation:

Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

acquire release
release

release

AS � ↑SLAL

AL,BL � ⊕{l ∶ AL} � AL ⊗BL � 1 � ∃x∶AS.BL �
N{l ∶ AL} � AL � BL � ↓SLAS � ⇧x∶AS.BL

Adjoint formulation:

Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

Adjoint formulation:
AS � ↑SLAL

AL,BL � ⊕{l ∶ AL} � AL ⊗BL � 1 � ∃x∶AS.BL �
N{l ∶ AL} � AL � BL � ↓SLAS � ⇧x∶AS.BL

Recap: manifest sharing

queue = "S

L N{enq : int ! #S

L queue,

deq : �{none : #S

L queue, some : int⇥ #S

L queue}}

Adjoint formulation:

Take-away: up-arrow = acquire, down-arrow = release

AS � ↑SLAL

AL,BL � ⊕{l ∶ AL} � AL ⊗BL � 1 � ∃x∶AS.BL �
N{l ∶ AL} � AL � BL � ↓SLAS � ⇧x∶AS.BL

Recap: manifest sharing

Recap: manifest sharing

Session type system that allows shared and linear processes to
coexist and guarantees:

Recap: manifest sharing

Session type system that allows shared and linear processes to
coexist and guarantees:

data-race-freedom (low-level and high-level)

preservation (a.k.a. session fidelity)

Recap: manifest sharing

Session type system that allows shared and linear processes to
coexist and guarantees:

data-race-freedom (low-level and high-level)

preservation (a.k.a. session fidelity)

Implementations:

Ferrite DSL in Rust

Ferrite: ferrite-session Rust crate.

Recap: manifest sharing

Session type system that allows shared and linear processes to
coexist and guarantees:

data-race-freedom (low-level and high-level)

preservation (a.k.a. session fidelity)

Unfortunately, deadlocks are possible now

Implementations:

Ferrite DSL in Rust

Ferrite: ferrite-session Rust crate.

Expressiveness of manifest sharing

Expressiveness of manifest sharing

in simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

Expressiveness of manifest sharing

in simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

Expressiveness of manifest sharing

both recursive types and shared session types are required

in simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

Expressiveness of manifest sharing

both recursive types and shared session types are required

in simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

acquire-release introduces nondeterminism

Expressiveness of manifest sharing

both recursive types and shared session types are required

in simply-typed lambda-calculus, addition of recursive types
recovers expressiveness of untyped lambda-calculus

recursive types are not enough to recover the expressiveness of
the untyped pi-calculus for linear session types

Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. A Universal Session
Type for Untyped Asynchronous Communication. CONCUR 2018.

acquire-release introduces nondeterminism

encoding of untyped asynchronous pi-calculus into SILLS
and proof of operational and observational correspondence

Curry-Howard correspondence revisited

Curry-Howard correspondence revisited

Linear session types without sharing:
• linear propositions as session types
• proofs as processes
• cut reduction as communication

Curry-Howard correspondence revisited

Linear session types without sharing:
• linear propositions as session types
• proofs as processes
• cut reduction as communication

Manifest sharing:
• correspondence does no longer uphold, but we get:

• linear propositions as session types
• proofs as processes
• interleaving of proof construction (acquire), proof reduction

(communication), and proof deconstruction (release)

Curry-Howard correspondence revisited

Linear session types without sharing:
• linear propositions as session types
• proofs as processes
• cut reduction as communication

Manifest sharing:
• correspondence does no longer uphold, but we get:

• linear propositions as session types
• proofs as processes
• interleaving of proof construction (acquire), proof reduction

(communication), and proof deconstruction (release)

deadlock: failure of proof construction

Deadlock example: dining philosophers

Deadlock example: dining philosophers

not expressible with
linear session types

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking philosopher

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

eating philosopher

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

fork, can be perpetually
acquired and released

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

p0

f0

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

p0 p1

f0 f1

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

p0 p1 p2

f0 f1 f2

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

p0 p1 p2

f0 f1 f2

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

p0 p1 p2

f0 f1 f2

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

p0 p1 p2

f0 f1 f2

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Deadlock example: dining philosophers

lfork = #S

L sfork sfork = "S

L lfork

thinking : {phil sfork, sfork}
c thinking left , right =

left 0 acquire left ;
right 0 acquire right ;
c eating left 0, right 0

eating : {phil lfork, lfork}
c eating left 0, right 0 =
right release right 0 ;
left release left 0 ;
c thinking left , right

p0 p1 p2

f0 f1 f2

deadlock due to cyclic acquisitions

f0 fork proc ; f1 fork proc ; f2 fork proc ;
p0 thinking f0 , f1 ;
p1 thinking f1 , f2 ;
p2 thinking f2 , f0 ;

Another deadlock example

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

r0 res proc ;
o0 owner r0 ;

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

r0 res proc ;
o0 owner r0 ;

o0 c0

r0

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

r0 res proc ;
o0 owner r0 ;

o0 c0

r0

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

r0 res proc ;
o0 owner r0 ;

o0 c0

r0

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

r0 res proc ;
o0 owner r0 ;

deadlock due interdependent acquisitions and synchronizations

o0 c0

r0

Another deadlock example

owner : {1 sres}
o owner sr =

c contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ;
close o

contester : {�{ping : 1} sres}
c contester sr =

lr acquire sr ;
c.ping ;
sr release lr ;
close c

r0 res proc ;
o0 owner r0 ;

deadlock due interdependent acquisitions and synchronizations

o0 c0

r0

deadlock
may occur both in
synchronous and

asynchronous
semantics

Why are linear session types deadlock-free?

Why are linear session types deadlock-free?

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

a

b c d

e f g

parent: client

child: provider

Linearity (“exactly one client”) turns process graph into a tree.

Legend: linear channel

Why are linear session types deadlock-free?

a

b c d

e f g

Legend: linear channel

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?a

b c d

e f g

Legend: linear channel

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

a

b c d

e f g

Legend: linear channel

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not

a

b c d

e f g

Legend: linear channel

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not
• client ready to synchronize, provider not

a

b c d

e f g

Legend: linear channel

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not
• client ready to synchronize, provider not

• Let’s visualize this waiting dependency
with a green arrow

a

b c d

e f g

Legend: linear channel

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not
• client ready to synchronize, provider not

• Let’s visualize this waiting dependency
with a green arrow

a

b c d

e f g

Legend: linear channel a b “a waits for b”

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not
• client ready to synchronize, provider not

• Let’s visualize this waiting dependency
with a green arrow

a

b c d

e f g

Legend: linear channel a b “a waits for b”

Linearity (“exactly one client”) turns process graph into a tree.

Why are linear session types deadlock-free?

What are the threats to progress?
• Two scenarios:

• provider ready to synchronize, client not
• client ready to synchronize, provider not

• Let’s visualize this waiting dependency
with a green arrow

a

b c d

e f g

Legend: linear channel a b “a waits for b”

No green cycles: green arrows can only go along linear channels,
and client and provider cannot both be waiting for each other.

Linearity (“exactly one client”) turns process graph into a tree.

Let’s add sharing

Let’s add sharing

We get a graph of linear and shared processes, with a linear tree inside.

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency

with a red arrow

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency

with a red arrow

a b “a waits for b to release resource”

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency

with a red arrow

a b “a waits for b to release resource”

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency

with a red arrow

a b “a waits for b to release resource”

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency

with a red arrow

a b “a waits for b to release resource”

Let’s add sharing

a

b c d

e f g

We get a graph of linear and shared processes, with a linear tree inside.

Legend: linear channel linear process

shared channel

shared process

Acquire-release amounts to “locking”
• Possibility of cyclic dependencies
• Let’s visualize this waiting dependency

with a red arrow
• Note: red arrows can connect arbitrary

nodes in the tree

a b “a waits for b to release resource”

Two kinds of cycles

Two kinds of cycles

Two kinds of waiting dependencies:
• waiting to synchronize:
• waiting to release:

a b “a waits for b to synchronize”
a b “a waits for b to release resource”

Two kinds of cycles

Two kinds of waiting dependencies:
• waiting to synchronize:
• waiting to release:

a b “a waits for b to synchronize”
a b “a waits for b to release resource”

a

b c d

e f g

Two kinds of cycles

Two kinds of waiting dependencies:
• waiting to synchronize:
• waiting to release:

a b “a waits for b to synchronize”
a b “a waits for b to release resource”

a

b c d

e f g

a

b d d

e f g

Two kinds of cycles

Two kinds of waiting dependencies:
• waiting to synchronize:
• waiting to release:

a b “a waits for b to synchronize”
a b “a waits for b to release resource”

a

b c d

e f g

a

b d d

e f g

Cycles can consist of red arrows only or a combination of red
and green arrows.

Two kinds of cycles

Two kinds of waiting dependencies:
• waiting to synchronize:
• waiting to release:

a b “a waits for b to synchronize”
a b “a waits for b to release resource”

a

b c d

e f g

a

b d d

e f g

Cycles can consist of red arrows only or a combination of red
and green arrows.

“locking-up”
is not sufficient!

Idea: competitors and collaborators

Idea: competitors and collaborators

Competitors: overlap in set of resources acquired

Idea: competitors and collaborators

Competitors: overlap in set of resources acquired

Collaborators: do not overlap in set of resources acquired

Idea: competitors and collaborators

Competitors: overlap in set of resources acquired

Collaborators: do not overlap in set of resources acquired

collaborators

a

b c

1 2

competitors

Idea: competitors and collaborators

Competitors: overlap in set of resources acquired

Collaborators: do not overlap in set of resources acquired

collaborators

a

b c

1 2

competitors

competitors tend to be siblings

Idea: competitors and collaborators

Competitors: overlap in set of resources acquired

Collaborators: do not overlap in set of resources acquired

collaborators

a

b c

1 2

competitors

competitors tend to be siblings

collaborators tend to be in the
same branch

Manifest deadlock-freedom

Define type system enforcing the following invariants:

collaborators

a

b c

1 2

competitors

Manifest deadlock-freedom

Define type system enforcing the following invariants:

collaborators

a

b c

1 2

competitors

competitors employ locking-up for
resources they compete forA

Manifest deadlock-freedom

Define type system enforcing the following invariants:

collaborators

a

b c

1 2

competitors

collaborators acquire mutually disjoint
sets of resourcesB

competitors employ locking-up for
resources they compete forA

Manifest deadlock-freedom

Define type system enforcing the following invariants:

collaborators

a

b c

1 2

competitors

collaborators acquire mutually disjoint
sets of resourcesB

competitors employ locking-up for
resources they compete forA

competitors have released all acquired
resources when synchronizing with
other competitors (“talking-up”)

C

Manifest deadlock-freedom

Define type system enforcing the following invariants:

collaborators

a

b c

1 2

competitors

collaborators acquire mutually disjoint
sets of resourcesB

competitors employ locking-up for
resources they compete forA

competitors have released all acquired
resources when synchronizing with
other competitors (“talking-up”)

C

A rules out red-arrow cycles, B and C rule out red-green-arrow
cycles.

Manifest deadlock-freedom

Manifest deadlock-freedom

Introduce modal worlds, abstract values equipped with a partial
order.

Manifest deadlock-freedom

Every process invariantly resides at a world.

Introduce modal worlds, abstract values equipped with a partial
order.

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

“Process P provides a session of type Am along channel xm,
using channels in � (and �;�).”

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

“Process P provides a session of type Am along channel xm,
using channels in � (and �;�).”

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest Deadlock-
Freedom for Shared Session Types. ESOP 2019.

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

worlds associated
with process

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

self-world:
world at which process

resides

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

min-world:
world of minimal resource

to be acquired

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

max-world: world
of maximal resource to be

acquired

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Every process invariantly resides at a world.

Every process indicates the range of worlds it may acquire.

Introduce modal worlds, abstract values equipped with a partial
order.

partial world order

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

collaborators

a

b c

1 2

competitors

no vertical red arrows

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

collaborators

a

b c

1 2

competitors

no red cycles

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released

collaborators

a

b c

1 2

competitors

no ingoing red and up-going green arrow

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

Manifest deadlock-freedom

Express invariants A, B, and C in terms of:

min(parent) ≤ self(acquired_child) ≤ max(parent)

max(parent) < min(child)

for an acquire: lock-up

right-rule: all resources released

These low-level invariants are enforced by typing.

 ; � `⌃ P :: (xS : AS[!self l!max
!min

])

 ; �; �; � `⌃ P :: (xL : AL[!self l!max
!min

])

World and order creation

World and order creation

 ,w; �; �; � `⌃ Qw :: (xL : AL[!ml!v
!u

])

 ; �; �; � `⌃ w new world; Qw :: (xL : AL[!ml!v
!u

])
(T-NewL)

World and order creation

 ,w; �; �; � `⌃ Qw :: (xL : AL[!ml!v
!u

])

 ; �; �; � `⌃ w new world; Qw :: (xL : AL[!ml!v
!u

])
(T-NewL)

World and order creation

 ,w; �; �; � `⌃ Qw :: (xL : AL[!ml!v
!u

])

 ; �; �; � `⌃ w new world; Qw :: (xL : AL[!ml!v
!u

])
(T-NewL)

!p,!r 2 (,!p < !r)+ irreflexive

 ,!p < !r; �; �; � `⌃ Q :: (xL : AL[!ml!v
!u

])

 ; �; �; � `⌃ !p < !r; Q :: (xL : AL[!ml!v
!u

])
(T-OrdL)

World and order creation

 ,w; �; �; � `⌃ Qw :: (xL : AL[!ml!v
!u

])

 ; �; �; � `⌃ w new world; Qw :: (xL : AL[!ml!v
!u

])
(T-NewL)

!p,!r 2 (,!p < !r)+ irreflexive

 ,!p < !r; �; �; � `⌃ Q :: (xL : AL[!ml!v
!u

])

 ; �; �; � `⌃ !p < !r; Q :: (xL : AL[!ml!v
!u

])
(T-OrdL)

Acquire

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

lock-up

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

min(parent) ≤ self(acquired_child) ≤ max(parent)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

max(parent) < min(child)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

 ; �; · ; · `⌃ PxL :: (xL : AL[!ml!v
!u

])

 ; � `⌃ xL acceptxS ;PxL :: (xS : "SLAL[!ml!v
!u

])
(T-"SLR)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

 ; �; · ; · `⌃ PxL :: (xL : AL[!ml!v
!u

])

 ; � `⌃ xL acceptxS ;PxL :: (xS : "SLAL[!ml!v
!u

])
(T-"SLR)

Acquire

8yL : BL[!ll!r
!p
] 2 � : !l < !m

 ⇤ ` !k  !m  !n + ` !n < !u

 ; �, xS : "SLAL[!ml!v
!u

]; �, xL : AL[!ml!v
!u

]; � `⌃ QxL :: (zL : CL[!j l!n
!k

])

 ; �, xS : "SLAL[!ml!v
!u

]; �; � `⌃ xL acquirexS ;QxL :: (zL : CL[!j l!n
!k

])
(T-"SLL)

 ; �; · ; · `⌃ PxL :: (xL : AL[!ml!v
!u

])

 ; � `⌃ xL acceptxS ;PxL :: (xS : "SLAL[!ml!v
!u

])
(T-"SLR)

Φ must be empty

Remaining typing rules

Largely unchanged, except for
• right-rules, which must have an empty Φ
• spawn, which must establish invariants

Compositionality
• Process definitions specify a process’ order
• Order of spawner must entail order of spawnee

58

Catching potential deadlock

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

!

!

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

!

!

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

not a collaborator!

!

!

Catching potential deadlock

owner : {�0 < �1 < �2 ` 1[�0l�1�1] sres[�1l�2�2]}
o[�0l�1�1] owner sr [�1l�2�2] =

c : �{ping : 1}[�0l�1�1] contester sr ;
lr acquire sr ;
case c of
| ping! wait c ;

sr release lr ; close o

contester : {�0 < �1 < �2 ` �{ping : 1}[�0l�1�1] sres[�1l�2�2]}
c[�0l�1�1] contester sr [�1l�2�2] =

lr acquire sr ;
c.ping ;
sr release lr ; close c

not a collaborator!

not all resources released!

Taking stock

Taking stock

Type systems allows us to write interesting and common
programs that are guaranteed to be deadlock-free, e.g.,:

dining philosophers (see paper)

imperative queue (see paper)

Taking stock

Type systems allows us to write interesting and common
programs that are guaranteed to be deadlock-free, e.g.,:

dining philosophers (see paper)

imperative queue (see paper)

Currently not supported:

unbounded circular process networks

world inference

The end — or the beginning for you?

Related work (not a comprehensive list!)

Session types and multiparty session types:
• Kohei Honda. Types for Dyadic Interaction. CONCUR 1993.
• Kohei Honda, Vasco Thudichum Vasconcelos, Makoto Kubo.

Language Primitives and Type Discipline for Structured
Communication-Based Programming. ESOP 1998.

• Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida,
Sophia Drossopoulou. Session Types for Object-Oriented
Languages. ECOOP 2006. Kohei Honda, Nobuko Yoshida, Marco
Carbone. Multiparty asynchronous session types. POPL 2008.

• Simon J. Gay, Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica 42(2-3): 191-225 (2005).

Related work (not a comprehensive list!)

Intuitionistic linear logic session types:
• Luís Caires, Frank Pfenning. Session Types as Intuitionistic Linear

Propositions. CONCUR 2010.
• Bernardo Toninho, Luís Caires, Frank Pfenning. Higher-Order

Processes, Functions, and Sessions: A Monadic Integration. ESOP
2013.

• Luís Caires, Jorge A. Pérez, Frank Pfenning, Bernardo Toninho.
Behavioral Polymorphism and Parametricity in Session-Based
Communication. ESOP 2013.

Related work (not a comprehensive list!)

Classical linear logic session types:
• Philip Wadler. Propositions as sessions. ICFP 2012.
• Sam Lindley, J. Garrett Morris. A Semantics for Propositions as

Sessions. ESOP 2015.
• Sam Lindley, J. Garrett Morris. Talking bananas: structural recursion

for session types. ICFP 2016.
• Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, Philip

Wadler. Gradual session types. ICFP 2017.
• Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions

in linear logic. To appear at ICFP 2021.
• Pedro Rocha and Luis Caires. Propositions-as-types and shared

state. To appear at ICFP 2021.

Related work (not a comprehensive list!)

Various:
• Ankush Das, Jan Hoffmann, Frank Pfenning. Work Analysis with

Resource-Aware Session Types. LICS 2018.
• Resource-aware session types for digital contracts. Ankush Das,

Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani
Santurkar. CSF 2021.

• Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. Session
Logical Relations for Noninterference. LICS 2021.

how to find papers?

dblp (https://dblp.uni-trier.de/)

Google Scholar (https://scholar.google.com/)

https://dblp.uni-trier.de/
https://scholar.google.com/

