
From Program Equivalences to Program Metrics
Lecture Notes
OPLSS 2021

Ugo Dal Lago Francesco Gavazzo

Chapter 1

Introduction

These notes are designed to be a support for the students following the eponymous course held by Ugo
Dal Lago within the Oregon Summer School in Programming Language Semantics. But they are freely
downloadable and can circulate freely.

The aim of these notes is to introduce the fundamentals of relational reasoning between higher-order
programs. The notes are divided in three chapters:

• In the �rst chapter, notions of equivalence for more and more sophisticated lambda-calculi are in-
troduced, starting from the simply-typed lambda-calculus and gradually adding features, i.e., recur-
sive types and algebraic e�ects. In particular, contextual, denotational, inductive, and coinductive
equivalences will be introduced.

• In the second chapter, relational reasoning will take a more quantitative �avor: programs are not
related by judging the latter equivalent (or not), but by evaluating the distance between them.
This is possible through the notion of metrics and to its application to the programs described
in the previous point. However, there is a price to pay, namely the fact that the underlying type
system must become linear, thus allowing to tame the phenomena of distance ampli�cation and
trivialization.

• Finally, in the third chapter, we will show how program distances can be modi�ed in such a way as
to take the behavior of the environment into account, thus inducing a genuinely contextual notion
of distance. We will make this idea concrete in the particular case of logical relations, applying the
latter to the simply-typed lambda-calculus.

Readers are encouraged to report any typos or errors to the authors by email.1

1Please write to ugo.dallago@unibo.it and francesco.gavazzo2@unibo.it

1

ugo.dallago@unibo.it
francesco.gavazzo2@unibo.it

Chapter 2

Program Equivalences

2.1 Mathematical Preliminaries
We recall some background notions on relations and their algebra. That will allow us to reduce the
complexity of some proofs by means of simple, pointfree calculations. Contrary to standard, set-based
presentations of relations, we use an ‘algebraic’ notation for relations and their algebra. This choice
has the advantage of highlighting the connection between relations and abstract notions of distance (the
central theme of the second part of these notes).

De�nition 1. A relation R between two sets X and Y , written as R : X +→ Y , is a set R ⊆ X × Y .

Given elements x ∈ X , y ∈ Y we say that x is R-related to y, and write x R y, if (x ,y) ∈ R. For any set
X the identity relation IX : X +→ X is de�ned as equality on X . Moreover, for relations R : X +→ Y and
S : Y +→ Z , we de�ne the composition R; S : X +→ Z (read ‘R after S’) as:

xR; Sz ⇐⇒4 ∃y ∈ Y . x R y & y S z.

Composition of relations is associative, and I is the unit of composition.
Moreover, for all setsX ,Y , we denote by Rel(X ,Y) the collection of relations betweenX andY . Such a

set has a complete lattice structure with order given by set-theoretic inclusion ⊆ and meets and joins given
by
⋂

and
⋃

, respectively. The complete lattice structure of sets of the form Rel(X ,Y) nicely interacts with
the monoid structure of relation composition, meaning that Rel forms a quantaloid Hofmann, Seal, and
Tholen (2014). In particular, for all relations R : X +→ Y , Si : Y +→ Z (i ∈ I), and Q : Z +→W the following
distributivity laws hold:

(
⋃
i ∈I

Si);Q =
⋃
i ∈I

(Si ;Q),

R; (
⋃
i ∈I

Si) =
⋃
i ∈I

(R; Si).

Exercise 1. Show that relation composition is monotone in both arguments.

For a relation R : X +→ Y we denote by R> : Y +→ X its transportation de�ned by y R> x ⇐⇒
4

x R y.
It is a routine exercise to verify that −> is monotone and satis�es the following identities (the third one
stating that −> is an involution):

(R; S)> = S>;R>

I> = I

(R>)> = R.

Additionally, we can regard each function f : X → Y as a relation f◦ : X +→ Y de�ned by

x f◦ y ⇐⇒
4

f (x) = y.

2

For readability, we overload the notation and write f in place of f◦ keeping in mind that whenever we
write expressions such that R; f or f ;R we really mean f regarded as a relation.

Oftentimes, we will write relations of the form f ; S ;д>, for a relation S : Z +→ W and functions
f : X → Z , д : Y →W . We have:

x (f ; S ;д>) y ⇐⇒ f (x) S д(y).

Given R : X +→ Y we can thus express a generalised monotonicity condition in pointfree fashion as:

R ⊆ f ; S ;д>.

Indeed, taking f = д, we obtain standard monotonicity of f with respect to R. The pointfree notation is
compact and allows us to reduce nontrivial proofs to simple algebraic calculations. In doing so, we will
make extensively use of the following adjunction rules (also known as shunting) Hofmann et al. (2014),
for f : X → Y , д : Y → Z , R : X +→ Y , S : Y +→ Z , and Q : X +→ Z :

R;д ⊆ Q ⇐⇒ R ⊆ Q ;д>

f >;Q ⊆ S ⇐⇒ Q ⊆ f ; S .

Finally, since we are interested in preorder and equivalence relations, we recall that we can de�ne the
notions of a re�exive, a transitive, and a symmetric relation pointfree. In fact, a relation R : X +→ X is
re�exive if IX ⊆ R, transitive if R;R ⊆ R, and symmetric if R ⊆ R>.

2.1.1 Set-theoretic Constructions
We summarise the main constructions on sets we use in these notes. For a setX , we de�neX⊥ , {just x |
x ∈ X } ∪ {⊥}. The set X⊥ thus contains all elements of X plus a special element ⊥ usually denoting the
‘unde�ned’. We use sets of the form X⊥ to de�ne partial functions. More speci�cally, we de�ne a partial
function φ : A ⇀ B as a function φ : A → B⊥. Given sets A,B, we write BA, A × B, and A + B for the
set of functions from A to B, for the cartesian product of A and B, and for the disjoint union of A and B,
respectively. Elements in A × B (i.e. pairs) are denoted by (a,b), whereas elements in A + B are either of
the form inl a with a ∈ A, or inr b with b ∈ B. In particular, we recall that A + B is the coproduct of A
and B; A × B is the (categorical) product of A and B (we denote by πi : X1 × X2 → Xi the i-th projection
function); and BA is the exponential object of A and B.

2.2 A Simply-Typed λ-Calculus
We consider a simply-typed λ-calculus with Booleans, arrows, and �nitary product types, which we call
ΛST. The grammar of types, values, and terms of ΛST is given in Figure 2.1.

Types σ ,τ ::= bool Values v ,w ::= x Computations e , f ::= return v
| unit | 〈〉 | if v then e else f

| σ × τ | true | projl v
| σ → τ | false | projr v

| 〈v ,w〉 | vw

| λx .e | let x = e in f

Figure 2.1: Types, values, and computations of ΛST.

Following the methodology of �ne-grain call-by-value (Levy, Power, & Thielecke, 2003), we divide
expressions of ΛST in two disjoint classes: values and computations (also called terms). Intuitively, a value

3

is the result of a computation, whereas a computation is a value producer, i.e. an expression that once
evaluated may produce a value (the evaluation process might not terminate). Accordingly, computations
must be explicitly sequenced by means of the sequencing constructor let x = − in −.

We adopt standard syntactical conventions from (Barendregt, 1984) (notably the so-called variable
convention). The notion of a free (resp. bound) variable is de�ned as usual. In particular, we denote by
FV (e) (resp. FV (v)) the set of free variables of a computation e (resp. value v). As it is customary, we
identify terms up to renaming of bound variables and say that a term is closed if it has no free variables.
Oftentimes we refer to closed computations as programs. Moreover, for �nite lists of syntactic expressions
(such as variables, computations, or values) we sometimes employ the vector, thus writing ϕ for a �nite
list ϕ1, . . . ,ϕn of ϕs. As a notational convention, we agree that whenever we have a vector ϕ, the symbol
ϕi stands for the i-th element of ϕ. For instance, we write x andv for a �nite list of variables and values,
respectively, and xi ,vi for the their i-th element in the list.

Finally, we write e[v/x] (resp. w[v/x]) for the capture-free substitution of the value v for all free
occurrences of x in e (resp. w). Formally, we de�ne e[v/x] and w[v/x] by mutual recursion on e and w
as follows:

x[v/x] , v
y[v/x] , y

true[v/x] , true
false[v/x] , false
〈〉[v/x] , 〈〉

〈w ,u〉[v/x] , 〈w[v/x],u[v/x]〉
(λy.e)[v/x] , λy.e[v/x]

(returnw)[v/x] , returnw[v/x]
(if w then e else f)[v/x] , if w[v/x] then e[v/x] else f [v/x]

(projl w)[v/x] , projl w[v/x]
(projr w)[v/x] , projr w[v/x]

(wu)[v/x] , w[v/x]u[v/x]
(let y = e in f)[v/x] , let y = e[v/x] in f [v/x]

The notion of a substitution is extended to the one of simultaneous substitution in the natural way.
Given vectorsv , x of values and variables (which we tacitly assume to have the same length), respectively,
we write e[v/x] for the simultaneous substitution of all values vi for variables xi in e . We de�ne w[v/x]
similarly. Moreover, oftentimes we will use metavariables γ ,δ , . . . for substitution maps −[v/x].

The �ne-grain style has several advantages when studying meta-theoretical properties of calculi: there
is a neat distinction between computations and values (which gives, for instance, a smooth de�nition of
the notion of an applicative (bi)simulation relation), and proofs are more streamlined. However, calculi in
�ne-grain style has the drawback of being cumbersome for writing examples. For instance, the identity
combinator λx .x in �ne-grain style is written as return (λx .(return x)). For this reason, it is sometimes
convenient to write examples using the standard, coarse-grain λ-calculus syntax:

e ::= x | true | false | if e then e else e | 〈e , f 〉 | π1e | π2e | λx .e | ee .

It is not hard to convince ourselves that the two presentations are equivalent, as summarised by Table 2.1.

2.2.1 Static Semantics
We endow ΛST with a static semantics (also called a type system), whose de�ning rules are in given in
Figure 2.2. We use judgments of the form Γ `Λ e : σ for computations, and Γ `V v : σ for values. Formally,
judgments are given by two ternary relations: the �rst one, denoted by `Λ, relating typing environments,

4

coarse-grain syntax �ne-grain syntax
x return x

true return true
false return false

if e then f else h let x = e in if x then f else h
〈e , f 〉 let x = e in (let y = f in (return 〈x ,y〉))
π1e let x = e in (return projl x)
π2e let x = e in (return projr x)
λx .e return λx .e
f e let x = f in (let y = e in xy)

Table 2.1: Correspondence between �ne-grain and coarse-grain calculi

terms, and types; and the second one, denoted by `V , relating typing environments, values, and types.
As it is customary, we write Γ `Λ e : σ in place of (Γ, e ,σ) ∈ `Λ, and similarity for values. A typing
environment is a �nite set {x1 : σ1, . . . ,xn : σn } of pairs of variables and types assigning to each variable
a unique type: that is, if i , j, then xi , x j . A more convenient de�nition of typing environments is given
in terms of partial functions.

De�nition 2. A typing environment is a a partial function Γ from variables to types such that the domain
dom(Γ) , {x | Γ(x) , ⊥} of Γ is �nite.

Given a typing environment Γ, we use the notationx1 : σ1, . . . ,xn : σn to denote it, where {x1, . . . ,xn } =
dom(Γ) and Γ(xi) = just σi . Moreover, we write (x : σ) ∈ Γ to mean that Γ(x) = just σ . We denote
by · the totally unde�ned environment. Notice that whenever Γ `Λ e : σ is derivable using the rules in
Figure 2.2, then FV (e) ⊆ dom(Γ) (and similarity for values). In particular, if Γ = ·, then e is a program.
As it is customary, we often write e : σ (resp. v : σ) in place of · `Λ e : σ (resp. · `V v : σ). We also
need to join typing environments together. To do that, we need environments to be disjoint. The typing
environment disjointness relation ⊥ is de�ned thus:

Γ ⊥ ∆⇐⇒
4

dom(Γ) ∩ dom(∆) = ∅

The union Γ,∆ of two disjoint typing environments Γ and ∆ is de�ned in the usual way:

(Γ,∆) (x) ,

Γ(x) if x ∈ dom(Γ)

∆(x) otherwise.

From now, whenever we write Γ,∆, we assume Γ and ∆ to be disjoint. We extend the vector notation to
typing environments, so that we write x : σ for x1 : σ1, . . . ,xn : σn . Finally, we introduce the following
notation:

Λσ , {e | ∃Γ. Γ `Λ e : σ } ΛΓ`σ , {e | Γ `
Λ e : σ } Λ•σ , {e | · `

Λ e : σ }
Vσ , {v | ∃Γ. Γ `V v : σ } VΓ`σ , {v | Γ `

V v : σ } V •

σ , {v | · `
V v : σ }

Moreover, for X ∈ {Λ,V ,Λ•,V •}, we de�ne X ,
⋃
σ Xσ .

Exercise 2. Show that the weakening rules are admissible.1

Γ `Λ e : σ
Γ,∆ `Λ e : σ

Γ `V v : σ
Γ,∆ `V v : σ

To deal smoothly with substitutions, it is convenient to extend the vector notation to tying judgments
as follows: we write Γ `V v : σ for ∀i . Γ `V vi : σi ; and Γ `V v : σ for ∀i . Γi `V vi : σi (we will use
the latter notation mostly when dealing with program distances). Notice, in particular, that the following
rules are admissible:

x : σ ,∆ `Λ e : σ ∆ `V v : σ
∆ `Λ e[v/x] : σ

x : σ ,∆ `Λ e : σ ∆ `V v : σ
∆ `V v[v/x] : σ

1Recall that whenever we write Γ,∆, for two environments Γ and ∆ we tacitly assume Γ ⊥ ∆.

5

Γ,x : σ `V x : σ
Γ `V v : σ

Γ `Λ return v : σ
Γ `Λ e1 : σ1 Γ,x : σ1 `

Λ e2 : σ2
Γ `Λ let x = e1 in e2 : σ2

Γ `V true : bool Γ `V false : bool
Γ `V v : bool Γ `Λ e : σ Γ `Λ f : σ

Γ `Λ if v then e else f : σ

Γ,x : σ1 `
Λ e : σ2

Γ `V λx .e : σ1 → σ2

Γ `V v1 : σ1 → σ2 Γ `V v2 : σ2
Γ `Λ v1v2 : σ2

Γ `V 〈〉 : unit
Γ `V v : σ Γ `V w : τ
Γ `V 〈v ,w〉 : σ × τ

Γ `V v : σ × τ
Γ `Λ projl v : σ

Γ `V v : σ × τ
Γ `Λ projr v : τ

Figure 2.2: Static semantics of ΛST .

Exercise 3 (Substitution Lemma). Prove that the following rules are admissible (Hint. Use the weakening
lemma)

x : σ ,∆ `Λ e : σ Γ `V v : σ Γ ⊥ ∆

Γ,∆ `Λ e[v/x] : σ
x : σ ,∆ `Λ e : σ Γ `V v : σ Γ ⊥ ∆

Γ,∆ `V v[v/x] : σ

Notice, however, that these rules are not equivalent to the one for substitution given above. In fact,
instantiating, e.g., Γ as ∆ we got stuck because ∆ ⊥ ∆ never holds. Using a proof-theoretical vocabulary,
we have problems with contraction. To overcome this issue, we introduce another operation between
typing environment, which we will extensively use in the next chapter in the context of substructural
type systems.

De�nition 3. 1. De�ne the consistency relation between typing environments thus:

Γ ∼ ∆⇐⇒
4

x ∈ dom(Γ) ∩ dom(∆) =⇒ Γ(x) = ∆(x).

2. The sum operation + is de�ned between consistent typing environments as follows:

(Γ + ∆) (x) ,

Γ(x) if x < dom(∆)

∆(x) otherwise.

Show that:

1. The following laws hold:

Γ ∼ Γ

Γ + Γ = Γ

Γ ⊥ ∆ =⇒ Γ ∼ ∆

Γ ⊥ ∆ =⇒ Γ + ∆ = Γ,∆

Can you spot the link between the identity Γ + Γ = Γ and the structural rule of contraction?

2. Show that the following weakening rules are admissible:

Γ `Λ e : σ Γ ∼ ∆
Γ + ∆ `Λ e : σ

Γ `V v : σ Γ ∼ ∆
Γ + ∆ `V v : σ

3. The following substitution rules are admissible

x : σ ,∆ `Λ e : σ Γ `V v : σ Γ ∼ ∆

Γ + ∆ `Λ e[v/x] : σ
x : σ ,∆ `Λ e : σ Γ `V v : σ Γ ∼ ∆

Γ + ∆ `V v[v/x] : σ

6

4. Concludes that for the rules in previous point are equivalent with:

x : σ ,∆ `Λ e : σ ∆ `V v : σ
∆ `Λ e[v/x] : σ

x : σ ,∆ `Λ e : σ ∆ `V v : σ
∆ `V v[v/x] : σ

5. Give a type system forΛST the replaces the disjoint union of typing environments with the operation
+. For instance, in such a system the typing for sequencing is (where we tacitly assume Γ ∼ ∆):

Γ `Λ e : σ ∆,x : σ `Λ f : τ
Γ + ∆ `Λ let x = e in f

Type systems based on the operation + are called multiplicative, whereas type systems based on
disjoint union are called additive. Is there any di�erence (from the point of view of typability)
between the additive and multiplicative type systems of ΛST?

2.2.2 Dynamic Semantics
The dynamic semantics of ΛST is given by an evaluation procedure that executes (well-typed) closed
computations. Since the execution of a computation may not terminate, thus returning no value, we will
de�ne the evaluation procedure as a partial function.2

Recall that given two sets A,B, a partial function φ : A ⇀ B from A to B is a function φ : A → B⊥,
where B⊥ , {just b | b ∈ B} ∪ {⊥}, with ⊥ denoting the ‘unde�ned’. In particular, given a ∈ A, if
φ (a) = just b, for some b ∈ B, then φ is said to be de�ned on a. Dually, if φ (a) = ⊥, then we say that φ is
unde�ned on a. Partial function can be ordered relying on the relation v de�ned by:

φ v ψ ⇐⇒
4
∀a ∈ A. (φ (a) = ⊥ ∨ φ (a) = ψ (a).

Once endowed with the order v, the collection of partial functions from a set A to a set B forms a ω-
complete pointed partial order (ωCppo, for short), that is, an ordered set with a bottom element and
having all least upper bounds of ω-chains. Here the bottom element is given by the constant function
bot : a 7→ ⊥ and, given a v-ordered sequence (φn)n≥0, the sequence has a (necessary unique) least upper
bound

⊔
n≥0 φn de�ned by:

(
⊔
n≥0

φn) (a) ,

just b if ∃i ≥ 0. φi (a) = just b

⊥ otherwise.

Notice that if there there exists i ≥ 0 such that φi (a) = just b, then for all j ≥ 0 such that φ j (a) , ⊥ we
have φ j (a) = just b. In particular, φi+c (a) = just b, for any c ≥ 0.

We can now come back to the de�nition of our evaluation procedure. Formally, we would like to
de�ne such a procedure as the least type-indexed family of partial functions φ :

∏
σ Λ

•

σ ⇀ V
•

σ satisfying
the following identities:3

φ (return v) = just v

φ (if true then e else f) = φ (e)

φ (if false then e else f) = φ (f)

φ (projl 〈v ,w〉) = just v

φ (projr 〈v ,w〉) = just w

φ ((λx .e)v) = φ (e[v/x])

φ (let x = e in f) =

φ (f [v/x]) if φ (e) = just v

⊥ otherwise.

2 Actually, since ΛST is a simply-typed calculus, program evaluation always terminate. Nonetheless, it is convenient to de�ne
the evaluation procedure in full generality, and only then observe that such a procedure indeed gives a total function.

3To improve readability, we omit type subscripts: that is, we write φ in place of φσ .

7

Obviously, there is no guarantee that such a least function does exist. To prove its existence, we de�ne
a family of approximate evaluation functions that evaluate programs for a given number of steps only,
and then form an ω-chain out of such approximate evaluation functions. The least upper bound of such
a chain indeed gives our desired evaluation function.

De�nition 4. TheN-indexed family of type-indexed family of functions J−Kn
E

:
∏

σ Λ
•

σ ⇀ V
•

σ is inductively
de�ned as follows:4

JeK0
E
, ⊥

Jreturn vKn+1
E
, just v

Jif true then e else f Kn+1
E
= JeKn

E

Jif false then e else f Kn+1
E
= Jf Kn

E

Jprojl 〈v ,w〉Kn+1
E
= just v

Jprojr 〈v ,w〉Kn+1
E
= just w

J(λx .e)vKn+1
E
, Je[v/x]Kn

E

Jlet x = e in f Kn+1
E
,

Jf [v/x]Kn
E

if JeKn
E
= just v

⊥ otherwise.

Notice that the index n in J−Kn
E

does not actually refer to the number of β-reductions performed.

Lemma 1. For each type σ , the sequence of maps (J−Kn
E
)n≥0 forms an ω-chain in Λ•σ ⇀ V

•

σ .

Exercise 4. Prove Lemma 1.

By Lemma 1, we de�ne the evaluation map J−KE :
∏

σ Λ
•

σ ⇀ V
•

σ as
⊔

n≥0J−KnE .

Exercise 5. Show that the following identities hold, and that J−KE is the least map satisfying them.

Jreturn vKE , just v

Jif true then e else f KE = JeKE
Jif false then e else f KE = Jf KE

Jprojl 〈v ,w〉KE = just v

Jprojr 〈v ,w〉KE = just w

J(λx .e)vKE , Je[v/x]KE

Jlet x = e in f KE ,

Jf [v/x]KE if JeKE = just v

⊥ otherwise.

Notice by its very functional nature, J−KE gives a deterministic notion of evaluation. Additionally, since
ΛST is a simply-typed calculus, a standard reducibility argument shows that ΛST is strongly normalising.

Proposition 1. For any program e ∈ Λ•σ , there exists a number n ≥ 0 such that JeKE = JeKn
E
= just v , for

some closed value v ∈ V •

σ .

Thanks to previous proposition, J−KE de�nes total map, so that we writev in place of just v whenever
we have JeKE = v , for a program e and a closed value v .

2.3 Relational Calculus
Studying notions of program equivalence and re�nement, it is useful to �x a proper notation and vo-
cabulary for program relations. We do so following Gordon (1994); Lassen (1998). Relational reasoning
about programs oftentimes requires to reason about open terms. It is thus useful to work with families
of relations relating expressions typable within the same sequent. We refer to such (families of) relations
as term relations.

4As usual, we omit type subscripts.

8

De�nition 5. 1. A closed term relation is a pair R = (RΛ,RV) of maps associating to each type σ
relations RΛ

σ and RVσ on closed computations and values of type σ , respectively. We refer to RΛ as the
computation component of R, and to RV as the value component of R.

2. An (open) term relation R associates to each sequent Γ ` σ a relation Γ `Λ − R − : σ on ΛΓ`Λσ and a
relation Γ `V − R − onVΓ`Vσ . We require term relations to be closed under weakening:

Γ `Λ e R f : τ
Γ,∆ `Λ e R f : τ

Γ `V e R w : τ
Γ,∆ `V v R w : τ

Example 1. Both the discrete/identity relation I and the indiscrete relation ∇ de�ned by the rules below
are open term relations. The empty relation is an open term relation too.

Γ `Λ e : σ
Γ `Λ e I e : σ

Γ `V v : σ
Γ `V v I v : σ

Γ `Λ e , f : σ
Γ `Λ e ∇ f : σ

Γ `V v ,w : σ
Γ `V v ∇w : σ

Since Γ `Λ e : σ (resp. Γ `Λ v : σ) implies Γ,∆ `Λ e : σ (resp. Γ,∆ `Λ v : σ), for any �nite set of variables
∆, both ∇ and I are closed under weakening. �

We extend the vector notation to term relations. We write:

• e RΛ
σ f for ∀i . ei RΛ

σi fi (and similarity for values).

• Γ `Λ e R f : σ for ∀i . Γ `Λ ei R fi : σi (and similarity for values).

• Γ `Λ e R f : σ for ∀i . Γi `Λ ei R fi : σi (and similarity for values).

We denote by Rel and Relc the collections of open and closed term relations, respectively. Formally, we
de�ne Rel as

∏
Γ`σ Rel(ΛΓ`σ ,ΛΓ`σ) × Rel(VΓ`σ ,VΓ`σ). Rel inherits a rich structure from Rel(ΛΓ`σ ,ΛΓ`σ)

and Rel(VΓ`σ ,VΓ`σ), as witnessed by the following results.

Lemma 2. Rel is a complete lattice.

Proof. Since Rel =
∏

Γ`σ Rel(ΛΓ`σ ,ΛΓ`σ) × Rel(VΓ`σ ,VΓ`σ), the thesis follows because Rel(ΛΓ`σ ,ΛΓ`σ)
and Rel(VΓ`σ ,VΓ`σ) are complete lattices, for any sequent Γ ` σ (recall that the countable product of
complete lattices is a complete lattice).

Notice that Lemma 2 allows us to de�ne term relations both inductively and coinductively.

Exercise 6. Show that the countable product of complete lattices is a complete lattice. Use your proof to
write explicitly the complete lattice structure of Rel. In particular show that R ⊆ S if:

∀Γ, e , f ,σ . Γ `Λ e R f : σ =⇒ Γ `Λ e S e : σ , ∀Γ,v ,w ,σ Γ `V v R w : σ =⇒ Γ `V v S w : σ .

and that the bottom element of Rel is the empty relation, whereas its top element is the indiscrete relation.

Given term relations R and S , we de�ne the composition of R with S , denoted by R; S , as:

Γ `Λ e R h : σ Γ `Λ h S f : σ
Γ `Λ e (R; S) f : σ

Γ `V v R u : σ Γ `V u S w : σ
Γ `V v (R; S) w : σ

Since bothR and S are closed under weakening, then so isR; S . It is straightforward to see that composition
is associative and that the unit of composition is given by the discrete term relation I, meaning that Rel is
a monoid. Actually, easy calculations show that term relation composition is monotone and continuous
in both arguments:

R;
⋃
i ∈I

Si =
⋃
i ∈I

(R; Si)
⋃
i ∈I

Ri ; S =
⋃
i ∈I

(Ri ; S)

9

This makes Rel a quantale. Finally, we observe that Rel also has an involution, mapping a term relation
R to its converse R>. The latter is de�ned as follow:

Γ `Λ f R e : σ
Γ `Λ e R> f : σ

Γ `V w R v : σ
Γ `V v R> w : σ

Summing up, we see that the algebra of term relations is the same as the one of ordinary relations,
meaning that we can transfer notions and results from the realm of relations to the one of open term
relations. For instance, we can de�ne the notion of a preorder and equivalence term relation in the usual
way. In fact, we say that a term relation R is re�exive if I ⊆ R, transitive if R;R ⊆ R, and symmetric if
R> ⊆ R.

Having analysed the algebra of term relations, we now introduce some useful, syntax-oriented con-
structions on term relations that allow us to build a calculus of term relations, which we will rely on to
de�ne notions of program equivalence. The �rst constructions we de�ne allows us to move back and
forth between open and closed term relations.

De�nition 6. 1. Given a term relation R ∈ Rel, de�ne the closed restriction Rc = (RΛ,RV) of R by:

· `Λ e R f : σ
e (Rc)Λσ f

· `V v R w : σ
v (Rc)Vσ w

2. Given a closed term relation R we de�ne the open extension of R as the (open) term relation Ro de�ned
thus:

∀v : σ . e[v/x] R f [v/x]
x : σ `Λ e Ro f : σ

∀v : σ . v[v/x] R w[v/x]
x : σ `V v Ro w : σ

3. Given a closed term relation R we de�ne the substitutive extension of R as the (open) term relation Rs

de�ned thus:

∀v ,w : σ . (v RVσ w =⇒ e[v/x] R f [w/x])
x : σ `Λ e Rs f : σ

∀v ,w : σ . (v RVσ w =⇒ v[v/x] R w[w/x])
x : σ `V v Rs w : σ

Taking advantage of De�nition 6, for a closed term relation R = (RΛ,RV) we will often write · `Λ e R f :
σ in place of e RΛ

σ f (and similarity for values). In light of that, for an open term relation R we will use
the notations · `Λ e R f : σ and e (Rc)Λσ f : σ interchangeably (and similarity for values).

Lemma 3. Let R, S be open term relations, and Q , P be closed term relations. The following monotonicity
laws hold.

R ⊆ S =⇒ Rc ⊆ S c

Q ⊆ P =⇒ Qo ⊆ P o

Moreover, we have the inclusions:

Rc; S c ⊆ (R; S)c

Qo; P o ⊆ (Q ; P)o

Q s; P s ⊆ (Q ; P)s

Exercise 7. Why −s is not monotone? Does (Q ; P)o ⊆ Qo; P o hold?

Exercise 8. Show that the open extension of a re�exive closed term relation is re�exive. Show also that
the open extension of a transitive closed term relation is transitive. What goes wrong if you try to prove
the same result for substitutive extensions?

Next we de�ne the useful operation of term relation substitution.

10

De�nition 7. Given term relations R, S , de�ne the substitution of S into R as the term relation R[S] thus
de�ned:

x : σ , Γ `Λ e R f : σ Γ `V v S w : σ
Γ `Λ e[v/x] R[S] f [w/x] : σ

x : σ , Γ `V v R w : σ Γ `V v S w : σ
Γ `V v[v/x] R[S]w[w/x] : σ

Exercise 9. Show that the de�ning rules of R[S] in De�nition 42 are equivalent to the following ones.

x : σ , Γ `Λ e R f : σ Γ `V v S w : σ
∆, Γ `Λ e[v/x] R[S] f [w/x] : σ

x : σ , Γ `V v R w : σ ∆ `V v S w : σ
∆, Γ `V v[v/x] R[S]w[w/x] : σ

Exercise 10. Show that
R ⊆ R[S]

for all term relations R, S (Hint: consider the empty substitution).

Lemma 4. Let R, S , Q , P be term relations. Then, the following monotonicity law holds.

R ⊆ Q , S ⊆ P =⇒ R[S] ⊆ Q[P]

Moreover, we have the following identities.

I[I] = I

R>[S>] = (R[S])>

(R;Q)[S ; P] = R[S];Q[P]

Using term relation substitution, we can de�ne the notions of a substitutive and value substitutive
term relation.

De�nition 8. 1. A term relation R is value-substitutive if R[I] ⊆ R. Pointiwise, a term relation is value
substitutive if:

x : σ ,∆ `Λ e R f : σ ∆ `V v : σ
∆ `Λ e[v/x] R f [v/x] : σ

x : σ ,∆ `Λ e R f : σ ∆ `V v : σ
∆ `V v[v/x] R w[v/x] : σ

2. A term relation R is substitutive if R[R] ⊆ R. Pointiwise:

x : σ ,∆ `Λ e R f : σ ∆ `V v R w : σ
∆ `Λ e[v/x] R f [w/x] : σ

x : σ ,∆ `Λ e R f : σ ∆ `V v R w : σ
∆ `V v[v/x] R w[v/x] : σ

A closed λ-relation is substitutive if its open extension is. (Notice that for value-substitution the open
extension of a closed λ-term relation is trivially value-substitutive.)

Exercise 11. Let R be a closed term relation. Show that the open extension of R is value substitutive and
that the substitutive extension of R is substitutive:

Ro[I] ⊆ Ro

Rs[Rs] ⊆ Rs

In order to de�ne the notion of a (pre)congruence term relation, we introduce the notion of compati-
bility. Roughly speaking, a term relation is compatible if it is preserved by all ΛST syntactic constructors,
i.e. if it closed under ΛST-context. Giving a formally precise de�nition of the notion of a context, however,
is painful. We overcome that issue relying on the (relational) calculus of term relations and introducing
the notion of a compatible re�nement (Gordon, 1994; Lassen, 1998).

11

Γ,x : σ `V x R̂ x : σ

Γ `V true R̂ true : bool Γ `V false R̂ false : bool

Γ `V v R w : bool Γ `Λ e R f : σ Γ `Λ д R h : σ

Γ `Λ if v then e else д R̂ if w then f else h : σ

Γ `V v R u : σ Γ `V w R z : τ
Γ `V 〈v ,w〉 R̂ 〈u, z〉 : σ × τ

Γ `V v R w : σ × τ
Γ `Λ projl v R̂ projl w : σ

Γ `V v R w : σ × τ
Γ `Λ projr v R̂ projr w : τ

Γ,x : σ `Λ e R f : τ

Γ `V λx .e R̂ λx .f : σ → τ

Γ `V v R v ′ : σ → τ Γ `V w R w ′ : σ
Γ `Λ vw R̂ v ′w ′ : τ

Γ `V v R w : σ
Γ `Λ return v R̂ returnw : σ

Γ `Λ e R f : σ Γ,x : σ `Λ д R h : τ

Γ `Λ let x = e in д R̂ let x = f in h : τ

Figure 2.3: Compatible re�nement ΛST.

De�nition 9. The compatible re�nement R̂ of an open term relation R is de�ned by the rules in Figure 2.3.
We say R is compatible if R̂ ⊆ R, and that a closed term relation is compatible if its open extension is.

Notice that R̂ is indeed a term relation (notably, R̂ is closed under weakening).

Lemma 5. The following hold:

R̂; S = R̂; Ŝ

R̂> = (R̂)>

R ⊆ S =⇒ R̂ ⊆ Ŝ .

De�nition 45 induces a map R 7→ R̂ on the collection of open term relations which is monotone, by
Lemma 5. In particular, a term relation is compatible if and only if it is a pre-�xed point of R 7→ R̂.

Lemma 6. The discrete term relation I is the least pre-�xed point of R 7→ R̂. I.e. I ⊆ Î and R ⊆ R̂ =⇒ I ⊆ R.
As a consequence, any compatible relation is re�exive.

Exercise 12. Show that the indiscrete term relation ∇ is the greatest �xed point of R 7→ R̂.

Exercise 13. Show that for any closed term relation R we have:5

R̂s ⊆ I[Rs]

Do we really need to restrict to Rs? That is, does

Ŝ ⊆ I[S]

hold, for arbitrary term relations S?

In the next section, we will extensively work with compatible relations. For that reason, it is useful
to notice that the collection of compatible term relations form a complete lattice, meaning that we can
de�ne compatible term relations both inductively and coinductively.

5We will use this result to prove that logical equivalence.

12

Lemma 7. The collection of compatible λ-term relations forms a complete lattice ordered by ⊆.

Proof. Given a set ρ of compatible relations we de�ne the meet of ρ as
⋂
ρ. We cannot de�ne the join

of ρ as
⋃
ρ, since the union of compatible λ-relations is not necessarily compatible. We get round the

problem by de�ning the join of ρ as ⋂
{S | Ŝ ⊆ S ,

⋃
ρ ⊆ S }.

It is easy to see that the latter indeed satis�es the universal property of the join. Finally, we observe that
the bottom element is given by the discrete λ-term relation I, whereas the top element is the indiscrete
λ-term relation 0.

Finally, we rely on De�nition 45 to de�ne a closure operator mapping a term relation to the least
compatible term relation extending it.

De�nition 10. The compatible closure Rcc of an term relation is inductively de�ned by the following rules.

Γ `Λ e R f : σ
Γ `Λ e Rcc f : σ

Γ `V v R w : σ
Γ `V v Rcc w : σ

Γ `Λ e R̂cc f : σ
Γ `Λ e Rcc f : σ

Γ `V v R̂cc w : σ
Γ `V v Rcc w : σ

It is easy to see that −cc is a closure operator, i.e. it is a monotone and idempotent map extending the
identity function. Moreover, Rcc is the least compatible term relation containing R.

Lemma 8. The following hold:

R ⊆ S =⇒ Rcc ⊆ Scc

R ⊆ Rcc

(Rcc)cc = Rcc

Ŝ ⊆ S & R ⊆ S =⇒ Rcc ⊆ S

We also have the inclusion I[R] ⊆ Rcc.

2.4 Denotational and Contextual Equivalences and Re�nements
The universally accepted notion of operational equivalence (resp. preorder) for sequential, higher-order
language is Morris’ style contextual equivalence (reps. preorder) (Morris, 1969). The latter is a syntax
directed notion of equivalence (resp. preorder) equating (resp. ordering) programs according to a given
notion of observation (mostly based on notions of convergence): two programs are deemed as contextu-
ally equivalent if there is no contexts of the language (the latter being a kind of program with a hole to be
�lled in with the tested program) capable of detecting di�erences in the operational behaviour of the two
programs, according to the notion of observation given. For our purposes, it is convenient to stipulate
that we can observe the value to which a program of type bool evaluates to. We can thus propose the
following de�nition.

De�nition 11. A context is a term C with a hole [−]. We write C[e] (resp. C[v]) for the expression obtained
by replacing the hole [−] with e (resp. v) in C. We write C : (Γ `x σ) =⇒ (∆ `y τ), with x, y ∈ {V ,Λ}, to
state that one we �ll-in C with an expression ϕ such that Γ `x ϕ : σ , we have ∆ `y C[ϕ] : τ .

1. Contextual equivalence is the term relation 'ctx de�ned thus:

Γ `Λ e 'ctx f : σ ⇐⇒4 ∀C : (Γ `Λ: σ) =⇒ (· `Λ bool). JC[e]KE = JC[f]KE
Γ `V v 'ctx w : σ ⇐⇒4 ∀C : (Γ `V : σ) =⇒ (· `Λ bool). JC[v]KE = JC[w]KE .

Contextual approximation/preorder is the term relation �ctx de�ned thus:

Γ `Λ e �ctx f : σ ⇐⇒4 ∀C : (Γ `Λ: σ) =⇒ (· `Λ bool). JC[e]KE = JC[f]KE
Γ `V v �ctx w : σ ⇐⇒4 ∀C : (Γ `V : σ) =⇒ (· `Λ bool). JC[v]KE = JC[w]KE

13

The problem with the de�nition relies on the very notion of a context: �rst, contexts cannot be simply
de�ned as expressions with a hole, as we would like a context C to bind variables of e in C[e]. Additionally,
we should de�ne when a judgment of the form C : (Γ `x σ) =⇒ (∆ `y τ) is provable. All of this can
be done, but at the price of introducing some syntactical bureaucracy. Here, instead, we give a syntax-
free characterisation of contextual equivalence (resp. preorder) as the largest adequate (preadeqaute)
compatible term relation.

Usually, a term relation is adequate (resp. preadequate) if it only relates (observable) programs exhibit-
ing the same operational behaviour (resp. the operational behaviour of the second re�nes the operational
behaviour of the �rst). In this setting, (pre)adequacy predicates can be used in place of notions of obser-
vation. That is, instead of dealing with an explicit notion of observation, we �x a predicate ADEQ ⊆ Rel
on term relations with the idea that if a term relation R belongs to ADEQ , then it does not relate programs
which are observationally distinguishable. For instance, in the pure, untyped λ-calculus one is usually
interested in observing convergence of a term (according to a given reduction strategy (Plotkin, 1975)). In
that case, a relation is said to be adequate if whenever it relates two programs, then one of the programs
converges if and only so does the other.

The notion of (pre)adeqaucy we focus on here relates programs that converge to the same Boolean
value

De�nition 12. 1. A term relation R is adequate if · `Λ e R f : bool implies JeKE = Jf KE (so that
JeKE = true if and only if Jf KE = true).

2. A term relation is preadequate if · `Λ e R f : bool implies JeKE ≤ Jf KE (i.e. JeKE = true implies
Jf KE = true).

Contextual equivalence and approximations are de�ned as the largest adequate and preadequate com-
patible term relations, respectively. We have already seen that the collection of compatible term relations
forms a complete lattice. However, we soon realise that (pre)adequacy is not a ‘monotone property’,
and thus we cannot appeal to the Knaster-Tarski Theorem to infer the existence of the largest adequate
precongruence. We thus prove the existence of the desired relation explicitly.

Lemma 9. Let α ⊆ Rel be a predicate on term relations closed under non-empty union and relation com-
position (i.e.

⋃
i ∈I Ri ∈ α , whenever I , ∅ and Ri ∈ α for any i ; and R; S ∈ α whenever R ∈ α and S ∈ α).

If I ∈ α , then there exists a largest compatible term relation S ∈ α . Additionally, S is transitive and it is
symmetric if α is closed under relation transpose, (i.e. R ∈ α =⇒ R> ∈ α).

Proof. De�ne the term relation S as

S ,
⋃
{R ∈ α | R̂ ⊆ R}.

By hypothesis I ∈ α , so that {R ∈ α | R̂ ⊆ R} is non-empty. As a consequence, since α is closed under
non-empty union, S ∈ α . To conclude the �rst part of the thesis it remains to prove Ŝ ⊆ S . We prove by
simultaneous induction on the de�nition of Ŝ the following statements:

1. If Γ `Λ e Ŝ f : σ , then Γ `Λ e S f : σ .

2. If Γ `V v Ŝ w : σ , then Γ `V v S w : σ .

We prove the case of rule (comp-let) as an illustrative example. Suppose that:

Γ `Λ let x = e in f Ŝ let x = д in h : σ

then we have Γ `Λ e S д : τ and Γ,x : τ `Λ f S h : σ . By very de�nition of S there exist compatible term
relations P ,Q ∈ α such that Γ `Λ e P д : τ and Γ,x : τ `Λ f Qh : σ . Since both P andQ are compatible, then
so is P ;Q (recall that Â;B = Â; B̂, for all term relationsA,B: therefore, P̂ ;Q = P̂ ; Q̂ ⊆ P ;Q). Moreover, since
α is closed under composition, then P ;Q ∈ α . We also notice that, since compatibility implies re�exivity,
we have Γ `Λ e (P ;Q) д : τ and Γ,x : τ `Λ f (P ;Q) h : σ . In fact, P = P ; I ⊆ P ; Q̂ ⊆ P ;Q . Therefore

Γ `Λ let x = e in f F(P ;Q) let x = д in h : σ ,

14

and thus by compatibility of P ;Q

Γ `Λ let x = e in f (P ;Q) let x = д in h : τ .

Since P ;Q is compatible and belong to α , we conclude Γ `Λ let x = e in f S let x = д in h : τ .
We now prove that S is transitive, i.e. S ; S ⊆ S . Since S is the largest compatible relation that belongs to
α , it is enough to show that S ; S is compatible and belongs to α . The latter follows since α is closed under
composition, whereas the former follows by compatibility of S :

Ŝ ; S = Ŝ ; Ŝ ⊆ S ; S .

In a similar fashion one shows that if α is closed under transpose, then S> ⊆ S , meaning that S is sym-
metric.

Lemma 10. The adequacy and preadequacy properties

ADEQ , {R ∈ Rel | · `Λ e R f : bool =⇒ JeKE = Jf KE }
PREADEQ , {R ∈ Rel | · `Λ e R f : bool =⇒ (JeKE = true =⇒ Jf KE = true)}

contain the discrete term relation I, and are closed under non-empty union and composition. Moreover, ADEQ
is closed under transpose.

Exercise 14. Prove Lemma 10.

We are now ready to de�ne contextual approximation and equivalence.

De�nition 13. 1. De�ne the term relation 'ctx, called contextual equivalence, as the largest compatible
and adequate term relation.

2. De�ne the term relation �ctx, called contextual approximation, as the largest compatible and preade-
quate term relation.

Notice that 'ctx is compatible, re�exive, transitive, and symmetric (and thus a congruence), whereas
�ctx is compatible, re�exive, and transitive (and thus a precongruence).

The reader might have noticed that the de�nition of ADEQ and PREADEQ involve the behaviour of
term relations on programs only, and does not say anything about their behaviour on values. This is
rather obvious, as adequacy is an operational notion based on the evaluation semantics of a program.
Formally, this does not mean that on values 'ctx and �ctx coincide with the indiscrete relation. In fact,
compatibility forces 'ctx and �ctx to relate only those values that behave appropriately when used inside
computations. For instance, if λx .e ('ctx)Vσ→bool λx .f , then by compatibility (and re�exivity) of 'ctx, we
have

(λx .e)v ('ctx)Λbool (λx .f)v

for any value v ∈ V •

σ , which gives Je[v/x]KE = Jf [v/x]KE . Obviously, this cannot be the case for all e , f
(take, e.g., λx .true and λx .false).

De�nition 13 comes with associated proof techniques resembling a coinduction proof principle. To
prove that a program e is contextual equivalent to a program f , it is su�cient to exhibit a compatible and
adequate term relation relating e and f .

R̂ ⊆ R R ∈ ADEQ
R ⊆ 'ctx

R̂ ⊆ R R ∈ PREADEQ
R ⊆ �ctx

We can use this proof technique to prove that �ctx is actually a precongruence relation.

Exercise 15. Show that 'ctx = �ctx ∩ (�ctx)> (Hint. Use the proof technique associated with �ctx and 'ctx).

15

2.4.1 Denotational Equality
Contextual equivalence is de�ned relying on the operational semantics of ΛST. For this reason, one says
that contextual equivalence is a operationally-based equivalence (or just operational equivalence, for short).
Other examples of operationally-based equivalences are logical relations, applicative bisimilarity, Böhm
tree-like equivalences, and CIU equivalences. Although in these notes we mostly deal with operational
equivalences, interesting notions of program equivalence can be obtained via other forms of semantics,
such as axiomatic or denotational semantics. In particular, any denotational semantics J−KD induces a
notion of equivalence D

', called denotational equivalence, equating two expressions if they have the same
denotation: e D

' f if and only if JeKD = Jf KD .
Program equivalence is thus reduced to mathematical equality, this way giving a compatible notion

of equivalence for free. Denotational equivalence, however, may not respect the operational properties
of the calculus. The notion of adequacy precisely describes those denotational equivalences respecting
the operational behaviour of the calculus.

De�nition 14. We say that D
' is adequate if D

' ⊆ 'ctx. If we also have 'ctx ⊆
D
', we say that D

' is fully
abstract.

The main drawback of denotational equivalences is that giving a denotational semantics to rich calculi
may be non-trivial. Additionally, even if a denotational semantics has been given, the latter may not be
robust with respect to language extensions: the addition of new features to a language often leads to dras-
tic changes in the associated denotational semantics. Nonetheless, denotational equivalences constitute
a powerful tool to reason about program equivalence. For this reason, in this section we shortly outline
how to give a simple, set-based denotational semantics to ΛST, that gives an adequate (and actually fully
abstract) denotational equivalence.

Before proceeding any further, however, we remark that program equivalence and denotational se-
mantics are two sides of the same coin. As any denotational semantics induces a notion of program
equivalence, any notion of program equivalence induces denotational semantics by means of equiva-
lence classes: accordingly, the denotational meaning of an expression is the equivalence class of that
expression.6

We now de�ne a denotational semantics for ΛST. In general, we should de�ne a value semantics JσKV
D

and term semantics JσKΛ
D

, for any type σ , and stipulate the denotational semantics of value judgments
x1 : σ1, . . . ,xn : σn `V v : σ and of computation judgments x1 : σ1, . . . ,xn : σn `Λ e : σ to be arrows

Jx1 : σ1, . . . ,xn : σn `V v : σKD : Jσ1KVD × · · · × JσnKVD → JσKV
D

Jx1 : σ1, . . . ,xn : σn `Λ e : σKD : Jσ1KVD × · · · × JσnKVD → JσKΛ
D

in categories with enough structures, respectively. This idea leads to the abstract notion of a Freyd cat-
egory. Since ΛST is strongly normalising, we �nd ourselves in a particularly simple case where we can
stipulate the denotation of a type to be just a set and make JσKΛ

D
coincide with JσKV

D
.7

De�nition 15. For any type σ , de�ne the set8 JσKD recursively as follows:

JunitKD , 1 = {∗}
JboolKD , 2 = {false, true}

Jσ × τ KD , JσKD × Jτ KD

Jσ → τ KD , Jτ KJσ KD
D

.

To de�ne the denotational semantics of ΛST it is useful to recall the basic set-theoretic combinators
making the category of sets and functions cartesian closed. Given maps α : C → A, β : C → B, we

6That is like to say that the meaning of a word is the collection of its synonyms. Although that may appear circular at �rst, it is
worth noticing that giving synonyms is a standard practice in natural languages to learn the meaning of unknown words.

7 If, for instance, one considers a calculus with e�ects, then she may want to rely on a strong monad T and to de�ne Jσ KΛ
D

as
T Jσ KV

D
.

8 Since Jσ KV
D
= Jσ KΛ

D
, we omit superscripts and just write Jσ KD .

16

Jx1 : σ1, . . . ,xn : σn `V xi : σiKD = πi : Jσ1KD · · · JσnKD → JσiKD
JΓ `V 〈〉 : unitKD , !JΓKD : JΓKD → 1

JΓ `V 〈v ,w〉 : σ × τ KD , 〈JΓ `V v : σKD , JΓ `V w : τ KD〉
JΓ `Λ projl v : σKD , π1 ◦ JΓ `V v : σ × τ KD
JΓ `Λ projr v : σKD , π2 ◦ JΓ `V v : σ × τ KD
JΓ `V true : boolKD , true ◦ !JΓKD : JΓKD → 2

JΓ `V false : boolKD , false ◦ !JΓKD : JΓKD → 2
JΓ `Λ if v then e else f : σKD , ite ◦ 〈JΓ `V v : boolKD , JΓ `Λ e : σKD , JΓ `Λ f : σKD〉 : JΓKD → JσKD

JΓ `V λx .e : σ → τ KD , ΛJΓ,x : σ `Λ e : ρKD : JΓKD → Jτ KJσ KD
D

JΓ `Λ vw : τ KD , eval ◦ 〈JΓ `V v : σ → τ KD , JΓ `V w : σKD〉 : JΓKD → Jτ KD
JΓ `Λ return v : σKD , JΓ `V v : σKD : JΓKD → JσKD

JΓ `Λ let x = e in f : σKD , JΓ,x : τ `Λ f : σKD ◦ 〈1JΓKD ,JΓ`Λe :τ KD 〉

Figure 2.4: Denotational Semantics of ΛST

denote by 〈α , β〉 : C → A × B the function de�ned by 〈α , β〉(c) = (α (c), β (c)), whereas we denote by
πi : A1 ×An → Ai the i-th projection function. The currying of a function α : C ×A→ B is the function
Λ(α) : C → BA de�ned by Λ(α) (c) (a) , α (c ,a), whereas we write eval : A × BA → B for the function
mapping the pair (a,α) to α (a). For a setA, we write !A : A→ 1 for the unique map sending each a ∈ A to
∗. Using such a map, we associate to each element a ∈ A the function ā : 1 → A mapping ∗ to a. Finally,
we write ite : 2×A×A→ A for the if-then-else function mapping a triple (t ,a,b) to a, if x = true, and to
b, otherwise.

De�nition 16. The denotational semantics of value judgments x1 : σ1, . . . ,xn : σn `V v : σ and of
computation judgments x1 : σ1, . . . ,xn : σn `Λ e : σ is given by the functions

Jx1 : σ1, . . . ,xn : σn `V v : σKD : Jσ1KD × · · · × JσnKD → JσKD
Jx1 : σ1, . . . ,xn : σn `Λ e : σKD : Jσ1KD × · · · × JσnKD → JσKD

recursively de�ned by the rules in Figure 2.4

Finally, we de�ne denotational equivalence as the term relation D
' de�ned by:

Γ `V v
D
'w : σ ⇐⇒4 JΓ `V v : σKD = JΓ `V w : σKD

Γ `Λ v
D
'w : σ ⇐⇒4 JΓ `Λ v : σKD = JΓ `Λ w : σKD .

Exercise 16. Show that D
' is a congruence.

Exercise 17. Show that JeKE = Jf KE implies · `Λ e D
' f : σ .

Theorem 1. D
' = 'ctx.

Even in the simple setting of ΛST, the proof of Theorem 1 requires some non-trivial techniques (viz. a
denotational version of the notion of a logical relations we will see in the next section) which are outside
the scope of these notes.

2.5 Logical Relations
In this section, we de�ne logical relations. Logical relations are closed term relations satisfying certain
properties that quali�es them as candidate notions of program equality (and approximation) for a given

17

calculus. When de�ning contextual equivalence we focused on the structural properties — viz. being
adequate, compatible, re�exive, etc. — and de�ned contextual equivalence as a canonical term relation
for them. Here, we take a di�erent perspective and associate to any type a relation between program of
that type such that it re�ects the logical structure of types and, in principle, it does not need to satisfy
any structural property.

Historically, logical relations have been de�ned as a relational semantics for types. In that setting, one
interprets each type σ as a set JσKE together with a relation Rσ : JσKE +→ JσKE . To do so, one de�nes for
any type constructor F (such as the arrow type constructor→) a construction F̂ on relations so as to de�ne
RF (σ1 ,...,σn) : JF (σ1, . . . ,σn)KE +→ JF (σ1, . . . ,σn)KE as F̂ (Rσ1 , . . . ,Rσn). The so-called fundamental lemma
of logical relations states that open programs act as relational homomorphisms (i.e. as maps preserving
logical relations), which amounts to prove that logical relations are re�exive. From such a result it also
follows that logical relations are compatible.

Logical relations can also be understood in purely operational terms by giving a term-like relational
model (i.e. by taking the semantics of a type as a suitable relation over expressions of the type). This
approach is the main one followed in the more recent literature on program semantics, and the one we
follow too. Accordingly, let us begin by recalling the usual de�nition of logical relations one �nds in the
literature.

De�nition 17. The logical equivalence over ΛST is the closed term relation L
' recursively de�ned on types

by:

· `V v
L
'w : bool⇐⇒4 v = w

· `V v
L
'w : unit⇐⇒4 always

· `V 〈v ,w〉 L
' 〈u, z〉 : σ × τ ⇐⇒4 · `V v

L
' u : σ & · `V w

L
' z : τ

· `V λx .e L
' λx .f : σ → τ ⇐⇒

4
∀v ,w .(· `V v L

'w : σ =⇒ · `Λ e[v/x] L
' f [w/x] : τ)

· `Λ e
L
' f : σ ⇐⇒4 · `V JeKE

L
' Jf KE : σ .

Notice that, contrary to contextual equivalence, De�nition 17 de�nes a closed term relation. Its ratio-
nale is the following: two computations are logically equivalent if the they evaluate to logically equivalent
values, this way taking advantage of strong normalisation of ΛST. The crucial point in De�nition 17 is
the de�nition of L

' on (closed) values. At ground types, (the value component of) L
' behaves as syntac-

tic equality, whereas, at more complex types, L
' hereditary preserves logical equality: in particular, two

λ-abstractions are logically equivalent if they map logically equivalent inputs to logically equivalent out-
puts. Finally, we extend L

' to an open term relation by taking its substitutive extension. Notice that the
choice of using the substitutive extension operator — rather than the open extension one — re�ects the
de�nition of L

' at function types.
De�nition 17 makes reasoning about logical equivalence quite bureaucratic and hides the relation-

ship with other notions of equivalence — notably, applicative bisimilarity and contextual equivalence.
For those reasons, we take a more relational perspective and de�nes logical relation relying on our rela-
tional calculus. We begin de�ning some (relational) constructions extending the (logical meaning of) type
constructors of ΛST to relations. In particular, since ΛST has product and arrow types, we de�ne ‘product’
and ‘arrow’ relations.

De�nition 18. 1. Given relations R : X +→ A, S : Y +→ B, we de�ne the product relation R × S : X ×Y +→

A × B by
(x ,y) R × S (a,b) ⇐⇒ x R a & y S b.

2. Given relations R : X +→ Y , S : A +→ B, we de�ne the relation9 [R → S] : AX +→ BY by:

f [R → S] д ⇐⇒4 ∀x ,y.(x R y =⇒ f (x) S д(y))

⇐⇒ R ⊆ f ; S ;д>

9The construction [· → ·] is sometimes called Reynolds arrow.

18

Lemma 11. Relational product is monotone in both arguments, whereas Reynolds arrow is monotone in the
second argument and anti-monotone in the �rst argument.

R ⊆ Q & S ⊆ P =⇒ R × S ⊆ Q × P

Q ⊆ R & S ⊆ P =⇒ [R → S] ⊆ [Q → P].

Moreover, the following laws hold.

IA×B = IA × IB
(R × S)> = R> × S>

(R × S); (Q × P) = (R;Q) × (S ; P)

IA→B = [IA → IB]
[R → S]> = [R> → S>]

[R → S]; [Q → P] ⊆ [R;Q → S ; P]

To de�ne logical relations, we need to unpack the logical meaning of types. For instance, the logical
meaning of a closed value λx .f of type σ → τ is to behave as a function that maps values v of type
σ to computations f [v/x] of type τ . We can thus say that the logical meaning of λx .f is the function
(v 7→ f [v/x]) ∈ V •

σ → Λ•τ . The crucial point that de�nes a logical relation is then the following:
assuming to have de�ned logical relations Rσ , Rτ for expressions of type σ and τ , we de�ne10 RVσ→τ
relying on the logical meaning of values in V •

σ→τ . Since such logical meanings belong to V •

σ → Λ•τ it
is enough to extend Rσ , Rτ to the function space V •

σ → Λ•τ . But De�nition 18 precisely tells us how to
extend relations to function spaces, so that we can de�ne RVσ→τ essentially as [RVσ → RΛ

τ]. A similar idea
applies, mutatis mutandins, to product types.

De�nition 19. For each type σ , we de�ne the logical meaning function J−KL : V •

σ → L (V
•

σ), where

L (V •

bool) , Vbool

L (V •

unit) , Vunit

L (V •

σ×τ) , V
•

σ ×V
•

τ

L (V •

σ→τ) , V
•

σ → Λ•τ .

by:

JtrueKL , true
JfalseKL , false

J〈〉KL , 〈〉
J〈v ,w〉KL , (v ,w)

Jλx .f KL , v 7→ f [v/x]

We now have all the ingredients to de�ne logical relations.

De�nition 20. A closed term relation R is a logical relation if:

RVbool ⊆ IVbool
RVσ×τ ⊆ J−KL ; (RVσ × R

V

τ); J−K
>

L

RVσ→τ ⊆ J−KL ; [RVσ → RΛ
τ]; J−K>

L

RΛ
σ ⊆ J−KE ;RVσ ; J−K>

E
.

10 Since ΛST is strongly normalising, it is natural to stipulate that two programs are equivalent if the results of their evaluation
are, so that we focus on de�ning logical relations on values.

19

[R]Vbool , IVbool
[R]Vσ×τ , J−KL ; (RVσ × R

V

τ); J−K
>

L

[R]Vσ→τ , J−KL ; [RVσ → RΛ
τ]; J−K>

L

[R]Λσ , J−KE ;RVσ ; J−K>
E
.

Figure 2.5: Logical relation operator

L
'
V

bool , IVbool
L
'
V

unit , IVunit
L
'
V

σ×τ , J−KL ; (L
'
V

σ ×
L
'
V

σ); J−K
>

L

L
'
V

σ→τ , J−KL ; [L
'
V

σ →
L
'

Λ

τ]; J−K>
L

L
'

Λ

σ , J−KE ;
L
'
V

σ ; J−K>
E
.

Figure 2.6: Logical Equivalence

Examples of logical relations are the empty relations as well as the (closed restriction of the) identity
relation. Both these relations, however, are way too �ne to qualify as acceptable notions of program
equivalence. What we would like to do then, is to de�ne logical equivalence as a canonical logical relation.
It is thus natural to try to de�ne logical equivalence either by induction or by coinduction. In fact, the
right hand-side clauses of De�nition 20 de�ne an operator [−] on the complete lattice of closed term
relations (see Figure 2.5) so that R is a logical relation if and only if R ⊆ [R]. We may thus try to de�ne
logical equivalence as the least or greatest �xed point of [−] relying on the Knaster-Tarski Theorem.
However, the presence of the Reynolds arrow operation makes [−] non-monotone since [− → −] is
antitone/contravariant in its �rst argument. This point is crucial: as we will see, applicative bisimilarity
considers a restricted version of Reynolds arrow that allows one to restore monotonicity and thus to
de�ne relations coinductively.

De�nition 17 overcomes the aforementioned problem by giving an explicit de�nition of logical equiv-
alence taking advantages of the simply typed nature of ΛST. Rephrased in the relational calculus we obtain
the de�nition of logical equivalence given in Figure 2.6.

Lemma 12. L
' is a logical relation.

We extend L
' to an open term relation by taking its substitutive extension L

'
s. As L

' satis�es all the
desired logical properties of notion of equivalence by de�nition, then so does L

'
s. We now show that L

'
s

satis�es all the desired structural properties too. Notice that since the substitutive extensions are always
substitutive (Rs[Rs] ⊆ Rs holds for any closed term relation R), L

'
s is trivially substitutive. We now show

that it is re�exive, symmetric, transitive, and compatible. Compatibility and transitivity follows from
re�exivity. For that reason the result stating that logical equivalence is re�exive is usually called the
fundamental lemma of logical relations.

Proposition 2 (Fundamental Lemma). I ⊆ L
'

s
.

Proof. We simultaneously prove

∀(Γ `Λ e : σ).Γ `Λ e L
'

s
e : σ (2.1)

∀(Γ `V v : σ).Γ `V v L
'

s
v : σ (2.2)

by induction on the derivation of Γ `Λ e : σ and Γ `V e : σ .

Corollary 1. L
'

s
is compatible.

20

Proof. We have to show L̂
'

s
⊆

L
'

s. Recall that for any closed term relation R, we have Rs[Rs] ⊆ Rs and
R̂s ⊆ I[Rs]. We have:

L̂
'

s
⊆ I[L
'

s] ⊆ L
'

s[L
'

s] ⊆ L
'

s

where the ante-penultimate passage uses Proposition 2.

Lemma 13. L
'

s
is transitive.

Proof. Since we have
R;R ⊆ R =⇒ Rs;Rs ⊆ Rs

it is su�cient to prove that L
' is transitive. We prove that by induction on types. First, notice that if L

'
V is

transitive, then so is L
'

Λ. Indeed, we have:

L
'

Λ; L
'

Λ
= (J−KE ;

L
'
V ; J−K>

E
); (J−KE ;

L
'
V ; J−K>

E
)

= J−KE ;
L
'
V ; J−K>

E
; J−KE ;

L
'
V ; J−K>

E

⊆ J−KE ;
L
'
V ; I; L
'
V ; J−K>

E

= J−KE ;
L
'
V ; L
'
V ; J−K>

E

⊆ J−KE ;
L
'
V ; J−K>

E

=
L
'

Λ.

Therefore, it is enough to show that for any type σ , we have L
'
V

σ ; L
'
V

σ ⊆
L
'
V

σ assuming both L
'
V

τ ; L
'
V

τ ⊆
L
'
V

τ

and L
'

Λ

τ ; L
'

Λ

τ ⊆
L
'

Λ

τ to hold for any type τ strictly simpler than σ . The only interesting case is for arrow
types. We prove L

'
V

σ→τ ; L
'
V

σ→τ ⊆
L
'
V

σ→τ . We have:

L
'
V

σ→τ ; L
'
V

σ→τ = J−KL ; [L
'
V

σ →
L
'

Λ

τ]; J−K>
L
; J−KL ; [L

'
V

σ →
L
'

Λ

τ]; J−K>
L

⊆ J−KL ; [L
'
V

σ →
L
'

Λ

τ]; [L
'
V

σ →
L
'

Λ

τ]; J−K>
L

⊆ J−KL ; [L
'
V

σ ; L
'
V

σ →
L
'

Λ

τ ; L
'

Λ

τ]; J−K>
L

At this point, we would like to use the induction hypothesis to prove

[L
'
V

σ ; L
'
V

σ →
L
'

Λ

τ ; L
'

Λ

τ] ⊆ [L
'
V

σ →
L
'

Λ

τ]

this way concluding the desired thesis. Indeed, since [− → −] is monotone in the second argument, the
induction hypothesis gives [L

'
V

σ ; L
'
V

σ →
L
'

Λ

τ ; L
'

Λ

τ] ⊆ [L
'
V

σ ; L
'
V

σ →
L
'

Λ

τ]. However, since [− → −] is antitone in
the �rst argument, we cannot rely on L

'
V

σ ; L
'
V

σ ⊆
L
'
V

σ to �nalise our argument. The problem is overcame
using the fundamental lemma: in fact, from IVσ ⊆

L
'
V

σ we obtain

L
'
V

σ ⊆
L
'
V

σ ; IVσ ⊆
L
'
V

σ ; L
'
V

σ

so that we conclude [L
'
V

σ ; L
'
V

σ →
L
'

Λ

τ] ⊆ [L
'
V

σ →
L
'

Λ

τ] by antitonocity.

Exercise 18. Show that L
'

s is symmetric.

Collecting all the results just proved, we see that L
'

s is a congruence. Additionally, it is straightforward
to see that it is also adequate. As a consequence, L

'
s is included in 'ctx.

Theorem 2. L
'

s
is an adequate congruence. Therefore, we have L

'
s
⊆ 'ctx.

Exercise 19. How would you modify the de�nition of a logical equivalence to obtain a notion of logical
approximation?

21

Exercise 20 (Logical equality = extensional equality). Recall that the presence of the Reynolds arrow
operation does not allow us to de�ne a canonical notion of logical relation in terms of least or greatest
�xed point of the map [−]. One way to overcome this problem is to replace [RVσ → RΛ

τ] with [IVσ → RΛ
τ]

in the de�ning clauses of a logical relation. Pointiwise, we would have:

· `V λx .e R λx .f : σ → τ =⇒ ∀v ∈ V •

σ . · `Λ e[v/x] R f [v/x] : τ

meaning that we compare functions relying on the function extensionality principle. This is one of the
core ideas behind the notion of applicative bisimilarity.
1. Show that the map 〈−〉 obtained from [−] replacing the clause for arrow types with

〈R〉Vσ→τ , J−KL ; [IVσ → RΛ
τ]; J−K>

L

is monotone on the complete lattice of closed term relations.
We de�ne extensional equality ext

' as the greatest �xed point of 〈−〉 (what is the least �xed point of ext
'?).

Theorem 3. L
' =

ext
'.

Proof sketch. The di�cult part is showing that if two expressions are extensionally equivalent, then they
are logically equivalent too. This follows from the so called Reynolds-Abramsky Lemma:

I ⊆ R R;R ⊆ R д[R → R]д
f [I→ R]д ⇐⇒ f [R → R]д

Notice that Proposition 2 and Lemma 13 gives exactly the premises of the Reynolds-Abramsky Lemma.

2. Complete the proof of Theorem 3.
Exercise 21 (Logical equivalence = contextual equivalence). Show that L

' ='ctx. Hint. See Chapter 46
and Chapter 47 in (Harper, 2016).

2.6 Recursive Types and Applicative Bisimilarity
ΛST is a simply-typed calculus. As such, it provides a foundational formalism for a limited class of pro-
gramming languages. In this section, we extend ΛST with recursive and sum types. We denote the result-
ing calculus by Λµ . The syntax of Λµ is given in Figure 2.7, where t denotes a type variable.

Types σ ,τ ::= t Values v ,w ::= x Computations e , f ::= return v
| unit | 〈〉 | projl v
| σ × τ | 〈v ,w〉 | projr v
| void | inl v | abort v
| σ + τ | inr v | case v of {inl x → e | inr x → f }

| σ → τ | λx .e | vw

| µt .σ | fold v | unfold v
| let x = e in f

Figure 2.7: Types, values, and computations of Λµ .

Free and bound variables in computations and values are de�ned as for ΛST. We also adopt the same
notational conventions de�ned for ΛST and extend such conventions to types. In particular, we denote
by σ [τ/t] the result of capture-avoiding substitution Notice also that contrary to ΛST, Λµ does not have a
type for Boolean values. That is because we can now de�ne bool as unit + unit.

The static semantics of Λµ is de�ned relying on judgments Γ `Λ e : σ and Γ `V v : σ , where Γ is a set
x1 : σ1, . . . ,xn : σn with variables pairwise distinct and each type σi closed; e is computation; v a value;
and σ is a closed type. Rules for derivable typing judgments are given in Figure 2.8.

22

Γ,x : σ `V x : σ
Γ `V v : σ

Γ `Λ return v : σ
Γ `Λ e : τ Γ,x : τ `Λ f : σ

Γ `Λ let x = e in f : σ

Γ,x : σ `Λ e : τ
Γ `V λx .e : σ → τ

Γ `V v : σ → τ Γ `V w : σ
Γ `Λ vw : τ

Γ `V 〈〉 : unit
Γ `V v : σ Γ `V w : τ
Γ `V 〈v ,w〉 : σ × τ

Γ `V v : σ × τ
Γ `Λ projl v : σ

Γ `V v : σ × τ
Γ `Λ projr v : τ

Γ `V v : void
Γ `Λ abort v : σ

Γ `V v : σ
Γ `V inl v : σ + τ

Γ `V v : τ
Γ `V inr v : σ + τ

Γ `V v : σ + τ Γ,x : σ `Λ e : ρ Γ,y : τ `Λ f : ρ
Γ `Λ case v of {inl x → e | inr x → f } : ρ

Γ `V v : σ [µt .σ/t]
Γ `V fold v : µt .σ

Γ `V v : µt .τ
Γ `Λ unfold v : σ [µt .σ/t]

Figure 2.8: Static semantics of Λµ .

2.6.1 Dynamic Semantics
We extend the evaluation semantics of ΛST to Λµ in the natural way.

De�nition 21. The N-indexed family of functions J−Kn
E

:
∏

σ Λ
•

σ ⇀ V
•

σ is inductively de�ned as follows:11

JeK0
E
, ⊥

Jreturn vKn+1
E
, just v

Jprojl 〈v ,w〉Kn+1
E
, just v

Jprojr 〈v ,w〉Kn+1
E
, just w

Jcase inl v of {inl x → e | inr x → f }Kn+1
E
, Je[v/x]Kn

E

Jcase inrw of {inl x → e | inr x → f }Kn+1
E
, Jf [w/x]Kn

E

Junfold (fold v)Kn+1
E
, just v

J(λx .e)vKn+1
E
, Je[v/x]Kn

E

Jlet x = e in f Kn+1
E
,

Jf [v/x]Kn
E

if JeKn
E
= just v

⊥ otherwise.

Lemma 14. For any type σ , the sequence of maps (J−Kn
E
)n≥0 forms an ω-chain in Λ•σ ⇀ V

•

σ .

By Lemma 40, we de�ne the evaluation map J−KE :
∏

σ Λ
•

σ ⇀ V
•

σ as
⊔

n≥0J−KnE .

11As usual, we omit type subscripts.

23

Lemma 15. The following identities hold.

Jreturn vKE , just v

Jprojl 〈v ,w〉KE = just v

Jprojr 〈v ,w〉KE = just w

Jcase inl v of {inl x → e | inr x → f }KE = Je[v/x]KE
Jcase inrw of {inl x → e | inr x → f }KE = Jf [w/x]KE

Junfold (fold v)KE = just v

J(λx .e)vKE = Je[v/x]KE

Jlet x = e in f Kn+1
E
=

Jf [v/x]KE if JeKE = just v

⊥ otherwise.

Notice that, as for ΛST, J−KE gives a deterministic notion of evaluation. However, contrary to what
happens in ΛST, now J−KE is a truly partial function. For instance, de�ne

Ω , ω (fold ω)
ω , λx .let y = unfold x in y (fold y)

Notice that · `V ω : (µt .(t → σ)) → σ , so that · `Λ Ω : σ .

Exercise 22. Show that JΩKE = inr (⊥).

2.6.2 Relational Calculus
The relational calculus developed for ΛST extends to Λµ mutatis mutandis, the only visible di�erence
appearing in the de�nition of the compatible re�nement operator. The latter is now de�ned by the rules
in Figure 2.9.

2.6.3 Applicative Bisimilarity
To handle the in�nitary behaviours introduced by recursive types, we de�ne applicative (bi)similarity.
Contrary to contextual equivalence (but similarly to logical equivalence), applicative bisimilarity is de-
�ned as a closed term relation, and then extended to open term relations using the open extension op-
eration (this way departing from logical equivalence which, instead, relies on the substitutive extension
operation).

As usual, we �rst give a syntax-oriented de�nition of applicative bisimilarity and then give an equiv-
alent de�nition based on the relational calculus. The crucial notion to de�ne applicative bisimilarity is
the notion of an applicative simulation.

De�nition 22. A closed term relation R is an applicative simulation if it satis�es the following clauses.

· `V 〈v ,w〉 R 〈u, z〉 : σ × τ =⇒ (· `V v R u : σ) & (· `V w R z : τ)

· `V v R w : σ + τ =⇒

v = inl u =⇒ w = inl z & · `V u R z : σ
v = inr u =⇒ w = inr z & · `V u R z : τ

· `V fold v R foldw : µt .σ =⇒ · `V v R w : σ [t/µt .σ]
· `V λx .e R λx .f : σ → τ =⇒ ∀v ∈ V •

σ . · `Λ e[v/x] R e[v/x] : τ
· `Λ e R f : σ =⇒ (JeKE = just v =⇒ Jf KE = just w & · `V v R w : σ)

According to De�nition 22, the main di�erences between an applicative bisimulation and a logical
relation concerns the treatment of λ-abstraction and computations. Concerning the latter case, a logical
relation requires related computation to give related values when evaluated. This is not possible anymore,
since now term evaluation may diverge. We thus require that if the �rst term converges, then so does the

24

Γ,x : σ `V x R̂ x : σ

Γ `V v R u : σ Γ `V w R z : τ
Γ `V 〈v ,w〉 R̂ 〈u, z〉 : σ × τ

Γ `V v R w : σ × τ
Γ `Λ projl v R̂ projl w : σ

Γ `V v R w : σ × τ
Γ `Λ projr v R̂ projr w : τ

Γ `V 〈〉 R̂ 〈〉 : unit

Γ `V v R w : σ
Γ `V inl v R̂ inlw : σ + τ

Γ `V v R w : τ
Γ `V inr v R̂ inrw : σ + τ

Γ `V v R w : σ + τ Γ,x : σ `Λ e R д : ρ Γ,y : τ `Λ f R h : ρ

Γ `Λ case v of {inl x → e | inr x → f } R̂ casew of {inl x → д | inr x → h} : ρ

Γ `V v R w : void
Γ `Λ abort v R̂ abortw : σ

Γ `V v R w : σ [t/µt .σ]

Γ `V fold v R̂ foldw : µt .σ

Γ `V v R w : µt .σ

Γ `Λ unfold v R̂ unfoldw : σ [t/µt .σ]

Γ,x : σ `Λ e R f : τ

Γ `V λx .e R̂ λx .f : σ → τ

Γ `V v R v ′ : σ → τ Γ `V w R w ′ : σ
Γ `Λ vw R̂ v ′w ′ : τ

Γ `V v R w : σ
Γ `Λ return v R̂ returnw : σ

Γ `Λ e R f : σ Γ,x : σ `Λ д R h : τ

Γ `Λ let x = e in д R̂ let x = f in h : τ

Figure 2.9: Compatible re�nement Λµ .

25

second one and the resulting values must be themselves related. Concerning λ-abstractions, applicative
simulation relates two values λx .e , λx .f if they behaves as extensionally equivalent functions: for any input
value v , e[v/x] and f [v/x] must be related. The shift from logical to extensional equality for functions
is crucial, as it allows us to de�ne applicative similarity, the largest applicative simulation, as the largest
�xed point of a suitable operator.

Exercise 23. De�ne applicative similarity
a
� as the union of all applicative simulation. Show that

a
� is

itself an applicative simulation (and thus the largest such).

Applicative similarity is then extended to an open term relation by taking its open extension. Notice
that the choice of using the open extension operation re�ects the presence of function extensionality in
the de�ning clauses of an applicative simulation. Finally, applicative bisimilarity a

' is de�ned as
a
�

o
∩ (

a
�

o
)>.

Exercise 24. Show that for all closed term relations R, S , we have (R ∩ S)o = Ro ∩ So. Conclude that we
have a

' =
a
�

o
∩ (

a
�

o
)> = (

a
� ∩

a
�
>

)o.

Let us now restore the de�nition of an applicative simulation in our relational setting. As already
observed, the crucial features of its de�ning clauses are the presence of function extensionality and the
computation clause handling possible divergent behaviours. We already know how to model the former
in a relational setting using the ‘extensional Reynolds arrow’ [I → R]. Notice that such an operation is
unary and satis�es the properties given by the following result. In particular, it is monotone.

Lemma 16. The following laws hold.

IA→B = [IA → IB]
[I→ R]> = [I→ R>]

[I→ R]; [I→ S] ⊆ [I→ R; S]
R ⊆ S =⇒ [I→ R] ⊆ [I→ S].

Concerning diverge, the situation can be abstractly summarised as follows. We have a set X together
with a relationR on it (in our case, the set of values and the value component of an applicative simulation),
and we want to extend R to a relation12 M̃R over X⊥ ×X⊥ (that is, we want to extend a relation on values
to a relation on the results of a computation). Notice that once we have such an extension, we can then
rephrase the term component of an applicative simulation as something of the form:

· `Λ e R f : σ =⇒ JeKE M̃RVσ Jf KE .

De�nition 22 precisely gives one possible de�nition of the operator M̃.

De�nition 23. Given a relation R : X +→ Y , the relation M̃R : X⊥ +→ Y⊥ is de�ned by:

t M̃R s ⇐⇒
4

(t = just x =⇒ s = just y & x R y)

Lemma 17. The map M̃ satis�es the following laws.

IA⊥ ⊆ M̃IA

M̃R; M̃S ⊆ M̃ (R; S)

R ⊆ S =⇒ M̃R ⊆ M̃S .

Exercise 25. Rephrase De�nition 22 using the construction [I→ −] and M̃.

To give a completely relational de�nition of an applicative simulation it remains to extend the logical
meaning function J−KL to sum and recursive types. That is straightforward.

12 The construction mapping a set X to the set X⊥ is part of a monad sometimes called the Maybe monad and denoted by M̃.
That is the reason why we choose the notation M̃ for our relational construction.

26

De�nition 24. Extend the logical meaning function J−KL with the maps

J−KL : V •

σ+τ →V
•

σ +V
•

τ

J−KL : V •

µt .σ →V
•

σ [t/µt .σ]

thus de�ned:

Jinl vKL , inl (v)
Jinr vKL , inr (v)

Jfold vKL , v

De�nition 25. Given relations R : X +→ Y , S : A +→ B, de�ne R + S : X +A +→ Y + B as follows:

t (R + S) s ⇐⇒
4

t = inl (x) =⇒ s = inl (y) & x R y

t = inr (a) =⇒ s = inr (b) & a S b

Exercise 26. Show that the following laws hold.

IA+B = IA + IB
(R + S); (Q + P) ⊆ (R;Q) + (S ; P)
R ⊆ Q & S ⊆ P =⇒ R + S ⊆ Q + P

We now have all the ingredients to de�ne applicative similarity as the greatest �xed point of a mono-
tone operator.

De�nition 26. Given a closed term relation R, we de�ne the closed term relation [R] as follows:

[R]Vunit , IVunit
[R]Vvoid , ∅
[R]Vσ×τ , J−KL ;RVσ × R

V

σ ; J−K>
L

[R]Vσ+τ , J−KL ;RVσ + R
V

σ ; J−K>
L

[R]Vµt.σ , J−KL ;RVσ [t/µt.σ]; J−K
>

L

[R]Vσ→τ , J−KL ; [IVσ → RΛ
τ]; J−K>

L

RΛ
σ , J−KE ; M̃RVσ ; J−K>

E

A term relation R is an applicative simulation if R ⊆ [R].

Lemma 18. The map [−] is a monotone function on the complete lattice of closed relation.

Proof. All the relational constructions used in De�nition 26 are monotone.

As a consequence, we can de�ne applicative similarity as the greatest �xed point of [−].

Proposition 3.
a
� = ν R .[R].

Exercise 27. Prove Proposition 3. In particular, show that R is a post-�xed point of [−] (i.e. R ⊆ [R]) if
and only if R satis�es the clauses in De�nition 26.

Exercise 28. What is the least �xed point of [−]?

Since applicative similarity is de�ned as a greatest �xed point, it comes with an associated coinduction
proof principle:

R ⊆ [R] =⇒ R ⊆
a
�.

27

Such a proof principle states that to prove · `Λ e
a
� f : σ , it is su�cient to exhibit an applicative simulation

R such that · `Λ e R f : σ (and similarity for values). Symbolically:

∃ R . · `Λ e R f : σ R applicative simulation
· `Λ e

a
� f : σ

∃ R . · `V v R w : σ R applicative simulation
· `V v

a
�w : σ

Example 2. Use the coinduction proof principle to show that (λx .e)v
a
� e[v/x]. More generally, we show

that JeKE = Jf KE implies e � f . By the coinduction proof principle, it is enough to exhibit an applicative
simulation R relating terms e and f with the same evaluation semantics. De�ne:

RΛ
σ , J−KE ; I(V•σ)⊥ ; J−K>

E
RVσ , IVσ

or, in pointwise notation:

`Λ e R f : σ ⇐⇒4 JeKEI(V•σ)⊥Jf KE

`V v R w : σ ⇐⇒4 `V vIw : σ .

Showing R ⊆ [R] essentially amounts to prove RΛ
σ ⊆ J−KE ; M̃IVσ ; J−K>

E
. Since IA⊥ ⊆ M̃IA, we have:

RΛ
σ = J−KE ; I(V•σ)⊥ ; J−K>

E
⊆ J−KE ; M̃IVσ ; J−K>

E

�

The coinduction proof principle allows us to easily prove some useful structural properties of applica-
tive bisimilarity, as shown by the following result.

Proposition 4. Applicative similarity � is re�exive and transitive.

Proof. The proof is by coinduction. To prove re�exivity, we show that Ic is an applicative simulation,
whereas to prove transitivity we show that

a
�;

a
� is an applicative simulation. Both these results follow

from the structural properties of the relational constructions involved. We show a couple of cases as
illustrative examples. We prove that

a
�
V

σ→τ ;
a
�
V

σ→τ ⊆ J−KL ; [IVσ →
a
�

Λ

τ ;
a
�
V

τ]; J−K>
L
. We have:

a
�
V

σ→τ ;
a
�
V

σ→τ ⊆ J−KL ; [IVσ →
a
�

Λ

τ]; J−K>
L
; J−KL ; [IVσ →

a
�

Λ

τ]; J−K>
L

⊆ J−KL ; [IVσ →
a
�

Λ

τ]; [IVσ →
a
�

Λ

τ]; J−K>
L

⊆ J−KL ; [IVσ →
a
�

Λ

τ ;
a
�
V

τ]; J−K>
L
.

In a similar fashion, we show
a
�

Λ

σ ;
a
�

Λ

σ ⊆ J−KE ; M̃ (
a
�
V

σ ;
a
�
V

σ); J−K>E .

a
�

Λ

σ ;
a
�

Λ

σ ⊆ J−KE ; M̃
a
�
V

σ ; J−K>
E
; J−KE ; M̃

a
�
V

σ ; J−K>
E

⊆ J−KE ; M̃
a
�
V

σ ; M̃
a
�
V

σ ; J−K>
E

⊆ J−KE ; M̃ (
a
�
V

σ ;
a
�
V

σ); J−K
>

E
.

Corollary 2. The open extension of applicative similarity is re�exive and transitive.

Concerning applicative bisimilarity, since we de�ned a
' as

a
� ∩

a
�
>, it follows that a

' is an equivalence,
and that its open extension is an equivalence too. Moreover, we can characterise

a
� canonically.

Proposition 5. Applicative bisimilarity is the largest symmetric applicative simulation.

28

Proof. De�ne the closed term relation S as

S ,
⋃
{R | R = R>,R ⊆ [R]}.

Obviously S is a symmetric applicative simulation and actually the largest such. We prove a
' ⊆ S . To do so,

it is su�cient to show that a
' is a symmetric applicative simulation, which is indeed the case. Conversely,

one proves S ⊆ a
' using the coinduction proof principle associated with

a
� and showing that

Exercise 29. Complete the proof of Proposition 5.

2.6.4 Compatibility
We have seen that applicative similarity is re�exive and transitive, and that applicative bisimilarity is also
symmetric. The last, yet main, structural property that of applicative (bi)similarity that we would like to
have is compatibility. Proving such a result, however, turns out to be non-trivial. Here, we only sketch the
main passages of the proof of compatibility which uses a powerful technique known as Howe’s method
(Howe, 1996). At the heart of Howe’s method is a relational construction (called precongruence candidate
or Howe extension) extending

a
� to a substitutive and compatible relation

a
�

H. The key ingredient to make
such a method work is the so-called Key Lemma. The latter essentially states that

a
�

H is an applicative
simulation, and thus coincide with

a
�.

De�nition 27. The Howe extension of a closed term relation R is the open term relation RH de�ned as the
least �xed point of the map X 7→ X̂ ;Ro.

Notice that since both −o and −̂ are monotone, then so isX 7→ X̂ ;Ro meaning that it indeed has a least
�xed point. In particular, RH is the least term relation satisfying R̂H;Ro ⊆ RH. Pointiwise, RH is inductively
described as follows:

Γ `Λ e R̂H h : σ Γ `Λ h R f : σ
Γ `Λ e RH f : σ

Γ `V v R̂H u : σ Γ `V u R w : σ
Γ `V v RH w : σ

The Howe extension of a re�exive and transitive term relation R satis�es many nice properties. In
particular, it is compatible (and thus re�exive) and substitutive. Additionally, it indeed extends the open
extension of R.

Lemma 19. Let R be re�exive and transitive closed term relation. Then the following hold:

Ro ⊆ RH

R̂H ⊆ RH

I ⊆ RH

RH[RH] ⊆ RH

RH;Ro ⊆ RH.

Since
a
� is re�exive and transitive, we can apply Lemma 19 on

a
�

H. This way, we obtain a compatible
and substitutive relation extending

a
�

H. Relying on Lemma 19, we prove the so-called Key Lemma which
states that the closed restriction of

a
�

H is an applicative simulation.

Lemma 20 (Key Lemma). Let R be a re�exive and transitive applicative simulation. Then (RH)c ⊆ [(RH)c].
In particular, (

a
�

H
)c ⊆ [(

a
�

H
)c].

Proof Sketch. Let R be a re�exive and transitive applicative simulation. For readability, oftentimes we will
writeRH in place of (RH)c: the context will clarify whether we are working with closed or open expressions.
By Lemma 19, we see that (RH)c behaves as an applicative simulation on values. It remains to prove that
it does so on computations as well. Assuming · `Λ e RH f : σ , we have thus to show JeKE M̃ (RH)Vσ Jf KE .
Since JeKE =

⊔
nJeKnE , we would like to prove JeKE M̃ (RH)Vσ Jf KE , i.e.

⊔
nJeKnE M̃ (RH)Vσ Jf KE by induction

on n. That such an induction principle is valid, is a structural property of M̃.

29

Lemma 21. For any R : X +→ Y , the following induction principle is sound for M̃:

∀n ≥ 0. tn M̃R s⊔
n≥0 tn M̃R s

Moreover, we have ⊥ M̃R s .

We thus prove JeKn
E
M̃ (RH)Vσ Jf KE by induction on n. The base case holds by Lemma 21. For the

inductive step we proceed by case analysis on the de�nition of J−Kn+1
E

relying on the de�nition of RH. The
case for values follows since we have the general law

x S y =⇒ just x M̃S just y

for all relations S : X +→ Y . All cases but sequencing directly follows from Lemma 19. To deal with
sequencing we rely on another structural property of M̃.

Lemma 22. For a function φ : X → Y⊥, de�ne >>=φ : X⊥ → Y⊥ by:

>>=φ (t) ,

φ (x) if t = just x

⊥ otherwise.

As it is customary, we often write φ >>= t in place of >>=φ (t) Notice that

Jlet x = e in f Kn+1
E
= JeKn

E
>>= Jf [−/x]Kn

E
.

The following law holds, for all functions α , β : X → A⊥ and relations R : X +→ X , S : A +→ A:

R ⊆ α ; M̃S ; β> =⇒ M̃R ⊆ >>=α ; M̃S ; (>>=β)>.

Pointiwise, we have:
∀x ,y ∈ X . x R y =⇒ α (x) M̃S β (y) t M̃R s

t >>= α M̃S s >>= β

Let us now come back to the case of sequencing. By very de�nition of Howe extension, we see that
we have to show Jlet x = e in f Kn+1

E
M̃ (RH)Vσ Jlet x = д in hKE , i.e.

JeKn
E
>>= Jf [−/x]Kn

E
M̃ (RH)Vσ JдKn

E
>>= Jh[−/x]Kn

E

At this point, we apply Lemma 22, so that it is su�cient to prove JeKn
E
M̃ (RH)Vσ JдKE and Jf [v/x]Kn

E
M̃ (RH)Vσ

Jh[w/x]KE , for all v , w related by RH. These facts hold by induction hypothesis and Lemma 19.

Theorem 4. Applicative similarity and applicative bisimilarity are compatible.

Proof. To prove that applicative similarity is compatible, it is enough to show
a
�

H
=

a
�

o. By Lemma 19 we
already know that the open extension of

a
� is included in

a
�

H, so that it is su�cient to prove:
a
�

H
⊆

a
�

o.
That follows from (�H)c ⊆ �, which is exactly the content of the Key Lemma. From compatibility of
applicative similarity it also follows compatibility of applicative bisimilarity (recall that the intersection
of compatible term relations is itself compatible).

2.7 Probabilistic E�ects
Endowing the calculus we have introduced in Section 2.2 with a primitive for probabilistic choice is rela-
tively simple: it su�ces to enrich the syntactic category of computations with a new construct sampleq
parametrized on a rational number q ∈ Q(0,1) which returns either true or false, the former with proba-
bility q the latter with probability 1 − q. The new operator has a very natural static semantics:

Γ `Λ sampleq : bool

30

The resulting sets of computations and values are indicated as PΛ and PV , respectively, and we extend
to them the notations we introduced in Section 2.2. We denote the probabilistic calculus by ΛPROB.

The dynamic semantics of the underlying language must be substantially modi�ed, however. More
speci�cally, the semantics of a (closed) computation of type σ is not anymore a (possibly unde�ned) value
or type σ , but rather a subdistribution (or, simply, a distribution) of values of the same type.

De�nition 28. A (discrete) subdistribution over a set X is a map D from X to R[0,1] such that:

1. D (x) , 0 for countably xs only.

2.
∑

x D (x) ≤ 1.

We say that D is a distribution if
∑

x D (x) ≤ 1. The set of subdistributions over a set X is denoted by
D≤1 (X), whereas the set of distributions over X is denoted by D (X).

In the setting of ΛPROB — where there are only countably many values — we can simply say that a
subdistribution is a map D from PV • to R[0,1] such that∑

v ∈PV•
D (v) ≤ 1

The set of all such distributions is indicated asDV (so thatDV = D (PV)), and remarkable elements of this
set are the everywhere null distributions, indicated as ∅ and, for every value v , the dirac distribution δv
returning 1 on v and 0 everywhere else. The convex combination of distributions is itself a distribution,
e.g., given a distribution D ∈ DV and a family of distributions {Ev }v ∈PV• in DV, one can form the
convolution ∑

v ∈PV•
D (v) · Ev

itself as a distribution in DV. These constructions, as we will see, are just special instances of a Kleisli
triple from the axiomatic de�nition of a monad. The support of a distribution D ∈ DV is the least subset
supD of PV • such that D (v) > 1 implies v ∈ supD . The set of all distributions D ∈ DV such that
supD ⊆ PV •

σ is indicated as DVσ . Distributions can be endowed with a partial order by considering
the pointwise order inherited from R[0,1]. As such, they form a ωCPO. Actually, all these notions apply to
arbitrary sets of the form D (X)

We are �nally ready to generalize the dynamic semantics. The N-indexed family of functions J−Kn
E

:∏
σ PΛ

•

σ → DVσ is inductively de�ned as follows:

JeK0
E
, ∅

JsampleqK
n+1
E
, q · δtrue + (1 − q) · δfalse

Jreturn vKn+1
E
, δv

Jprojl 〈v ,w〉Kn+1
E
, δv

Jprojr 〈v ,w〉Kn+1
E
, δw

Jif true then e else f Kn+1
E
, JeKn

E

Jif false then e else f Kn+1
E
, Jf Kn

E

Jcase (inl v) of {inl x → e | inr x → f }Kn+1
E
, Je[v/x]Kn

E

Jcase (inr v) of {inl x → e | inr x → f }Kn+1
E
, Jf [w/x]Kn

E

Junfold (fold v)Kn+1
E
, δv

J(λx .e)vKn+1
E
, Je[v/x]Kn

E

Jlet x = e in f Kn+1
E
,
∑

v ∈PV•
JeKn

E
(v) · Jf [v/x]Kn

E

As you can see, most of the clauses in the de�nition above are identical to those given in the deterministic
cases. On the other hand, it should be noted that the codomain of the maps J−Kn

E
is a distribution of values

and not a value.

31

Lemma 23. For any type σ , the sequence of maps (J−Kn
E
)n≥0 forms an ω-chain in PΛ•σ → DVσ .

By Lemma 23, we de�ne the evaluation map J−KE :
∏

σ PΛ
•

σ → DVσ as
⊔

n≥0J−KnE .

Exercise 30. 1. Recall the term Ω from Exercise 22. Show that, when regarded as term of ΛPROB, we
have JΩKE = ∅.

2. De�ne a ΛPROB termG satisfying JGKE = 1
2 ·δtrue+

1
2 ·JGKE . What is JGKE (true)? What is JGKn

E
(true)?

We say that G almost sure terminates as any �nite execution diverges with a non-null probability
and yet its probability of terminating is 1.

2.7.1 Logical Relations
Let us now extend the logical equivalence of ?? to a probabilistic setting. To avoid di�culties coming from
the presence of recursive types, we restrict our analysis to the simply-typed fragment of ΛPROB. Notice that
in such a fragment evaluating a program gives a proper distribution (rather than a distribution), meaning
that
∑
v JeKE (v) = 1, for any program e .

The relational calculus de�ned for ΛST straightforwardly extends to ΛPROB. The main consequence of
that is that all notions and results not involving the evaluation semantics of the calculus directly extends to
ΛPROB. In particular, the value clauses of notion of a logical relation for ΛST straightforwardly translates to
ΛPROB. To obtain the notion of a probabilistic logical relation, it remains to understand whet the behaviour
of a logical relation should be with respect to program evaluation, the latter being probabilistic. To do so,
we proceed as we did when de�ning applicative bisimilarity. There, we faced the problem of extending a
relation on values to a relation overV⊥×V⊥, as evaluating a program gave an element inV⊥, rather than
just a value. Now the evaluation of a program gives a distribution of values, meaning that we have to �nd a
way to extend a relation over values to a relation over distribution of values. Such an extension exists and
it plays a central role in optimal transport and optimisation theory (via the notion of a transportation plan
as a coupling and the celebrated Wasserstein-Kantorovich duality), di�erential privacy (via the notion of
expected sensitivity and the Strassen Theorem), and program semantics (via the notion of a probabilistic
bisimulation due to Lassen and Skou).

De�nition 29. A coupling between two distributions D , E over sets X , Y , respectively, is a a distribution
C over X × Y such that: ∑

y

C (x ,y) = D (x)∑
x

C (x ,y) = E (y)

We denote the collection of couplings of D and E by Ω(D , E)

De�nition 30. Given a relation R : X +→ Y , de�ne the relation D̃R : D (X) +→ D (X) by:

D D̃R E ⇐⇒
4
∃C ∈ Ω(D , E). C (x ,y) > 0 =⇒ x R y.

Given a distribution D over a set X and a distribution E over a set Y , the notion of a coupling C ∈
Ω(D , E) formalises the informal notion of a transportation plan. Thinking to a distribution D as assigning
weight to points in X , then a transportation plan from D to E is a mapping specifying how to move
weights from X to Y in such a way that D is ‘transformed’ into E . Formally, a transportation plan from
D to E is a family of maps Px : Y → [0, 1] specifying for each y ∈ Y how much weight of the weight
D (x) of x has to be moved to y. Accordingly to such a reading, we have to impose Px some constraints.
First of all, Px does not move more weight than the available one: actually, since we want to move the
whole weight mass D , we require P to transport the whole D . Formally, we require

∑
y Px (y) = D (x),

for all x ∈ X .
Applying P to D we obtain a new distribution (a new mass, so to speak) on Y , denoted by TP (D),

and de�ned as:
TP (D) (y) ,

∑
x ∈X

Px (y).

32

Obviously, since P has to transform D into E , we require TP (D) = E . At this point it is straightfor-
ward to see that any transportation plan π from D to E induces a coupling CP ∈ Ω(D , E) de�ned by
CP (x ,y) , Px (y), and that any coupling C ∈ Ω(D , E) induces a transportation plan PC de�ned by
PC

x (y) , C (x ,y), so that the notions of a transportation plan and of a coupling are equivalent. De�ni-
tion 30 thus relates two distributions D , E if there exists a transportation plan P from D to E moving
weights between related points only (that is, if Px (y) > 0, then x and y must be related).

From a logical point of view, De�nition 30 is an existential de�nition: to prove that two distributions
are related, we have to come up with a suitable coupling/transportation plan between them. Remarkably,
such an existential condition can be equivalently formulated as an universal condition. That is the content
of the well-known Strassen Theorem.

Theorem 5 (Strassen’s Theorem). Let R : X +→ Y be a relation between two sets X and Y and D , E be
distributions over X and Y , respectively. Then:

[∃C ∈ Ω(D , E). C (x ,y) > 0 =⇒ x R y] ⇐⇒ [∀X ⊆ X . D (X) ≤ E (R[X])],

where for a setA, we de�neD (A) ,
∑

a∈A D (a). In particular,D D̃RE holds if and only if∀X ⊆ X . D (X) ≤
E (R[X]).

Last but not least, we notice that the relational operator D̃ satis�es the same structural properties
satis�ed by M̂. Since our (pre)congruence results relied on such properties13 rather than on the speci�c
de�nition of M̂, that should already hints the reader that all our results extend in a modular way to the
probabilistic setting of ΛPROB.

Proposition 6. 1. The map D̃ satis�es the following laws.

IA⊥ ⊆ D̃IA

D̃R; D̃S ⊆ D̃ (R; S)

R ⊆ S =⇒ D̃R ⊆ D̃S .

2. Let φ : X → D (Y) be a function sending elements of a set X to distributions over Y . De�ne the map
>>=φ : D (X) → D (Y) (as usual, we write D >>= φ in place of >>=φ (D)):

(D >>= φ) (y) ,
∑
x ∈X

D (x) · φ (x) (y).

Notice that such a map describes the evaluation semantics of sequencing:

Jlet x = e in f Kn+1
E
= JeKn

E
>>= Jf [−/x]Kn

E
.

The following law holds, for all functions α , β : X → D (A) and relations R : X +→ X , S : A +→ A:

R ⊆ α ; D̃S ; β> =⇒ D̃R ⊆ >>=α ; D̃S ; (>>=β)>.

Pointiwise, we have:
∀x ,y ∈ X . x R y =⇒ α (x) D̃S β (y) D D̃R E

D >>= α D̃S E >>= β

Exercise 31. Prove Proposition 6. Hint. Use Strassen’s Theorem.

Exercise 32. Let I be a �nite set and pi i ∈I be a family of numbers in R[0,1] such that
∑

i pi ≤ 1. Show that
if Di D̃R Ei holds for any i ∈ I , then

∑
i ∈I pi ·Di D̃R

∑
i ∈I pi · Ei .

13That holds true for applicative (bi)similarity, as we de�ned logical equivalence for ΛST only. Nonetheless, things remain similar
once de�ning logical equivalence for calculi with full recursion (although in that setting one has to introduce a more involved form
of logical relations, called step-indexed logical relations, to deal with non-termination inductively): there, we rely on the (structural
properties of the) relational construction M̂ in the same way as we do for applicative bisimilarity.

33

We now have all the ingredients to de�ne probabilistic logical relations.

De�nition 31. A closed term relation R is a logical relation for ΛPROB if:

RVbool ⊆ IVbool
RVσ×τ ⊆ J−KL ; (RVσ × R

V

σ); J−K
>

L

RVσ→τ ⊆ J−KL ; [RVσ → RΛ
τ]; J−K>

L

RΛ
σ ⊆ J−KE ; D̃RVσ ; J−K>

E
.

Notice that the only di�erence between logical relations for ΛST and ΛPROB is given the computation
clause, where we rely on the operator D̃ to handle the probabilistic behaviour of ΛPROB computations.
As usual, examples of logical relations are the empty relations as well as the (closed restriction of the)
identity relation.

Exercise 33. Show that the identity relation is a logical relation (hint: use Proposition 6).

As for ΛST, logical equivalence is de�ned by induction on types.

De�nition 32. Logical equivalence is de�ned thus:

L
'
V

bool , IVbool
L
'
V

unit , IVunit
L
'
V

σ×τ , J−KL ; (L
'
V

σ ×
L
'
V

σ); J−K
>

L

L
'
V

σ→τ , J−KL ; [L
'
V

σ →
L
'

Λ

τ]; J−K>
L

L
'

Λ

σ , J−KE ; D̃ (
L
'
V

σ); J−K
>

E
.

Lemma 24. L
' is a logical relation.

We extend L
' to an open term relation by taking its substitutive extension L

'
s. As L

' satis�es all the
desired logical properties of notion of equivalence by de�nition, then so does L

'
s.

Let us not move to the structural properties of L
'

s. It does not take much to realise that if we assume
L
'

s to be re�exive, then we show it to be also symmetric, transitive, and compatible essentially in the same
way we did for ΛST.

Exercise 34. Assume L
' to be re�exive. Show that L

' is also symmetric, transitive, and compatible. Hint.
For transitivity you need to use the �rst part of Proposition 6. For symmetry, prove D̃ (R>) = (D̃R)>.

What we need to to then, is to prove that L
' is indeed re�exive.

Proposition 7 (Fundamental Lemma). I ⊆ L
'

s
.

Proof. We simultaneously prove

∀(Γ `Λ e : σ).Γ `Λ e L
'

s
e : σ (2.3)

∀(Γ `V v : σ).Γ `V v L
'

s
v : σ (2.4)

by induction on the derivation of Γ `Λ e : σ and Γ `V e : σ . The case of values goes as for ΛST. The case
of computations is mostly straightforward once we notice that x R y =⇒ δx D̃R δy holds for any set
X and relation R : X +→ X . The nontrivial case is, as usual, the one of sequencing. Without much of a
surprise, such a case is handled relying on the second part of Proposition 6. Let us see how to proceed.
For readability, we write ' in place of L

'. We have to show Γ `Λ let x = e in f 's let x = e in f : σ given

Γ `Λ e 's let x = e in f : τ and Γ,x : τ `Λ f 's f : σ . Let Γ
γ ,δ
−−→ · be substitutions such that (y : ρ) ∈ Γ

implies · `V γ (y) ' δ (y) : ρ. To prove the thesis, we need to show:

Jlet x = eγ in f γ KE D̃ ('Vσ) Jlet x = eδ in f δKE

34

i.e.
Jeγ KE >>= Jf γ [−/x]KE D̃ ('Vσ) JeδKE >>= Jf δ [−/x]KE .

By the second part of Proposition 6, a su�cient condition for the thesis is given by:

Jeγ KE D̃ ('Vτ) JeδKE
∀v ,w ∈ V •

τ . v 'Vσ w =⇒ Jf γ [v/x]KE D̃ ('Vσ) JeδKE >>= Jf δ [w/x]KE

The latter hold by induction hypothesis (viz. Γ `Λ e 's let x = e in f : τ and Γ,x : τ `Λ f 's f : σ) since
sequential and simultaneous substitution coincide when mapping variables to closed values.

2.7.2 Applicative Bisimilarity

Having showed D̃ has all the relevant structural properties of M̃, extending applicative (bi)similarity
to ΛPROB is straightforward, except for the fact the presence of recursion forces us to work with sub-
distributions rather than distribution. As a consequence, we should come up with a suitable relational
construction extending relations over values to relations over subdistributions over values and prove that
such a construction has all the structural properties of D̃. Instead of doing that from scratch, we can take
a modular approach by noticing that subdistributions over a set X corresponds to distributions over X⊥.
Symbolically, D≤1 (X) � D (X⊥). In fact, given a subdistribution D we de�ne the distribution D⊥ over
X⊥ as follows:

D⊥ (t) ,

D (x) if t = just x

1 −
∑

x D (x) otherwise.

Exercise 35. Work put the details of the isomorphism D≤1 (X) � D (X⊥).

This way, we can de�ne the desired relational construction, denoted by IDM, by IDMR , D̃ (M̃ (R)).
In particular, IDM inherits all the structural properties of M̃ and IDM needed to prove re�exivity, tran-
sitivity, and compatibility of applicative similarity.

Proposition 8. The map IDM satis�es the following laws.

IA⊥ ⊆ IDMIA
IDMR; IDMS ⊆ IDM (R; S)

R ⊆ S =⇒ IDMR ⊆ IDMS .

Moreover, the following law holds, for all functions α , β : X → D (A) and relations R : X +→ X , S : A +→ A,
where >>=φ is de�ned as in the case of proper distributions.

R ⊆ α ; IDMS ; β> =⇒ IDMR ⊆ >>=α ; IDMS ; (>>=β)>.

We can now de�ne the notion of an applicative simulation exactly as we did for Λµ but replacing M̃
with IDM.

De�nition 33. Given a closed term relation R, we de�ne the closed term relation [R] as follows:

[R]Vbool , IVbool
[R]Vunit , IVunit
[R]Vvoid , ∅
[R]Vσ×τ , J−KL ;RVσ × R

V

σ ; J−K>
L

[R]Vσ+τ , J−KL ;RVσ + R
V

σ ; J−K>
L

[R]Vµt.σ , J−KL ;RVσ [t/µt.σ]; J−K
>

L

[R]Vσ→τ , J−KL ; [IVσ → RΛ
τ]; J−K>

L

RΛ
σ , J−KE ; IDMRVσ ; J−K>

E

35

We say that a term relation R is an applicative simulation if R ⊆ [R]. Moreover, monotonicity of IDM
makes [−] a monotone map on the complete lattice of term relations. We de�ne applicative similarity as the
greatest �xed point of [−]:

a
� , νR.[R].

Exercise 36. Show that
a
� is re�exive and transitive.

To prove that
a
� is compatible we use Howe’s technique. Remarkably, thanks to our relational calculus

such a technique is essentially the same one we de�ned for Λµ . Additionally, by inspecting the proof of
Lemma 20, we notice that the proof of compatibility of

a
� relies on three components:

1. Structural properties of the Howe extension operator;

2. Structural properties of M̃;

3. A suitable induction principle for M̃.

Therefore, as soon as we prove ΛPROB to have such features, we can conclude
a
� to be indeed compatible.

Since Λµ and ΛPROB share most of the syntax, point 1 in the above list is obviously satis�ed. Point 2 holds
by Proposition 8. It thus remains to prove point 3.

Lemma 25. For any R : X +→ Y , the following induction principle is sound for IDM:

∀n ≥ 0. Dn IDMR E⊔
n≥0 Dn IDMR E

Moreover, we have ∅IDMR E .

Proof. We use the characterisation of D̃ given by Strassen’s Theorem. Recall that
⊔

n Dn = supn Dn and
let X ⊆ X . We show that

(sup
n

Dn) (X) ≤ E (M̃R[X])

given Dn (X) ≤ E (M̃R[X]), for any n ≥ 0. The latter means
∑

x ∈X Dn (x) ≤ E (M̃R[X]), which gives
supn

∑
x ∈X Dn (x) ≤ E (M̃R[X]). We conclude the thesis since, by the monotone convergence theorem,

we have
sup
n

∑
x ∈X

Dn (x) =
∑
x ∈X

sup
n

Dn (x) = sup
n

Dn (X).

We have thus achieved the following result.

Theorem 6. Applicative similarity is compatible:
â
� ⊆

a
�.

Additionally, by de�ning a
' as

a
� ∩

a
�
>, we see that a

' is compatible too, and hence a congruence.

36

Chapter 3

Program Metrics

3.1 From Relations to Distances
So far, we have focused on exact reasoning about programs, whereby we were interested in answering
questions such as have these programs the same semantics? or does the semantics of this program re�ne
the semantics of that program?. Today’s software systems, however, are more and more tailored to per-
form nontrivial numerical calculations oftentimes relying on probabilistic behaviour to improve their
performance. For such programs, exact reasoning based on classic program equivalence and denotational
semantics turns out to be inadequate to solve several tasks. For instance, if we opitmise a program e by
introducing some probabilistic computations in it, say obtaining a new program f , it is hardly the case
that will be able to show e ' f . For that to be the case, in fact, we would need f to behave essentially
deterministically, which is rather antithetic with the idea of a probabilistic optimisation. Instead, what
we may hope to have is that with high probability f behaves as e or, stated otherwise, that the di�erence
between e and f is small (if not negligeable). Similarly, we may want to optimise a ‘numerical’ program
by replacing some expensive numerical calculations in it with their approximations,1 this way improving
e�ciency at the price of introducing an error in the program. Again, what one would like to show then
is that, although the programs thus obtained are not equal, they are not even too di�erent.

To achieve the aforementioned goals, a natural way to go is to re�ne program equivalences into
program distances, this way replacing judgments such as programs e and f are equivalent with judgments
of the form programs e and f are ε apart or, equivalently, the distance between e and f is ε .

How can we do that? The �rst observation we make is that any relation R : X +→ Y can be seen as a
function R : X ×Y → {0, 1} assigning a truth value to any pair of object (x ,y) (viz. 1 if x and y are related,
and 0 otherwise). A distance can be thus seen as a re�nement of the boolean information {0, 1} given
by a relation to something with a more quantitative �avour. A natural candidate for that is the extended
non-negative interval [0,∞]. We can thus de�ne a distance over X × Y as map µ : X × Y → [0,∞].

To de�ne notions of program distance, we should then modify the relational calculus developed so far
by replacing relations with distances. To do that, we rely on the observation essentially due to Lawvere2

(Lawvere, 1973) that distances and relations share the same structural properties, and thus the same
algebra as summarised by Table 3.1.

For instance, we say that a relation R is re�exive if R (x ,x) = 1. Applying Table 3.1, we see that a
distance µ is re�exive if µ (x ,x) = 0, i.e. if identical points are at distance 0. Similarly, we can translate
relation composition

(R; S) (x , z) = ∃y. R (x ,y) ∧ S (y, z)

to distance composition:
µ;ν (x , z) , inf

z
µ (x ,y) + ν (y, z).

1 Think, for instance, about computing an integral with one of the many approximated techniques developed in the �eld of
numerical computing.

2Lawvere actually shows that ordered and metric spaces (as well as small categories) are all instances of the general notion of
an enriched category (Kelly, 2005).

37

Relations R : X × Y → {0, 1} Distances µ : X × Y → [0,∞]
Codomain {0, 1} [0,∞]

Order ≤ ≥

Join ∃ inf
Meet ∀ sup

Tensor ∧ +

Unit true 0

Table 3.1: Correspondence 2-[0,∞].

As a consequence, relation transitive R;R ⊆ R now becomes µ;ν ≥ µ, which gives:

∀y. µ (x , z) ≥ µ (x ,y) + ν (y, z)

which is precisely the well-know triangle inequality law. Putting things together, we see that the quanti-
tative counterpart of being a preorder is being a generalised metric, and that the quantitative counterpart
of begin an equivalence is being a pseudometric.3

Equivalence Pseudometric
1 ≤ R (x ,x) 0 ≥ µ (x ,x)

R (x ,y) ≤ R (y,x) µ (x ,y) ≥ µ (y,x)
R (x ,y) ∧ R (y, z) ≤ R (x , z) µ (x ,y) + µ (y, z) ≥ µ (x , z)

Table 3.2: Correspondences re�exivity-symmetry-transitivity.

3.2 Compositionality, Distance Ampli�cation, and Linear Types
According to previous discussion, the re�nement of program equivalences into program distances seems
rather smooth. That is indeed the case for what concerns ‘general’ relational reasoning. But what hap-
pens when we consider constructions speci�c to the calculi considered? Perhaps surprisingly, the notion
of compatibility turns out to be problematic. Before seeing why such a notion is problematic, let us under-
stand, even informally, what compatibility means in a quantitative setting. We have seen that a relation
is compatible when it is closed under language constructs: that is, R is compatible if

e R f =⇒ ∀C. C[e] R C[f]

where C is a context.4 Therefore, if R is compatible, then language constructs are monotone (with respect
to R). In particular, if R is a compatible equivalence, then it is a congruence relation. Applying Table 3.1,
we see that the metric-like counterpart of compatibility is given by:

µ (e , f) ≥ sup
C

µ (C[e],C[f]).

We thus see that if µ is compatible, then language constructs behave as non-expansive functions with
respect to µ. That means that programs cannot amplify distances: by using programs that are ε apart, we
can obtain only programs that are less than ε apart.

Finally, we also need to consider a notion of adequacy. For the sake of our argument, we assume our
calculus to come with a numerical type, such as the type of integer or real numbers. Say we have a type

3 Notice that we work with pseudometrics rather than with metrics, so that we do not require the law µ (x ,y) = 0 =⇒ x = y .
In fact, programs which are 0-apart should be nothing but equivalent programs, which can obviously be syntactically distinct.

4Our notion of compatibility is purely relational, so to avoid the tedious and bureaucratic task of formally de�ning contexts. For
the present purpose, the reader can just think about a context as a program with a hole [−]. We write C[e] for the replacement of
the hole with e .

38

Relation Distances
Monotonicity Non-expansiveness

e R f =⇒ ∀C. C[e] R C[f] µ (e , f) ≥ supC µ (C[e],C[f]).

Table 3.3: Correspondences compatibility.

nat for natural numbers. In such a setting, it is natural to stipulate a relation to be adequate if whenever
two programs of type nat are related, then they convergence to the same numeral:5

e Rnat f =⇒ JeKE = Jf KE .

In a metric-like scenario, rather than testing the equality of the output, we should measure their distance.
This way we obtain the following notion of adequacy:

µnat (e , f) ≥ |JeKE − Jf KE |.

We now have all the ingredients to see what goes wrong with compatibility. Say to have a compatible
and adequate distance µ and two programs at a non-null distance. Then we can take a context that copies
and duplicates its input several times, this way amplifying the distance between the original program.

Proposition 9. Given two programs e , f of type nat such that |JeKE − Jf KE | > 0. Then, if µ is adequate and
compatible, we have µ (e , f) = ∞.

Proof. De�ne the following family of contexts Cn :

C0 , 0
Cn , let x = [−] in (let y = x + Cn−1[x] in return y)

Notice that JC[e]KE = n · JeKE . Then, we have:

µ (e , f) ≥ sup
n
µ (Cn[e],Cn[f])

= sup
n
|n · JeKE − n · Jf KE |

= sup
n

n · |JeKE − Jf KE |

= ∞

where the last equality follows from |JeKE − Jf KE | > 0.

Each context Cn ampli�es the distance between e and f of a factor n, this making e and f maximally
distant. During its evaluation, every time the contextCn evaluates its inputs the detected distance between
the latter is somehow accumulated to the distances previously observed, thus exploiting the linear — as
opposed to classical — nature of the act of measuring. Such linearity naturally re�ects the monoidal
closed structure of categories of metric spaces (see next sections), in opposition with the cartesian closed
structure characterising ‘classical’ (i.e. boolean-valued) observations. Thus, for instance, no matter how
we de�ne our program distanceµ, as long as it is adequate and compatible, it will give, e.g., µ (2, 3) =
∞. This phenomenon, which has been �rst discovered and studied in probabilistic calculi (Crubillé &
Dal Lago, 2015), is known as distance trivialisation (Crubillé & Dal Lago, 2017), as it essentially makes any
distance collapse to an equivalence (programs are either 0 or ∞ apart). Distance trivialisation is thus a
consequence of higher-features of calculi. In fact, higher-order programs can freely copy and duplicate
their input several times, thus having the testing power to amplify distances between their inputs ad
libitum.

5For simplicity, we assume our calculus to be strongly normalising.

39

Let us see another example of distance trivialisation in the setting of the probabilistic calculus of
Section section 2.7 (Crubillé & Dal Lago, 2017). Recall that in such a setting we say that a relation is
adequate if related programs have the same probability of convergence:

e R f =⇒
∑
v

JeKE (v) =
∑
v

Jf KE (v)

In a metric-like scenario, rather than testing for equality probability of convergence, we should measure
the distance between such probabilities. This way we obtain the following notion of adequacy:

µ (e , f) ≥ |
∑
v

JeKE (v) −
∑
v

Jf KE (v) |.

Let us now consider the programs G , return (true) ⊕ Ω and T , return true, where e ⊕ f , let x =
sample0.5 in (if x then e else f). Since JGKE = 1

2 · δtrue and JT KE = δtrue, we would expect any su�ciently
well-behaved notion of distance µ to give µ (T ,G) = 1

2 .

Exercise 37. Consider the family of contexts

Cn , (λx .(x〈〉; · · · ;x〈〉)) (λy.[−])

where e; f denotes the trivial sequencing of e and f .

1. Show that JCnT KE = 1 and JCnGKE =
∑n

i=1
1
2i .

2. Show that if µ is adequate and compatible, then µ (T ,G) = 1.

3. Conclude that we have distance trivialisation phenomena in probabilistic calculi.

The moral of distance trivialisation is that not only how a context uses a program matters, but also
how much it uses the program does. That is the reason why our notion of comaptibility does not work
well in a metric scenario, as the latter does not take into account how much programs can access their
inputs. We overcome this issue by giving a precise meaning to the expression how much above and by
giving a new notion of compatibility. The key ingredient to do that is the notion of program sensitivity (de
Amorim, Gaboardi, Hsu, Katsumata, & Cherigui, 2017; Reed & Pierce, 2010). Intuitively, the sensitivity
of program is the law describing how much di�erences in the output are a�ected by di�erences in the
input. We thus use the notion of sensitivity to formalise the testing power of contexts. More precisely,
we de�ne the sensitivity of a context C as a non-negative real number s . The notion of compatibility is
re�ned accordingly: we allow a context C with sensitivity s to increase the distance µ (e , f) between e
and f , but of a factor at most s .

s · µ (e , f) ≥ µ (C[e],C[f]).

The introduction of the notion of program sensitivity seems to prevent distance trivialisation phenom-
ena. However, it also raises an important question: how can we track program sensitivity? To answer this
question, we follow (Reed & Pierce, 2010) and move to linear-like calculi. As already observed, there is no
hope to have a nontrivial theory of program distance without a tight control on the copying-capabilities
of higher-order calculi. The calculi we consider have powerful type systems inspired by bounded linear
logic (Girard, Scedrov, & Scott, 1992) and, compared to other linear type systems, has the novelty of in-
troducing types of the form !sσ , where s is a non-negative real number modelling program sensitivity.
Moreover, allowing the sensitivity of a program to be∞, meaning that we are working with non-negative
extended real numbers, we can model programs testing their input ad libitum. As a consequence, we can
recover the full bang type !σ as !∞σ , and thus encoding all calculi seen so far in the linear calculus we are
going to de�ne.

3.3 Endowing Λ with Linearity Constraints
As just observed, when dealing with program distances a crucial parameter in distance trivialisation
is program sensitivity. To deal with such parameter we now introduce Fµ , a linear-like re�nement of

40

Λµ designed following the calculus Fuzz by Reed and Pierce (Reed & Pierce, 2010). Fµ is characterised
by a powerful linear type system inspired by bounded linear logic (Girard et al., 1992) giving syntactic
information on program sensitivity. Types, (raw) values, and (raw) computations of Fµ are de�ned in
Figure 3.1, where t denotes a type variable and s ∈ [0,∞].

Types σ ,τ ::= t Values v ,w ::= x Computations e , f ::= return v
| unit | 〈〉 | projl v
| σ × τ | 〈v ,w〉 | projr v
| σ ⊗ τ | v ⊗w | let x ⊗ y = v in e

| void | inl v | abort v
| σ + τ | inr v | case v of {inl x → e | inr x → f }

| σ (τ | λx .e | vw

| µt .σ | fold v | unfold v
| !sσ | !v | let !x = v in e

| let x = e in f

Figure 3.1: Types, values, and computations of Fµ .

Free and bound variables in computations and values are de�ned as usual, and we adopt the same
notational conventions of Λµ .

Types of Fµ di�er from those ofΛµ for the presence of tensor typesσ⊗τ , linear arrow typesσ (τ , and
bounded exponential types !sσ . The �rst two family of types are standard: for instance, an expression
of type σ (τ behaves as a function that takes in input a value of type σ , uses it exactly once6, and
produces a values of type τ . Bounded exponential types are at the heart of Fµ ’s type system. Intuitively,
a program of type !sσ (τ represent a function with sensitivity s . That is, we use bounded exponential
type to statically track information about the sensitivity of programs. We refer to elements s ∈ [0,∞] as
sensitivities.

3.3.1 Static Semantics
To de�ne the class of well-de�ned Fµ expression we endow Fµ with a suitable type system. Intuitively, the
latter is based on judgments of the form x1 :s1 σ1, . . . ,xn :sn σn ` e : σ , where s1, . . . , sn are sensitivities.
The informal meaning of such judgment is that on input xi (i ≤ n), the computation e has sensitivity
si . That is, e ampli�es the (behavioural) distance between two input values vi ,wi of at most a factor si .
Symbolically, we have:

si · µ (vi ,w ′i) ≥ µ (e[vi/xi], e[wi/xi]).

In order to de�ne typing judgments formally, we need to re�ne the notion of a typing environment
introduced in previous chapter.

De�nition 34. A typing environment is a a partial function Γ from variables to types and sensitivities such
that the domain dom(Γ) , {x | Γ(x) , ⊥} of Γ is �nite.

Given a typing environment Γ, we use the notation x1 :s1 σ1, . . . ,xn :sn σn to denote it, where
{x1, . . . ,xn } = dom(Γ) and Γ(xi) = just (σi , si). Moreover, we write (x :s σ) ∈ Γ to mean that
Γ(x) = just (σ , s). Notice that we distinguish between environments Γ such that Γ(x) = ⊥ and those
such that Γ(x) = (σ , 0): that is, there is a distinction between not using a variable and using it with sensi-
tivity zero (i.e. zero times). Nonetheless, we will see that if an expression is typable in an environment Γ

6 Actually, for our purposes it is enough to consider a�ne functions, i.e. functions using their inputs at most once.

41

unde�ned on x , then we can weaken the environment by adding Γ(x) = just (σ , s). As usual, we denote
by · the totally unde�ned environment.

As for non-linear calculi, we can join disjoint typing environments together. The typing environment
disjointness relation ⊥ is de�ned thus:

Γ ⊥ ∆⇐⇒
4

dom(Γ) ∩ dom(∆) = ∅

The union Γ,∆ of two disjoint typing environments Γ and ∆ is then de�ned in the usual way:

(Γ,∆) (x) ,

Γ(x) if x ∈ dom(Γ)

∆(x) otherwise.

As usual, whenever we write Γ,∆, we assume Γ and ∆ to be disjoint.
The linear (substructural) nature of Fµ makes the disjoint union of typing environments too weak to

give a meaningful static semantics to Fµ expressions. To see that, consider, for instance, the typing rule
for sequencing:

Γ `Λ e : σ Γ,x : σ `Λ f : τ
Γ `Λ let x = e in f

Say now that e uses a variable y with sensitivity s . According to our typing rule, f needs also to use y
with sensitivity s (and that may be �ne), but then one would infer that also let x = e in f uses y with
sensitivity s , which is clearly wrong, as let x = e in f actually uses y with sensitivity s2. Using a proof-
theoretical vocabulary, the additive type systems of previous chapter are unsound in the linear setting
of Fµ , the latter requiring a multiplicative type systems. Giving such a system ultimately rely on �nding
ways to combine sensitivities, both in parallel (as in the case of two programs using the same variable
independently) and sequentially (as in the case of a term using another term in place of a variable with a
given sensitivity). We model these operations using (extended) real number addition and multiplication.

De�nition 35. Extended addition on [0,∞] is de�ned by extending the usual real number addition with the
clause x +∞ , ∞ + x , ∞. Extended multiplication on [0,∞] is de�ned as follows, where x < ∞:

0 · ∞ , 0
∞ · 0 , 0
∞ · x , ∞

x · ∞ , ∞.

Notice that 0 is stronger than∞.7 Let us now come back to typing environments. We begin with the
addition of typing environments (cf. Exercise 3).

De�nition 36. 1. De�ne the consistency relation between typing environments thus:

Γ ∼ ∆⇐⇒
4

x ∈ dom(Γ) ∩ dom(∆) =⇒ π1 (Γ(x)) = π1 (∆(x)).
7 Our de�nition of extended multiplication is di�erent from the one given in the usual denotational semantics of Fµ (de Amorim

et al., 2017), where extended multiplication is de�ned as follows (with y , 0):

x · ∞ , ∞

∞ · 0 , 0
∞ · y , ∞.

Despite making extended multiplication non-commutative, the above de�nition does not �t with our intuition about program
sensitivity. In fact, according to our informal reading, the equality 0 · ∞ = 0 expresses the principle that if we test observationally
distinguishable objects zero times (i.e. we do not test them at all), then we are not able to tell them apart. Dually, the equality
∞ · 0 = 0 states that observationally indistinguishable objects cannot be told apart, no matter how many times are tested. The
reason why some authors need such a unconventional form of multiplication is their treatment of sequencing which impacts on
the semantics of sum types creating some problems. As we will see, our typing rule for sequencing prevents such problems, and
we can thus use a standard notion of extended multiplication. Nonetheless, we remark that although our de�nition of extended
multiplication agrees with our intuition of program sensitivity, it has the drawback of being non-continuous. For instance, consider
the set X = {ε | ε > 0}. Continuity requires ∞ · inf X = inf (∞ · X), which is obviously not the case since ∞ · inf X = ∞ · 0 = 0
and inf {∞ · ε | ε > 0} = inf∞ = ∞.

42

That is Γ ∼ ∆ if and only if whenever (x :s σ) ∈ Γ and x ∈ dom(∆) , we have (x :r σ) ∈ ∆, for some
r ∈ [0,∞].

2. The sum operation + is de�ned between consistent typing environments as follows:

(Γ + ∆) (x) ,

just (π1 (Γ(x)),π2 (Γ(x)) + π2 (∆(x))) if x ∈ dom(Γ) ∩ dom(∆)

Γ(x) if x < dom(∆)

∆(x) if x < dom(∆)

Therefore, if we sum two environments Γ and ∆ containing the declarations x :s σ and x :r σ , re-
spectively (such declarations necessarily have the same type σ by consistency), then Γ +∆ will contain
x :s+r σ .

3. The multiplication (or scaling) operation scale sensitivities in a typing environment by a given sensi-
tivity:

(s · Γ) (x) ,

just (σ , s · r) if Γ(x) = just (σ , r)
⊥ otherwise.

Lemma 26. The following laws hold:

Γ ∼ Γ

Γ ⊥ ∆ =⇒ Γ ∼ ∆

Γ ⊥ ∆ =⇒ Γ + ∆ = Γ,∆

Notice that, contrary to ΛST, now Γ+Γ = Γ does not hold in general: the failure of this identity re�ects
the substructural nature of Fµ .

Having at our disposal operations on typing environments we can de�ne a type system for Fµ . Such
a type system is based on two kinds of judgment (exploiting the �ne-grained style of the calculus): judg-
ments of the form Γ `V v : σ for values and judgments of the form Γ `Λ e : σ for computations. The
system is de�ned in Figure 3.2.

Let us comment some of the typing rules in Figure 3.2. In the variable rule we require s ≥ 1, meaning
our calculus is actually a�ne, rather than linear. That is because a�nity is enough to give a proper account
of program distance. By replacing s with 1 in the variable rule, we make Fµ linear. Typing environment
manipulations at this point should be clear. In the introduction rule for the exponential modality, we scale
the type environment by a factor s , this way making a value usable in place of variables with sensitivity
s . That is the exactly the meaning of the elimination rule for the exponential modality. The most peculiar
rule is the rule for sequencing, which uses the binary maximum operation. To see why we need such an
operation, let us consider the following instance of the rule, where f is a closed term of type τ (so that
we can assume it to have sensitivity 0 on y).

x :1 σ `Λ e : σ y :0 σ `Λ f : τ
x :max(0,1) ·1 σ `

Λ let y = e in f : τ

According to our informal intuition, e has sensitivity 1 on input x , meaning that (i) e can possibly de-
tect (behavioural) di�erences between input values v ,w , and (ii) e cannot amplify their behavioural
distance of a factor bigger than 1. Formally, point (ii) states that we have the inequality µ (v ,w) ≥
µ (e[v/x], e[w/x]), where µ denotes a suitable program distance. On the contrary, f is a closed term having
sensitivity 0 on the inputy, meaning that it cannot detect any observable di�erence between input values
for which y is a placeholder. In particular, for all values v ,w we have µ (f [v/y], f [w/y]) = µ (f , f) = 0
(provided that µ is re�exive). Replacing max(0, 1) with 0 in the typing rule for sequencing would allow
us to infer the judgment x :0 σ `Λ let y = e in f : τ , and thus to conclude

µ (let y = e[v/x] in f , let y = e[w/x] in f) = 0.

The latter equality is unsound as evaluating let y = e[v/x] in f (resp. let y = e[w/x] in f) requires to
�rst evaluate e[v/x] (resp. e[w/x]) thus making observable di�erences between v and w detectable

43

Γ,x :s σ `V x : σ
s ≥ 1 Γ `V v : σ

Γ `Λ return v : σ
Γ `Λ e : τ Γ,x :s τ `Λ f : σ

max(s , 1) · Γ + ∆ `Λ let x = e in f : σ

Γ,x :1 σ `Λ e : τ
Γ `V λx .e : σ (τ

Γ `V v : σ (τ ∆ `V w : σ
Γ + ∆ `Λ vw : τ

Γ `V 〈〉 : unit
Γ `V v : σ Γ `V w : τ
Γ `V 〈v ,w〉 : σ × τ

Γ `V v : σ × τ
Γ `Λ projl v : σ

Γ `V v : σ × τ
Γ `Λ projr v : τ

Γ `V v : σ ∆ `V w : τ
Γ + ∆ `V v ⊗w : σ ⊗ τ

Γ `V v : σ ⊗ τ ∆,x :s σ ,y :s τ `Λ e : ρ
s · Γ + ∆ `Λ let x ⊗ y = v in e : ρ

Γ `V v : void
Γ `Λ abort v : σ

Γ `V v : σ
Γ `V inl v : σ + τ

Γ `V v : τ
Γ `V inr v : σ + τ

Γ `V v : σ + τ ∆,x :s σ `Λ e : ρ ∆,y :s τ `Λ f : ρ
s · Γ + ∆ `Λ case v of {inl x → e | inr x → f } : ρ

Γ `V v : σ [µt .σ/t]
Γ `V fold v : µt .σ

Γ `V v : µt .τ
Γ `Λ unfold v : σ [µt .σ/t]

Γ `V v : σ
s · Γ `V !v : !sσ

Γ `V v : !sσ ∆,x :r ·s σ `Λ e : τ
r · Γ + ∆ `Λ let !x = v in e : τ

Figure 3.2: Static semantics of Fµ .

Exercise 38. Show that the weakening rules below are admissible.

Γ `Λ e : σ Γ ∼ ∆
Γ + ∆ `Λ e : σ

Γ `V v : σ Γ ∼ ∆
Γ + ∆ `V v : σ

The notion of a substitution in the setting of Fµ is more delicate than the ones seen so far. Substitutions
are still maps from variables to values: however, when performing the substitution of a variable x with
a value ∆ `V v : σ in a term Γ,x :s σ `Λ e : τ , we do not obtain a term Γ + ∆ `Λ e[v/x] : τ . In fact, the
variable x is used according s in e: as a consequence, each variable y in ∆ used, say, according to r will
be used according to s · r in e[v/x] (intuitively, v is used s times in e[v/x], and every time it is used, y
is used r times, thus for a total of s · r times). This gives a �rst version of the substitution lemma stating
admissibility of the following rules:

Γ,x :s σ `Λ e : σ ∆ `V v : σ Γ ∼ ∆

Γ +
∑
s · ∆ `Λ e[v/x] : σ

Γ,x :s σ `V e : σ ∆ `V v : σ Γ ∼ ∆

Γ +
∑
s · ∆ `V v[v/x] : σ

To deal with arbitrary substitutions [x/v] rather than with single ones, we simply generalises the above
rules to vectors. To do so, we introduce the following notation: given vectors a, b (of the same length),
we write

∑
a · b for their dot product

∑
i ai · bi .

Lemma 27. The following substitution rules are admissible

Γ,x :s σ `Λ e : σ ∆ `V v : σ Γ ∼ ∆i

Γ +
∑
s · ∆ `Λ e[v/x] : σ

Γ,x :s σ `V v : σ ∆ `V v : σ Γ ∼ ∆i

Γ +
∑
s · ∆ `V e[v/x] : σ

Writing without the vectors notation, we have, e.g., the rule:

Γ,x1 :s1 σ1, . . . ,xn :sn σn `Λ e : σ ∆i `
V vi : σi Γ ∼ ∆i

Γ +
∑

i si · ∆i `
Λ e[v1, . . . ,vn/x1, . . . ,xn] : σ

44

3.3.2 Dynamic Semantics
We extend the evaluation semantics of ΛST to Λµ in the natural way.

De�nition 37. The N-indexed family of functions J−Kn
E

:
∏

σ Λ
•

σ ⇀ V
•

σ is inductively de�ned as follows:8

JeK0
E
, ⊥

Jreturn vKn+1
E
, just v

Jprojl 〈v ,w〉Kn+1
E
, just v

Jprojr 〈v ,w〉Kn+1
E
, just w

Jlet x ⊗ y = v ⊗w in eKn+1
E
, Je[x := v ,y := w]Kn

E

Jcase inl v of {〈i ,x〉 → e} f Kn+1
E
, Je[v/x]Kn

E

Jcase inrw of {〈i ,x〉 → e} f Kn+1
E
, Jf [w/x]Kn

E

Junfold (fold v)Kn+1
E
, just v

J(λx .e)vKn+1
E
, Je[v/x]Kn

E

Jlet !x = !v in eKn+1
E
, Je[v/x]Kn

E

Jlet x = e in f Kn+1
E
,

Jf [v/x]Kn
E

if JeKn
E
= just v

⊥ otherwise.

Lemma 28. For any type σ , the sequence of maps (J−Kn
E
)n≥0 forms an ω-chain in Λ•σ ⇀ V

•

σ .

By Lemma 40, we de�ne the evaluation map J−KE :
∏

σ Λ•σ ⇀ V
•

σ as
⊔

n≥0J−KnE .

Lemma 29. The following identities hold.

Jreturn vKE , just v

Jprojl 〈v ,w〉KE = just v

Jprojr 〈v ,w〉KE = just w

Jlet x ⊗ y = v ⊗w in eKE = Je[x := v ,y := w]KE
Jcase inl v of {〈i ,x〉 → e} f KE = Je[v/x]KE
Jcase inrw of {〈i ,x〉 → e} f KE = Jf [w/x]KE

Junfold (fold v)KE = just v

J(λx .e)vKE = Je[v/x]KE
Jlet !x = !v in eKE = Je[v/x]KE

Jlet x = e in f KE =

Jf [v/x]KE if JeKE = just v

⊥ otherwise.

3.4 Quantiative Relational Calculus
In this section, we extend the relational calculus developed in Section 2.3 to Fµ and program distances.
Actually, instead of working with distances directly, we develop a calculus of ternary relations. We do
so for several reasons: �rst, �nding a light notation for term distances — the latter being the metric
counterpart of term relations — is not easy9; secondly, we would like our quantitative analysis to be
inherently relational, so to make the extension of the relational calculus of Section 2.3 as smooth as

8As usual, we omit type subscripts.
9For instance, we may de�ne a term distance as a map µ associating to each sequent Γ ` σ a distance µ

Γ`Λσ
on ΛΓ`Λσ and a dis-

tance µ
Γ`Vσ

on VΓ`Vσ . Although conceptually clear, the notion employed makes working with term distances rather bureaucratic.

45

possible (allowing us, for instance, to easily de�ne distances by induction). To this end, we observe that
any distance µ : X ×Y → [0,∞] can be characterised as a ternary relation M ⊆ [0,∞]×X ×Y de�ned by:

M (a,x ,y) ⇐⇒4 a ≥ µ (x ,y).

Vice versa, given such a ternary relation, we de�ne a distance µ as:

µ (x ,y) , inf {a | M (a,x ,y)}.

Therefore, to de�ne a distance µ it is enough to de�ne a suitable ternary relation M . However, not
all ternary relations de�ne distances: in fact, ternary relations M induced by distances have two cru-
cial properties: they are monotone and continuous in the �rst argument, meaning that preserve in�-
mum/intersection. In fact, such features are precisely what is needed to treat distances as ternary rela-
tions.

Proposition 10. There is a one-to-one correspondence between distances µ : X × Y → [0,∞] and ternary
relationsM ⊆ [0,∞] × X × Y that are monotone and meet preserving in the �rst argument. That is:

M (a,x ,y) & b ≥ a =⇒ M (b,x ,y)⋂
a∈A

M (a,x ,y) = M (inf A,x ,y).

In light of Proposition 10, we will work with monotone and meet preserving ternary relations rather
than distances, keeping in mind that we can always do back-and-forth between these notions. As a
consequence, in the rest of this section, we extend our relational calculus to ternary relations.

De�nition 38. 1. A closed term relation is a pair M = (MΛ,MV) of maps associating to each type σ
monotone andmeet preserving ternary relationsMΛ

σ andMV

σ on [0,∞]×Λ•σ ×Λ•σ and [0,∞]×V •

σ ×V
•

σ ,
respectively. We refer to MΛ as the computation component of M , and to MV as the value component
ofM .

2. An (open) term distance M associates to each sequent Γ ` σ a monotone and meet preserving ternary
relation envone `Λ M (−,−,−) : σ on [0,∞] × ΛΓ`Λσ × ΛΓ`Λσ and a monotone and meet preserving
ternary relation Γ `V M (−,−,−) : σ on [0,∞]×VΓ`Vσ ×VΓ`Vσ . We also require term relations to be
closed under weakening:

Γ `Λ M (a, e , f) : σ
Γ + ∆ `Λ M (a, e , f) : σ

Γ `V M (a,v ,w) : σ
Γ + ∆ `V M (a,v ,w) : σ

To highlight the intended meaning of a term relation, we use the notation Γ `Λ a ≥ M (e , f) : σ in
place of Γ `Λ M (a, e , f) : σ (and similarly for values). Indeed, what we are stating is that the M-distance
between e and f is (upper) bounded by a, so that the in�mum of such as gives the exact distance between
e and f .

Example 3. Both the discrete/identity term relation I and the indiscrete relation ∇ de�ned below are
open term relations. The empty relation is a term relation too (notice that the distance associated to such
a relation is µ (x ,y) = inf ∅ = ∞).

Γ `Λ a ≥ I(e , e) : σ Γ `V a ≥ I(v ,v) : σ Γ `Λ a ≥ ∇(e , f) : σ Γ `V a ≥ ∇(v ,w) : σ

�

We overload the notation and write Rel and Relc for the collections of open and closed term relations,
respectively. Formally, we de�ne Rel as

∏
Γ`σ Rel(ΛΓ`σ ,ΛΓ`σ) × Rel(VΓ`σ ,VΓ`σ). We now endow Rel

with a quantale structure. First, let us notice Rel carries a complete lattice structure given by set-theoretic
inclusion: M ⊆ N holds if

Γ `Λ a ≥ M (e , f) : σ =⇒ Γ `Λ a ≥ N (e , f) : σ ,
Γ `V a ≥ M (v ,w) : σ =⇒ Γ `V a ≥ N (v ,w) : σ .

46

Next, we give Rel a monoid structure by de�ning term relation composition M ;N as:

Γ `Λ a ≥ M (e ,д) : σ Γ `Λ b ≥ N (д, f) : σ c ≥ a + b

Γ `Λ c ≥ (M ;N) (e , f) : σ

Γ `V a ≥ M (v ,u) : σ Γ `V b ≥ N (u,w) : σ c ≥ a + b

Γ `V c ≥ (M ;N) (v ,w) : σ

Notice that, e.g., in the conclusion of the �rst rule we have Γ `Λ c ≥ (M ;N) (e , f) : σ rather than
Γ `Λ a + b ≥ (M ;N) (e , f) : σ . That is a pattern we will always meet when de�ning relations by mean of
rules having more than one premises: in fact, such a patter ensures the resulting relation to be monotone.
It is easy to see that M ;N is indeed a term relation (it is monotone, closed under weakening, and meet-
preserving). Composition is associative and I is its unit, this way making Rel is a monoid. Additionally,
easy calculations show that term relation composition is monotone and continuous in both arguments:

M ⊆ N & L ⊆ O =⇒ M ;L ⊆ N ;O

M ;
⋃
i ∈I

Ni =
⋃
i ∈I

(M ;Ni)⋃
i ∈I

Mi ;N =
⋃
i ∈I

(Mi ;N)

This makes Rel a quantale. In particular, we can de�ne term relations both inductively and coinductively.
Finally, we observe that Rel also has an involution mapping a term relation M to its converse M>. The
latter is de�ned as follow:

Γ `Λ a ≥ M (f , e) : σ
Γ `Λ a ≥ M> (e , f) : σ

Γ `V a ≥ M (w ,v) : σ
Γ `V a ≥ M> (v ,w) : σ

As a consequence, we extend the usual notion of a re�exive, transitive, and symmetric relations to term
relations.

De�nition 39. A term relationM is re�exive if I ⊆ M ; transitive ifM ;M ⊆ M ; and symmetric ifM> ⊆ M .

Having analysed the algebra of term relations, we now introduce the ‘syntax-oriented’ constructions
upon which our relational calculus is built. Although conceptually similar to the ones introduced in
Section 2.3, such constructions are now more involved than their purely (binary) relational counterpart:
that is due to the complicated type system of Fµ . To simplify our analysis, we introduce right from
the beginning some constructions on (quantitative) relations that allow us to extend such relations to
structured sets (such product and function spaces).

De�nition 40. Let us write M : X +→ Y for M ⊆ [0,∞] × X × Y . Let M : X +→ Y , N : U +→ Z be ternary
relations.

1. De�ne the Reynolds arrow [M → N] : U X +→ ZY by:

[M → N](a,α , β) ⇐⇒4 ∀b, c ,x ,y. M (b,x ,y) & c ≥ a + b =⇒ N (c ,α (x), β (y))

2. De�ne the tensorM ⊗ N : X ×U +→ Y × Z by:

(M ⊗ N) (a, (x ,u), (y, z)) ⇐⇒4 ∃b, c . M (b,x ,y) & N (c ,u, z) & a ≥ b + c .

3. De�ne the (cartesian) productM × N : X ×U +→ Y × Z by:

(M × N) (a, (x ,u), (y, z)) ⇐⇒4 M (a,x ,y) & N (a,u, z)).

4. De�ne the sum (or coproduct)M + N : X +U +→ Y + Z by:

(M + N) (a, t , s) ⇐⇒4 [t = inl (x) & s = inl (y) & M (a,x ,y)] or [t = inr (u) & s = inr (z) & N (a,u, z)]

47

Exercise 39 gives a mathematical explanation of the constructions in De�nition 40 in terms of the cat-
egory of metric spaces. However, such constructions can also be understood operationally. For instance,
the relation [M → N] essentially states that two functions are at at most a-apart if whenever we pass
them input at most b-apart, then the outputs are at most a+b-apart (as usual, to ensure monotonicity, we
actually tale c ≥ a +b). Notice that [I→ M](a,α , β) holds if and only if M (a,α (x), β (x)), for any input x ,
and that all these constructions given obviously extend to term relations.

Exercise 39 (The Category of Generalised Metric Spaces). To motivate the construction given in De�ni-
tion 40, we move from ternary relations to distances. There, the constructions in De�nition 40 give.

1. [µ → ν] : U X +→ ZY where:10

[µ → ν](α , β) , sup
x ,y

ν (α (x), β (y)) −̇ µ (x ,y)

2. µ ⊗ ν : X ×U +→ Y × Z where:

(µ ⊗ ν) ((x ,u), (y, z)) , µ (x ,y) + ν (u, z).

3. µ × ν : X ×U +→ Y × Z where:

(µ × ν) ((x ,u), (y, z)) , max(µ (x ,y),ν (u, z)).

4. µ + ν : X +U +→ Y + Z where:

(µ + ν) (t , s) ,

µ (x ,y) if t = inl (x), s = inl (y)
ν (u, z) if t = inr (u), s = inr (z)

Notice that [I→ µ](α , β) = supx µ (α (x), β (x)) is the usual sup-metric ones uses to give a metric structure
to the space of non-expansive maps. We have a category GenMet whose objects are pairs (X , µ) of sets
equipped with re�exive and transitive distances, and whose arrows are non-expansive maps: an arrow
f : (X , µ) → (Y ,ν) is given by a function f : X → Y such that µ (x ,y) ≥ ν (f (x), f (y)). We denote by
[X ,Y] the set of non-expansive functions between (X , µ) and (Y ,ν).

1. Show that ([X ,Y], [µ → ν]) is an object of GenMet.

2. Show that (X × Y , µ ⊗ ν) and (X × Y , µ × ν) are objects of GenMet.

3. Show that (X × Y , µ × ν) is the cartesian product of (X , µ) and (Y ,ν).

4. Show that (X + Y , µ + ν) is the coproduct of (X , µ) and (Y ,ν).

5. Is GenMet cartesian closed with exponential object given by ([X ,Y], [µ → ν])?

6. Show that GenMet is a monoidal closed category with tensor product given by (X × Y , µ ⊗ ν) and
exponential given by ([X ,Y], [µ → ν]). Hint. Show that for α , β ∈ [X ,Y] one has [µ → ν](α , β) =
[I → ν](α , β (cf. Reynolds-Abramsky Lemma in Exercise 20), using the fact that µ, ν are re�exive
and transitive, and that β is non-expansive.

Lemma 30. The following laws hold.

M ≥ L & N ≥ O =⇒ M ⊗ N ≥ L ⊗ O

M ≥ L & N ≥ O =⇒ M × N ≥ L ×O

L ≥ M & N ≥ O =⇒ [M → N] ≥ [L → O]
M ≥ L & N ≥ O =⇒ M + N ≥ L +O

10We write x −̇ y for the truncated subtraction of x and y .

48

Moreover, the following laws hold.

IA×B = IA × IB = IA ⊗ IB
IA→B = [IA → IB]
IA+B = IA + IB

(M ⊗ N)> = M> ⊗ N >

(M × N)> = M> × N >

[M → N]> = [M> → N >]
(M + N)> = M> + N >

(M ⊗ N); (L ⊗ O) = (M ;L) ⊗ (N ;O)

(M × N); (L ×O) = (M ;L) × (N ;O)

[M → N]; [L → P] ≥ [M ;L → N ; P]
(M + N); (L +O) ≥ (M ;L) + (N ;O)

The �nal construction we de�ne is peculiar to Fµ and it acts as a distance scaling operator.

De�nition 41. GivenM : X +→ Y and s ∈ [0,∞], we de�ne the relation [s]M : X +→ Y by:

[s]M (a,x ,y) ⇐⇒4 ∃b. a ≥ s · b & M (b,x ,y).

Notice that if M is a term relation, then so is [s]M . We use the operator [s] to scale and amplify
distances. In fact, if we have a ≥ M (v ,w) (i.e. M (a,v ,w)), then by usingv ,w according to s (viz. s-times),
then we expect the distance between v andw to be bounded by s · a: and in fact, we have [s]M (s · a,v ,w)
(i.e. s · a ≥ [s]M (v ,w)).

Lemma 31. The following laws hold.

I ⊆ [s]I [1]M ⊆ M

[s]M ; [s]N ⊆ [s](M ;N) [s · r]M ⊆ [s][r]M
M ⊆ N =⇒ [s]M ⊆ [s]N s ≤ r =⇒ [s]M ⊇ [r]M .

Exercise 40 (Only if you know category theory). The action of [s]µ on a distance µ is de�ned thus:
[s]µ (x ,y) = s · µ (x ,y). Show that the map [s] sending a GenMet object (X , µ) to (X , [s]µ) gives a graded
comonad (Gaboardi, Katsumata, Orchard, Breuvart, & Uustalu, 2016; Katsumata, 2018) on GenMet.

For pedagogical reasons, the �rst construction we introduce is relational substitution. Recall the sub-
stitution rule:

Γ,x :s σ `Λ e : σ ∆ `V v : σ Γ ∼ ∆i

Γ +
∑
s · ∆ `Λ e[v/x] : σ

Γ,x :s σ `V v : σ ∆ `V v : σ Γ ∼ ∆i

Γ +
∑
s · ∆ `V e[v/x] : σ

The idea is that given two terms e , f using a variable x according to sensitivity s , if we have two values
v ,w which are a-apart, then e[v/x] and f [w/x] are essentially s · a-apart. The construction [s] models
exactly such a behaviour.

De�nition 42. Given term relations M , N , de�ne the substitution of N into M as the term relation M[N]
de�ned thus (where we assume Γ ∼ ∆i):11

Γ,x :s σ `Λ a ≥ M (e , f) : σ ∆ `V b ≥ [s]N (v ,w) : σ c ≥ a +
∑
b

Γ +
∑
s · ∆ `Λ c ≥ M[N](e[v/x], f [v/x]) : σ

Γ,x :s σ `V a ≥ M (e , f) : σ ∆ `V b ≥ [s]N (v ,w) : σ c ≥ a +
∑
b

Γ +
∑
s · ∆ `V c ≥ M[N](v[v/x],u[v/x]) : σ

11 Notice that we write [s]M (v , e , f) for [s1]M (v1, e1, f1), . . . , [sn]M (vn , en , fn).

49

Lemma 32. LetM , N , L, P be term relations. Then, the following monotonicity law holds.

M ⊆ L,N ⊆ P =⇒ M[N] ⊆ L[P]

Moreover, we have the following identities.

I[I] = I

M>[N >] = (M[N])>

(M ;L)[N ; P] = M[N];L[P]

We are now to de�ne the closed restriction and the open/substitutive extension of term relations.

De�nition 43. 1. Given a term relationM ∈ Rel, de�ne the closed restriction M c = (MΛ,MV) ofM by

· `Λ a ≥ M (e , f) : σ
(M c)Λσ (a, e , f)

· `Λ a ≥ M (v ,w) : σ
(M c)Vσ (a,v ,w)

2. Given a closed term relationM , we de�ne the open extension ofM as the (open) term relationMo thus
de�ned:

MΛ
σ (a, e[v/x], f [v/x])

x :s σ `Λ a ≥ Mo (e , f) : σ
MΛ
σ (a,v[v/x],w[v/x])

x :s σ `V a ≥ Mo (v ,w) : σ

3. Given a closed term relation M , we de�ne the substitutive extension of M as the (open) term relation
M s thus de�ned:

[s]MV

σ (b,v ,w) & c ≥ a +
∑
b =⇒ MΛ

σ (c , e[v/x], f [v/x])
x :s σ `Λ a ≥ M s (e , f) : σ

[s]MV

σ (b,v ,w) & c ≥ a +
∑
b =⇒ MV

σ (c ,v[v/x],w[v/x])
x :s σ `V a ≥ M s (v ,w) : σ

Taking advantage of De�nition 43, for a closed term relation M = (MΛ,MV) we will often write
· `Λ a ≥ M (e , f) f : σ in place of MΛ

σ (a, e , f) (and similarity for values). In light of that, for an open
term relation M we will use the notations · `Λ a ≥ M (e , f) : σ and (M c)Λσ (a, e , f) interchangeably (and
similarity for values).

Lemma 33. LetM , N be open term relations, and L, P be closed term relations. The following monotonicity
laws hold.

M ⊆ N =⇒ Mo ⊆ N o

M ⊆ N =⇒ M c ⊆ N c

Moreover, we have the inclusions:

M c;N c ⊆ (M ;N)c

Lo; P o ⊆ (L; P)o

Ls; P s ⊆ (L; P)s

Exercise 41. Show that the open extension of a re�exive closed term relation is re�exive. Show also that
the open extension of a transitive closed term relation is transitive. What goes wrong if you try to prove
the same result for substitutive extensions?

Using term relation substitution, we can de�ne the notions of a substitutive and value substitutive
term relation.

De�nition 44. A term relationM is value-substitutive ifM[I] ⊆ M . It is substitutive ifM[M] ⊆ M .

50

As usual, a closed term relation is (value) substitutive if its open extension is. Moreover, we notice
that the open extension of a closed term relation is trivially value-substitutive.

Exercise 42. Let M be a closed term relation. Show that the open extension of M is value substitutive
and that the substitutive extension of M is substitutive:

Mo[I] ⊆ Mo

M s[M s] ⊆ M s

Finally, we introduce the notion of a compatible re�nement. Again, the complicated type systems of
Fµ makes the de�nition of a compatible re�nement more involved than its purely relational counterparts.

De�nition 45. The compatible re�nement M̂ of an open term relationM is de�ned by the rules in Figure 3.3.
We say thatM is compatible if M̂ ⊆ M , and that a closed term relation is compatible if its open extension is.

The notion of compatibility captures an abstract form of Lipshitz-continuity with respect to Fµ con-
structors. Notice that in the clause for sequencing the presence of max(s , 1), instead of s , ensures that for
terms like e , let x = (return true) in (return true) and f , let x = Ω in (return true) the distance
between e and f is determined before sequencing (which captures the idea that although return true
will not ‘use’ any input, return true and Ω will be still evaluated, thus producing observable di�erences
between e and f). In fact, if we replace max(s , 1) with just s , then by taking s , 0 compatibility would
imply that e and f are at distance 0, which is clearly unsound.

Exercise 43. Show that M̂ is a term relation.

Lemma 34. The following hold:

EM ;N = M̂ ; N̂

M̂> = (M̂)>

M ⊆ N =⇒ M̂ ⊆ N̂ .

De�nition 45 induces a map M 7→ M̂ on the collection of open term relations which is monotone, by
Lemma 34. In particular, a term relation is compatible if and only if it is a pre-�xed point of M 7→ M̂ .

Lemma 35. The discrete term relation I is the least pre-�xed point of M 7→ M̂ . I.e. I ⊆ Î and M ⊆ M̂ =⇒

I ⊆ M . As a consequence, any compatible relation is re�exive.

Exercise 44. Show that for any closed term relation M we have:

M̂ ⊆ I[M]

Conclude that M̂ ⊆ I[M] implies M̂ ⊆ M (i.e. substitutivity of M). What about the converse implication?

Summing up, we have extended the relational calculus of Section 2.3 to ternary, quantitative relations.
The resulting calculus is more complicated than its ‘qualitative’ counterpart, but that is mostly due to the
complicated syntax and type system of Fµ . From a structural perspective, the qualitative and quantitative
relational calculi are surprisingly similar. That allows us to extend all the notions of program equivalence
seen so far to a metric-like setting. Moreover, all results whose proofs relied on the relational calculus
only extend to Fµ essentially for free. We witness that by extending the notions of equivalence seen so
far to the new ternary and quantitative setting.

3.5 Metric Logical Relations
Thanks to De�nition 40, de�ning metric logical relations is straightforward. To avoid unnecessary com-
plications hiding the core ideas behind metric logical relations, we restrict our analysis to Fµ without
recursive types. A standard reducibility argument shows that the calculus thus obtained is strongly nor-
malising, so that we have JeKE ∈ V •

σ , for any program of type σ .
As usual, we begin by giving an explicit de�nition of the logical distance.

51

Γ,x :s σ `V a ≥ M̂ (x ,x) : σ

a ≥ Γ,x :1 σ `Λ M (e , f) : τ

Γ `V a ≥ M̂ (λx .e , λx .f) : σ (τ

a ≥ Γ `V M (v ,u) : σ (τ b ≥ ∆ `V M (w , z) : σ c ≥ a + b

Γ + ∆ `Λ c ≥ M̂ (vw ,uz) : τ

Γ `V a ≥ M̂ (〈〉, 〈〉) : unit
Γ `V a ≥ M (v ,u) : σ Γ `V a ≥ M (w , z) : τ

Γ `V a ≥ M̂ (〈v ,w〉, 〈u, z〉) : σ × τ

Γ `V a ≥ M (v ,w) : σ × τ
Γ `Λ a ≥ M̂ (projl v , projl w) : σ

Γ `V a ≥ M (v ,w) : σ × τ
Γ `Λ a ≥ M̂ (projr v , projr w) : τ

Γ `V a ≥ M (v ,u) : σ ∆ `V b ≥ M (w , z) : τ c ≥ a + b

Γ + ∆ `V c ≥ M̂ (v ⊗w ,u ⊗ z) : σ ⊗ τ

Γ `V a ≥ [s]M (v ,w) : σ ⊗ τ ∆,x :s σ ,y :s τ `Λ b ≥ M (e , f) : ρ c ≥ a + b

s · Γ + ∆ `Λ c M̂ (let x ⊗ y = v in e , let x ⊗ y = w in f : ρ

Γ `V a ≥ M (v ,w) : void
Γ `Λ a ≥ M̂ (abort v , abortw) : σ

Γ `V a ≥ M (v ,w) : σ
Γ `V a ≥ M̂ (inl v , inlw) : σ + τ

Γ `V a ≥ M (v ,w) : τ
Γ `V a ≥ M̂ (inr v , inrw) : σ + τ

Γ `V a ≥ [s]M (v ,w) : σ + τ ∆,x :s σ `Λ b ≥ M (e ,д) : ρ ∆,y :s τ `Λ b ≥ M (f ,h) : ρ c ≥ a + b

s · Γ + ∆ `Λ c ≥ M̂ (case v of {〈i ,x〉 → e} f , casew of {〈i ,x〉 → д}h) : ρ

Γ `V a ≥ M (v ,w) : σ [µt .σ/t]

Γ `V a ≥ M̂ (fold v , foldw) : µt .σ

Γ `V a ≥ M (v ,w) : µt .τ

Γ `Λ a ≥ M̂ (unfold v , unfoldw) : σ [µt .σ/t]

Γ `V a ≥ [s]M (v ,w) : σ
s · Γ `V a ≥ M̂ (!v , !w) : !sσ

Γ `V a ≥ [r]M (v ,w) : !sσ ∆,x :r ·s σ `Λ b ≥ M (e , f) : τ c ≥ a + b

r · Γ + ∆ `Λ c ≥ M̂ (let !x = v in e , let !x = w in f) : τ

Γ `V a ≥ M (v ,w) : σ
Γ `Λ a ≥ M̂ (return v , returnw) : σ

Γ `Λ a ≥ [max(s , 1)]M (e ,д) : τ Γ,x :s τ `Λ b ≥ M (f ,h) : σ c ≥ a + b

max(s , 1) · Γ + ∆ `Λ c ≥ M̂ (let x = e in f , let x = д in h) : σ

Figure 3.3: Compatible re�nement Fµ .

52

∀v ,w . v L
∼b w & c ≥ a + b =⇒ e[v/x] L

∼c f [w/x]
λx .e L

∼a λx .f : σ (τ

〈〉
L
∼a 〈〉 : unit

v L
∼a u : σ w L

∼a z : τ
〈v ,w〉 L

∼a 〈u, z〉 : σ × τ
v L
∼a u : σ w L

∼b z : τ c ≥ a + b

v ⊗w L
∼c u ⊗ z : σ ⊗ τ

v L
∼a w : σ

inl v L
∼a inlw : σ + τ

v L
∼a w : τ

inr v L
∼a inrw : σ + τ

v L
∼a w : σ b ≥ s · a

!v L
∼b !w) : !sσ

JeKE L
∼a Jf KE

e L
∼a f : σ

Figure 3.4: Logical distance Fµ .

De�nition 46. The closed term relation L
∼, called logical distance (or metric logical equivalence) is de�ned

recursively on types by the rules in Figure 3.4.12 Logical distance is then extended to open expressions as L
∼

s.

We now give a more relational de�nition of logical distance. To do so, we unpack the logical meaning
of types exactly as we did for ΛST.

De�nition 47. For each type σ , we de�ne the logical meaning function J−KL : V •

σ → L (V
•

σ), where

L (V •

unit) , Vunit

L (V •

void) , ∅

L (V •

σ×τ) , V
•

σ ×V
•

τ

L (V •

σ ⊗τ) , V
•

σ ×V
•

τ

L (V •

σ+τ) , V
•

σ +V
•

τ

L (V •

!sσ) , V
•

σ

L (V •

σ(τ) , V
•

σ → Λ•τ .

by:

J〈〉KL , 〈〉
J〈v ,w〉KL , (v ,w)

Jv ⊗wKL , (v ,w)

Jinl vKL , inl (v)
Jinr vKL , inr (v)
Jλx .f KL , v 7→ f [v/x]

We can now de�ne logical distance in relational and pointfree style.

De�nition 48. De�ne logical distance L
∼ as follows:

L
∼
V

unit , IVunit
L
∼
V

σ×τ , J−KL ; (L
∼
V

σ ×
L
∼
V

σ); J−K
>

L

L
∼
V

σ ⊗τ , J−KL ; (L
∼
V

σ ⊗
L
∼
V

σ); J−K
>

L

L
∼
V

σ+τ , J−KL ; (L
∼
V

σ +
L
∼
V

σ); J−K
>

L

L
∼
V

σ(τ , J−KL ; [L
∼
V

σ →
L
∼

Λ

τ]; J−K>
L

L
∼
V

!sσ , J−KL ; [s] L
∼
V

σ ; J−K>
L

L
∼

Λ

σ , J−KE ; L
∼
V

σ ; J−K>
E
.

12 For readability, write e L
∼a f in place of a ≥ e L

∼ f .

53

As usual, we extend L
∼ to an open term relation by taking its substitutive extension L

∼
s. Let us now

move to the structural properties of L
∼. Since substitutive extensions are always substitutive (M s[M s] ⊆ M s

holds for any closed term relation M), L
∼

s is trivially substitutive. Moreover, exactly the same relational
calculation we did for ΛST show that compatibility and transitivity of L

∼ follow from re�exivity. As a
consequence, the only thing we need is a quantitative, metric version of the fundamental lemma.

Proposition 11 (Fundamental Lemma). I ⊆ L
∼

s.

Proof.

Theorem 7. L
∼ is a re�exive, symmetric, transitive, compatible, and substitutive term relation.

Proof. Since L
∼ is transitive and symmetric (exercise!), then so is L

∼
s. All the rest follows by general rela-

tional calculations.

Exercise 45. Show that L
∼ is transitive and symmetric.

3.6 Applicative Bisimilarity Distance
At this point, it should be clear that our quantitative relational calculus allows us to extend applicative
(bi)similarity to a quantitative setting smoothly, exactly as we did for logical equivalence. De�ning a
quantitative counterpart of applicative (bi)similarity (known as applicative (bi)similarity distance), how-
ever, requires us to introduce an additional construction on term relation, to handle the fact that programs
may diverge.

De�nition 49. Given a relationM : X +→ Y , the relation M̃M : X⊥ +→ Y⊥ is de�ned by:

M̃M (a, t , s) ⇐⇒4 (t = just x =⇒ s = just y & M (a,x ,y))

Lemma 36. The map M̃ satis�es the following laws.

IA⊥ ⊆ M̃IA

M̃M ; M̃N ⊆ M̃ (M ;N)

M ⊆ N =⇒ M̃M ⊆ M̃N .

We now have all the ingredients to de�ne applicative similarity as the greatest �xed point of a mono-
tone operator.

De�nition 50. Given a closed term relationM , we de�ne the closed term relation [M] as follows:

[M]Vunit , IVunit
[M]Vvoid , ∅
[M]Vσ×τ , J−KL ;MV

σ ×M
V

σ ; J−K>
L

[M]Vσ ⊗τ , J−KL ;MV

σ ⊗ MV

σ ; J−K>
L

[M]Vσ+τ , J−KL ;MV

σ +M
V

σ ; J−K>
L

[M]Vµt.σ , J−KL ;MV

σ [t/µt.σ]; J−K
>

L

[M]V!sσ , J−KL ; [s]MV

σ ; J−K>
L

[M]Vσ(τ , J−KL ; [IVσ → MΛ
τ]; J−K>

L

MΛ
σ , J−KE ; M̃MV

σ ; J−K>
E

A term relationM is an applicative simulation ifM ⊆ [M].

Lemma 37. The map [−] is a monotone function on the complete lattice of closed relation.

54

Proof. All the relational constructions used in De�nition 58 are monotone.

As a consequence, we can de�ne applicative similarity as the greatest �xed point of [−].

De�nition 51. De�ne
a
� , νM .[M].

Since applicative similarity is de�ned as a greatest �xed point, it comes with the usual associated
coinduction proof principle:

M ⊆ [M] =⇒ M ⊆
a
�.

Relying on the latter principle as well as on the relational calculus, we can prove that applicative similarity
is re�exive and transitive, pretty much in the same way as we did for Λµ . Additionally, it is also possible
to reproduce Howe’s method in the more general setting of quantitative relations to show that applicative
similarity is also compatible and substitutive. That, however, is more di�cult than its purely relational
counterparts, and thus beyond the scope of these notes. We only mention that one �rst has to show that
M̃ has to satisfy all the ‘good properties’ we used to prove applicative (bi)similarity to be compatible. For
instance, we need to have the algebraic law

M ⊆ α ; M̃N ; β> =⇒ M̃M ⊆ >>=α ; M̃N ; (>>=β)>.

for all functions α , β : X → A⊥ and relations M : X +→ X , N : A +→ A. But that is not the end of the
story, in fact now one of the crucial point to make Howe’s method working, is showing that [s] and M̃
properly interacts. That is indeed the case, as proved by the following lax distributive law.

Lemma 38. For any s ≥ 1, we have:

[s](M̃M) ⊆ M̃ ([s]M).

3.7 Denotational Semantics Through Metric Spaces
Another way to de�ne distances between programs is by means of denotational semantics. More specif-
ically, we re�ne the set-theoretic13 denotational semantics given to ΛST into a metric space semantics:
accordingly, we interpret types σ as metric spaces JσKD = (Xτ , µσ) and expressions as suitable non-
expansive functions. Crucial is the interpretation of the bang modality !s : the latter scales the distance µσ
of a factor s . This way, we obtain s-Lipshitz continuous functions fromX toY as non-expansive functions
from !sX to Y .

De�nition 52. The categoryMet has pairs (X , µ) made of a setX and a re�exive, symmetric, and transitive
distance (i.e. a pseudometric) on X as objects, and non-expansive functions as arrows: that is, an arrow from
(X , µ) to (Y ,ν) is a function f : X → Y such that µ (x ,y) ≥ ν (f (x), f (y)). We refer to objects of Met as
metric spaces and write Met(X ,Y) for the collection of non-expansive functions between (X , µ) and (Y ,ν).

Proposition 12. The categoryMet is a monoidal closed category with cartesian products and coproducts.

Proof. Repeat the constructions of Exercise 39. For instance, the monoidal product X ⊗ Y of two met-
ric spaces X = (X , µ) to Y = (Y ,ν) is de�ned as (X × Y , µ ⊗ ν). Similarly, we de�ne [X,Y] ,
(Met(X ,Y), [IX → ν]) (so that [IX → ν](α , β) = supx ν (α (x), β (x))).

Any s ∈ [0,∞] de�nes a map sending a metric space X = (X , µ) to the metric space !sX , (X , s · µ),
where (s · µ) (x ,y) , s · µ (x ,y). Moreover, the action of !s extends to non-expansive functions simply by
mapping a function f to itself. It is straightforward to see that !s thus gives a functor on Met. Actually,
!s gives a graded comonad on Met (but for our purposes, such a level of abstraction is not needed).

13 To avoid domain theoretic arguments, we give denotational semantics to the fragment of Fµ without recursive types.

55

Exercise 46. Show that we have:

!s (X ⊗ Y) � !sX ⊗ !sY
!s !rX � !s ·rX.

De�nition 53. For each type σ , we de�ne a metric space JσKD as follows, where 1 , ({∗}, ι) with ι (∗, ∗) = 0.

JunitKD , 1
Jσ × τ KD , JσKD × Jτ KD
Jσ ⊗ τ KD , JσKD ⊗ Jτ KD
Jσ + τ KD , JσKD + Jτ KD

Jσ (τ KD , [JσKD , Jτ KD]
J!sσKD , !sJσKD .

Next, we de�ne the denotational semantics of judgments x1 :s1 σ1, . . . ,xn :sn σn `
Λ e : σ and x1 :s1

σ1, . . . ,xn :sn σn `V v : σ as non-expansive maps14

JeKD : !s1Jσ1KD ⊗ !sn JσnKD → JσKD
JvKD : !s1Jσ1KD ⊗ !sn JσnKD → JσKD .

For Γ = x1 :s1 σ1, . . . ,xn :sn σn , we de�ne JΓKD , !s1Jσ1KD ⊗ !sn JσnKD . Notice that J∅KD = 1. The
following result relates the denotational semantics of typing environments with the operations for adding
and scaling such environments.

Lemma 39. 1. The map δ : JΓ + ∆KD → JΓKD ⊗ J∆KD de�ned by δ (x) , (x ,x) is non-expansive.

2. We have Js · ΓKD = !sJΓKD .

We now de�ne the denotational semantics of typing judgments by induction. Notice that whenever
s ≥ 1, the map p : !sX → X sending x to itself is non-expansive. For most terms the de�nition of J−KD
follows the same pattern given for ΛST (they both rely on exponentials, products, etc). We thus show only
the relevant cases.

JΓ,x :s σKD : JΓKD ⊗ !sJσKD → Jτ KD , p ◦ π2

• Given Γ `V v : σ ∆ `V w : τ
Γ + ∆ `V v ⊗w : σ ⊗ τ

we have JvKD : JΓKD → JσKD and JwKD : J∆KD → Jτ KD . De�ne:

Jv ⊗wKD , JΓ + ∆KD
δ
−→ JΓKD ⊗ J∆KD

JvKD ⊗JwKD
−−−−−−−−−−→ JσKD ⊗ Jτ KD

• Given
Γ `V v : σ ⊗ τ ∆,x :s σ ,x :s τ `Λ e : ρ

s · Γ + ∆ `Λ let x ⊗ y = v in e : ρ
we have JvKD : JΓKD → JσKD and JeKD : J∆KD ⊗

14For readability, we write JeKD in place of JΓ `Λ e : σ KD (and similarly for values).

56

!sJσKD ⊗ !sJτ KD → JρKD . De�ne Jlet x ⊗ y = v in eKD as:

Js · Γ + ∆KD

δ
��

Js · ΓKD ⊗ J∆KD

�

��
J∆KD ⊗ !sJΓKD

1J∆KD ⊗!s JvKD
��

J∆KD ⊗ !s (σ ⊗ τ)

�

��
J∆KD ⊗ !sσ ⊗ !sτ

JeKD
��

JρKD

• Given
Γ ◦ e : σ ∆,x :s σ `Λ f

max(s , 1) · Γ + ∆ `Λ let x = e in f : τ
we have JeKD : JΓKD → JσKD and Jf KD : J∆KD ⊗

!sJσKD → Jf KD . De�ne Jlet x = e in f KD as:

Jmax(s , 1) · Γ + ∆KD

δ
��

Jmax(s , 1) · ΓKD ⊗ J∆KD

�

��
J∆KD ⊗ !max(s ,1)JΓKD

1J∆KD ⊗!max(s ,1)JeKD
��

J∆KD ⊗ !max(s ,1)JσKD

��
J∆KD ⊗ !sJΓKD

Jf KD
��

Jτ KD

where we use the fact that the map (x 7→ x) : !max(s ,1)X → !sX is non-expansive.

• Given Γ `V v : !sσ ∆,x :r s σ `Λ e : τ
r · Γ + ∆ `Λ let !x = v in e : τ

we have JvKD : !sJΓKD → JσKD and JeKD : J∆KD ⊗ !r sJσKD →

57

Jτ KD . De�ne Jlet !x = v in eKD as:

Jr · Γ + ∆KD

δ
��

Jr · ΓKD ⊗ J∆KD

�

��
J∆KD ⊗ !r JΓKD

1J∆KD ⊗!r JvKD
��

J∆KD ⊗ !r !sσ

�

��
J∆KD ⊗ !r sσ

JeKD
��

Jτ KD

Exercise 47. Why JΓ `Λ e : σKD and JΓ `V v : σKD are non-expansive? (Hint. You do not need any
calculation to answer the question).

The denotation of a program e of type σ is thus a non-expansive function JeKD : 1→ JσKD , which can
be regarded as an element of JσKD . As a consequence, to measure the distance between two programs (of
type σ) we simply regard their denotations as elements in the state space of JσKD and use the denotational
pseudometric of JσKD to measure the distance between JeKD and Jf KD .

3.8 Metrics and Probabilistic Lambda Calculi
We can endow Fµ with a family of probabilistic primitives sampleq exactly as we did for ΛST and Λµ . We
call the resulting calculus FPR. The static semantics of FPR is obtained from the one of Fµ by adding the
following rule.

Γ `Λ sampleq : bool

The dynamics semantics of FPR, instead, is de�ned by evaluating programs to subdistributions of values.

58

De�nition 54. The N-indexed family of functions J−Kn
E

: PΛ•σ → DVσ is inductively de�ned as follows:15

JeK0
E
, ∅

Jreturn vKn+1
E
, δv

JsampleqK
n+1
E
, q · δtrue + (1 − q) · δfalse

Jprojl 〈v ,w〉Kn+1
E
, δv

Jprojr 〈v ,w〉Kn+1
E
, δw

Jlet x ⊗ y = v ⊗w in eKn+1
E
, Je[x := v ,y := w]Kn

E

Jcase inl v of {〈i ,x〉 → e} f Kn+1
E
, Je[v/x]Kn

E

Jcase inrw of {〈i ,x〉 → e} f Kn+1
E
, Jf [w/x]Kn

E

Junfold (fold v)Kn+1
E
, δv

J(λx .e)vKn+1
E
, Je[v/x]Kn

E

Jlet !x = !v in eKn+1
E
, Je[v/x]Kn

E

Jlet x = e in f Kn+1
E
,
∑
v

JeKn
E
(v) · Jf [v/x]Kn

E

Lemma 40. For any type σ , the sequence of maps (J−Kn
E
)n≥0 forms an ω-chain in Λ•σ ⇀ V

•

σ .

By Lemma 40, we de�ne the evaluation map J−KE : PΛ•σ → DVσ as
⊔

n≥0J−KnE .

Lemma 41. The following identities hold.

Jreturn vKE , just v

Jprojl 〈v ,w〉KE = just v

Jprojr 〈v ,w〉KE = just w

Jlet x ⊗ y = v ⊗w in eKE = Je[x := v ,y := w]KE
Jcase inl v of {〈i ,x〉 → e} f KE = Je[v/x]KE
Jcase inrw of {〈i ,x〉 → e} f KE = Jf [w/x]KE

Junfold (fold v)KE = just v

J(λx .e)vKE = Je[v/x]KE
Jlet !x = !v in eKE = Je[v/x]KE

Jlet x = e in f KE =

Jf [v/x]KE if JeKE = just v

⊥ otherwise.

Let us now move to program distance. Since in a probabilistic setting we are mostly concerns with
probabilistic observations (such as the probability of convergence of a program) whose outcomes belong
to [0, 1], it is natural to consider ternary relations with [0, 1] in place of [0,∞], and thus distances taking
values in [0, 1]. All we have seen in previous section is left unchanged: we simply replace [0,∞] with
[0, 1] (and addition with truncated addition).

To extend the logical distance and applicative (bi)similarity distance to FPR, we essentially need a
construction to extend a ternary relation M ⊆ [0, 1] × X × Y to D̃M ⊆ [0, 1] × D (X) × D (Y). As
before, once such an extension is de�ned, we obtain an extension for D≤1 relying on the isomorphism
D≤1 (X) � D (X⊥). We de�ne D̃M by generalising couplings to a ternary setting.

De�nition 55. For a relationM ⊆ [0, 1] × X × Y de�nes D̃M ⊆ [0, 1] × D (X) × D (Y) by:

D̃M (a, D , E) ⇐⇒
4
∃C ∈ D ([0, 1] × X × Y).

∑
b ,y C (b,x ,y) = D (x)∑
b ,x C (b,x ,y) = E (y)

a ≥
∑
b b ·
∑

x ,y C (b,x ,y)
C (b,x ,y) > 0 =⇒ M (b,x ,y)

15As usual, we omit type subscripts.

59

To understand De�nition 55 let us consider the extension D (πi) : D (X1 × X2) → D (Xi) of of
the projection map πi : X1 × X2 → Xi to distributions de�ned by: D (π1) (D) (x) ,

∑
y D (x ,y) and

D (π2) (D) (y) ,
∑

x D (x ,y). Notice that a distribution C is a coupling of D and E if and only if
D (π1) (C) = D and D (π2) (C) = E . De�nition 55 stipulates that D̃M (a, D , E) holds if and only if
there exists a distribution C such that:

1. D (π2) (C) ∈ D (X × Y) is a coupling of D and E ;

2. a bounds the expected value16 of D (π1) (C) ∈ D[0, 1].

3. Triples (b,x ,y) in the support of C are related by M .

Proposition 13. 1. The map D̃ satis�es the following laws.

IA ⊆ D̃IA

D̃M ; D̃N ⊆ D̃ (M ;N)

M ⊆ N =⇒ D̃M ⊆ D̃N .

2. The following law holds, for all functions α , β : X → D (A) and relationsM : X +→ X , N : A +→ A:

M ⊆ α ; D̃N ; β> =⇒ D̃M ⊆ >>=α ; D̃N ; (>>=β)>.

3. For any s ≥ 1, we have:
[s](D̃M) ⊆ D̃ ([s]M).

At this point of the notes, it should be clear that once we have Proposition 13 we have all we need to
de�ne both logical distance and applicative bisimilarity distance and to prove that the latter are compatible
pseudometrics. Proving Proposition 13, however, is not that straightforward. We only sketch the key
insight behind such a proof. First, we observe that rephrasing our de�nition of D̃ in terms of distances,
we obtain the well-known Wasserstein-Kantorovich distance.

De�nition 56. Given a distance µ : X × Y → [0, 1], de�nes D̃µ : D (X) × D (Y) → [0, 1] by:

D̃µ (D , E) , inf
C ∈Ω(D ,E)

∑
x ,y

µ (x ,y) · C (x ,y).

Therefore, to prove Proposition 13 is is su�cient to show the metric-like counterparts of the structural
properties of D̃, namely:

IA ≥ D̃IA

D̃µ; D̃ν ≥ D̃ (µ;ν)

µ ≥ N =⇒ D̃µ ≥ D̃ν

µ ≥ α ; D̃ν ; β> =⇒ D̃µ ≥ >>=α ; D̃ν ; (>>=β)>

[s](D̃µ) ≥ D̃ ([s]µ),

where s ≥ 1.
To prove such properties, we use the celebrated Kantorovich-Rubinstein Theorem, which here we

give in a less general form (Kortanek & Yamasaki, 1995).
16 Recall that the expected value of a distribution D ∈ D[0, 1] is de�ned as

∑
x x ·D (x).

60

Theorem 8. Let i , j, . . . range over natural numbers. Letmi ,nj , ci j be non-negative real numbers, for all i , j.
De�ne

M , inf {
∑
i ,j

ci jxi j | xi j ≥ 0,
∑
j

xi j =mi ,
∑
i

xi j = nj , }

M∗ , sup{
∑
i

miai +
∑
j

njbj | ai + bj ≤ ci j ,ai ,bj bounded}.

Then the following hold:

1. M = M∗.

2. The linear problem P induced byM has optimal solution.

3. The linear problem P∗ induced byM∗ has optimal solution.

Corollary 3. Let D ∈ D (X), E ∈ D (Y) be countable distributions and µ : X × Y → [0, 1]. Then:

D̃µ (D , E) = min{
∑
x ,y

µ (x ,y) · C (x ,y) | C ∈ Ω(D , E)}

= max{
∑

x
ax ·D (x) +

∑
y
by · E (y) | ax + by ≤ µ (x ,y),ax ,by bounded},

where ax ,by bounded means that there exist ā, b̄ ∈ R such that ∀x . ax ≤ ā, and ∀y. by ≤ b̄.

Exercise 48. Prove Corollary 3

Exercise 49. Let I be a �nite set and pi i ∈I be a family of numbers in [0, 1] such that
∑

i pi ≤ 1. Show that
D̃µ (Di , Ei) =

∑
i ∈I pi · D̃µ (Di , Ei).

We now have all the ingredients to de�ne probabilistic logical relations for the fragment of FPR without
recursive types.

De�nition 57. De�ne logical distance L
∼ as follows:

L
∼
V

unit , IVunit
L
∼
V

σ×τ , J−KL ; (L
∼
V

σ ×
L
∼
V

σ); J−K
>

L

L
∼
V

σ ⊗τ , J−KL ; (L
∼
V

σ ⊗
L
∼
V

σ); J−K
>

L

L
∼
V

σ+τ , J−KL ; (L
∼
V

σ +
L
∼
V

σ); J−K
>

L

L
∼
V

σ(τ , J−KL ; [L
∼
V

σ →
L
∼

Λ

τ]; J−K>
L

L
∼
V

!sσ , J−KL ; [s] L
∼
V

σ ; J−K>
L

L
∼

Λ

σ , J−KE ; D̃ L
∼
V

σ ; J−K>
E
.

Relying on Proposition 13, we can mimic the usual argument seen so far to prove good properties of
logical relations, this way obtaining the following results.

Proposition 14 (Fundamental Lemma). I ⊆ L
∼

s.

Theorem 9. L
∼ is a re�exive, symmetric, transitive, compatible, and substitutive term relation.

3.8.1 Applicative Bisimilarity
Finally, we can extend our analysis to full FPR by de�ning a notion of probabilistic applicative bisimi-
larity distance. Conceptually, we do that exactly in the same way as we de�ned probabilistic applicative
bisimilarity.

First, we de�ne IDM by IDMM , D̃ (M̃ (M)). In particular, IDM inherits all the structural properties
of M̃ and IDM needed to prove re�exivity, transitivity, and compatibility of applicative similarity.

61

Proposition 15. 1. The map IDM satis�es the following laws.

IA⊥ ⊆ IDMIA
IDMM ; IDMN ⊆ IDM (M ;N)

M ⊆ N =⇒ IDMM ⊆ IDMN .

2. The following law holds, for all functions α , β : X → D (A) and relationsM : X +→ X , N : A +→ A:

M ⊆ α ; IDMN ; β> =⇒ IDMM ⊆ >>=α ; IDMN ; (>>=β)>.

3. For all s ≥ 1, we have:
[s](IDMµ) ≥ IDM ([s]µ).

De�nition 58. Given a closed term relationM , we de�ne the closed term relation [M] as follows:

[M]Vunit , IVunit
[M]Vvoid , ∅
[M]Vσ×τ , J−KL ;MV

σ ×M
V

σ ; J−K>
L

[M]Vσ ⊗τ , J−KL ;MV

σ ⊗ MV

σ ; J−K>
L

[M]Vσ+τ , J−KL ;MV

σ +M
V

σ ; J−K>
L

[M]Vµt.σ , J−KL ;MV

σ [t/µt.σ]; J−K
>

L

[M]V!sσ , J−KL ; [s]MV

σ ; J−K>
L

[M]Vσ(τ , J−KL ; [IVσ → MΛ
τ]; J−K>

L

MΛ
σ , J−KE ; IDMMV

σ ; J−K>
E

A term relationM is an applicative simulation ifM ⊆ [M].

Since IDM is monotone, then so is [−] so that we can de�ne applicative similarity as the greatest
�xed point of [−]:

a
� , νM .[M].

As usual, we de�ne a
' as

a
� ∩ (

a
�)>.

Finally, by relying on a slight generalisation of Howe’s method as highlighted in Section ???, one can
prove that applicative bisimilarity distance is a compatible pseudometric.

Theorem 10. Applicative similarity is re�exive, transitive, and compatible. Applicative bisimilarity is,
additionally, symmetric.

62

Chapter 4

Contextual Di�erences

4.1 Making the Quantale To Vary
Notions of program equivalence and program metrics as introduced in the last two chapters are very con-
servative as for how the environment could act when trying to distinguish between the two compared
programs. If you consider, e.g., contextual equivalence, it is clear that all contexts, namely, all environ-
ments, are taken into account. Other notions of equivalences are even more discriminating. Similarly for
metrics. As a consequence, if one tries to compare programs which are not equivalent although behaving
very similarly only when the environment interact with them in a benign way, those programs are put
very far away from each other.

4.2 Endowing ΛST with Real Numbers
For the sake of simplicity, our vehicle calculus will tbe the simply-typed calculus ΛST where, however,
ground types include ot only bool and unit, but also a type of real number real.

4.3 Di�erential Logical Relations
Types of Λ are built starting from a countable set of type variables (denoted by the letter α in Figure 4.1)
and the basic type real for real numbers, using �nite sum, arrow, and recursive type constructors. In
particular, in a type of the form

∑
i ∈I σi we assume the letter I to stand for a �nite set whose elements are

denoted by ı̂, ̂, We write void and unit for the empty sum type and void→ void, respectively.
Terms of Λ are divided in two classes: values and expressions (also called computations). Intuitively, a

value is the result of a computation, whereas an expression is a value producer, i.e. a term that once eval-
uated may produce a value (the evaluation process might not terminate) as well as side e�ects (the latter
being probabilistic). Accordingly, computations must be explicitly sequenced by means of the sequencing
constructor let x = − in −.

We use judgments of the form Γ `Λ e : σ for expressions, and Γ `V v : σ for values. In a judgment of
the form Γ `Λ e : σ (resp. Γ `V v : σ), Γ denotes an environment, i.e. a �nite sequence x1 : σ1, . . . ,xn : σn
of distinct variables with associated closed types (we denote by · the empty environment), σ is a closed
type, and e (resp. v) is an expression (resp. value) with free variables among Γ. Notice that we work with
closed types only. We use the letter e (possibly with sup- and subscripts) to denote expressions, and v
(possibly with sup- and subscripts) to denote values. We also refer to sequents Γ `Λ σ as computation
or expression sequents, and to Γ `V σ as value sequents. When the distinction between values and
expressions is not relevant, we generically refer to terms.

Each real number r is represented in ΛP by the value r. Additionally, ΛP is parametric with respect
to a N-indexed family C of countable sets Cn , each of which contains (symbols for) measurable functions
from Rn to R. In particular, we assume standard real-valued arithmetic operations to be in C. We use

63

letters F ,G, . . . to denote elements in Cn . Notice that a function F ∈ Cn has values as arguments, rather
than expressions. Indeed, we can encode the expression F (e1, . . . , en) as1 let x1 = e1 in (let x2 =

e2 in . . . (let xn = en in F (x1, . . . ,xn))).
Finally, the expression sample stands for the uniform distribution over the unit interval, which is

nothing but the Lebesgue measure λ on [0, 1]. As it is shown in e.g. ??, starting from sample it is possible
to de�ne several probabilistic measures (e.g. binomial, geometric, and exponential distribution) using
functions in C.

Example 4. Given closed terms eµ , eσ of type real (encoding mean µ and standard deviation σ) we rep-
resent the normal distribution with mean µ and standard deviation σ as the ΛP expression normal eµ eσ ,
where the term normalstd encodes the normal distribution with mean 0 and standard deviation 1. No-
tice that the expressions eµ , eσ may be themselves de�ned in terms of other distributions:

normalstd , let x = sample in (let y = sample in return (
√
−2 log(x) cos(2πy)))

normal eµ eσ , let xµ = eµ , xσ = eσ ,y = normalstd in ((xσ ∗ y) + xµ).

�

We adopt the standard syntactical conventions as in Barendregt (1984), notably the so-called variable
convention. In particular, we denote by FV (e) (resp. FV (v)) the collection of free variables of e (resp. v)
(notice that, e.g., in a term of the form case v of {fold x → e} the variable x is bound in e). We refer to
closed expressions as programs. We denote by e[v/x] (resp. v ′[v/x]) the capture-free substitution of the
value v for all free occurrences of x in e (resp. v ′) and identify terms up to renaming of bound variables.
We extend the aforementioned conventions to types. For instance, we denote by σ1[σ2/α] the result of
capture-avoiding substitution of the type σ2 for the type variable α in σ1. Finally, we use the notation Λ
andV to denote the collections of all typable expressions and values, respectively.

Γ, x : σ `V x : σ
Γ `V v : σ
Γ `Λ v : σ

r ∈ R
Γ `V r : real Γ `Λ sample : real

Γ `V v1 : real · · · Γ `V vn : real F ∈ Cn
Γ `Λ F (v1, . . . ,vn) : real

Γ, x : σ1 `
Λ e : σ2

Γ `V λx .e : σ1 → σ2

Γ `V v1 : σ1 → σ2 Γ `V v2 : σ2

Γ `Λ v1v2 : σ2

Γ `Λ e1 : σ1 Γ, x : σ1 `
Λ e2 : σ2

Γ `Λ let x = e1 in e2 : σ2

Γ `V v : σı̂
Γ `V 〈ı̂ ,v〉 :

∑
i∈I σi

Γ `V v :
∑
i∈I σi Γ, x : σi `Λ ei : σ (∀i ∈ I)

Γ `Λ case v of {〈i , x 〉 → ei } : σ
Γ `V v : σ [µα .σ /α]
Γ `V fold v : µα .σ

Γ `V v : µα .σ1 Γ, x : σ1[µα .σ1/α] `Λ e : σ2

Γ `Λ case v of {fold x → e } : σ2

Figure 4.1: Static semantics of ΛP.

4.4 Generalized Metric Domains

1This encoding re�ects the standard semantics of operations, where to evaluate an expression of the form F (e1, . . . , en) one
�rst sequentially evaluates its arguments, proceeding from left to right.

64

References

Barendregt, H. (1984). The lambda calculus: its syntax and semantics. North-Holland.
Crubillé, R., & Dal Lago, U. (2015). Metric reasoning about lambda-terms: The a�ne case. In Proc. of LICS

2015 (pp. 633–644).
Crubillé, R., & Dal Lago, U. (2017). Metric reasoning about lambda-terms: The general case. In Proc. of

ESOP 2017 (pp. 341–367).
de Amorim, A., Gaboardi, M., Hsu, J., Katsumata, S., & Cherigui, I. (2017). A semantic account of metric

preservation. In Proc. of POPL 2017 (pp. 545–556).
Gaboardi, M., Katsumata, S., Orchard, D. A., Breuvart, F., & Uustalu, T. (2016). Combining e�ects and

coe�ects via grading. In Proc. of ICFP 2016 (pp. 476–489).
Girard, J., Scedrov, A., & Scott, P. (1992). Bounded linear logic: A modular approach to polynomial-time

computability. Theor. Comput. Sci., 97 , 1–66.
Gordon, A. (1994, September). A tutorial on co-induction and functional programming. In Workshops in

computing (p. 78-95). Springer London.
Harper, R. (2016). Practical foundations for programming languages (2nd. ed.). Cambridge University Press.

Retrieved from https://www.cs.cmu.edu/%7Erwh/pfpl/index.html
Hofmann, D., Seal, G., & Tholen, W. (Eds.). (2014). Monoidal topology. a categorical approach to order,

metric, and topology (No. 153). Cambridge University Press.
Howe, D. (1996). Proving congruence of bisimulation in functional programming languages. Inf. Comput.,

124(2), 103-112.
Katsumata, S. (2018). A double category theoretic analysis of graded linear exponential comonads. In

Proc. of FOSSACS 2018 (pp. 110–127).
Kelly, G. M. (2005). Basic concepts of enriched category theory. Reprints in Theory and Applications of

Categories(10), 1–136.
Kortanek, K., & Yamasaki, M. (1995). Discrete in�nite transportation problems. Discrete Applied Mathe-

matics(58), 19–33.
Lassen, S. (1998). Relational reasoning about functions and nondeterminism (Unpublished doctoral disser-

tation). Dept. of Computer Science, University of Aarhus.
Lawvere, F. (1973). Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano,

43, 135–166.
Levy, P., Power, J., & Thielecke, H. (2003). Modelling environments in call-by-value programming lan-

guages. Inf. Comput., 185(2), 182–210.
Morris, J. (1969). Lambda calculus models of programming languages (Unpublished doctoral dissertation).

MIT.
Plotkin, G. (1975). Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer Science,

1(2), 125 - 159.
Reed, J., & Pierce, B. (2010). Distance makes the types grow stronger: a calculus for di�erential privacy.

In Proc. of ICFP 2010 (pp. 157–168).

65

https://www.cs.cmu.edu/%7Erwh/pfpl/index.html

	Introduction
	Program Equivalences
	Mathematical Preliminaries
	Set-theoretic Constructions

	A Simply-Typed -Calculus
	Static Semantics
	Dynamic Semantics

	Relational Calculus
	Denotational and Contextual Equivalences and Refinements
	Denotational Equality

	Logical Relations
	Recursive Types and Applicative Bisimilarity
	Dynamic Semantics
	Relational Calculus
	Applicative Bisimilarity
	Compatibility

	Probabilistic Effects
	Logical Relations
	Applicative Bisimilarity

	Program Metrics
	From Relations to Distances
	Compositionality, Distance Amplification, and Linear Types
	Endowing with Linearity Constraints
	Static Semantics
	Dynamic Semantics

	Quantiative Relational Calculus
	Metric Logical Relations
	Applicative Bisimilarity Distance
	Denotational Semantics Through Metric Spaces
	Metrics and Probabilistic Lambda Calculi
	Applicative Bisimilarity

	Contextual Differences
	Making the Quantale To Vary
	Endowing ST with Real Numbers
	Differential Logical Relations
	Generalized Metric Domains

