ON DIFFERENTIAL PROGRAM SEMANTICS

Ugo Dal Lago

Department of Computer Science and Engineering University of Bologna

DENOTATIONAL SEMANTICS

$$\mathcal{C}^*: \tau \to \rho$$

$$\stackrel{=}{}_{A}\stackrel{=}{} A^{*} \in \tau$$

DENOTATIONAL SEMANTICS

$$\mathcal{L}^*: \tau \to \rho$$

$$\exists A = A^* \in \tau$$

$$\mathcal{C}^*(A^*)$$

1. Given a programming language, define a **type system**.

 $\tau ::= \operatorname{NAT} \mid \tau \to \rho$

1. Given a programming language, define a **type system**.

$$\tau ::= \operatorname{NAT} \mid \tau \to \rho \qquad \qquad \vdash M: \tau$$

1. Given a programming language, define a **type system**.

$$\tau ::= \operatorname{NAT} \mid \tau \to \rho \qquad \qquad \vdash M : \tau$$

2. Define a **family of relations** between programs, indexed by types, and following their structure.

 $M \mathcal{R}_{\tau \to \rho} N$ iff $(ML) \mathcal{R}_{\rho} (NP)$ whenever $L \mathcal{R}_{\tau} P$.

1. Given a programming language, define a type system.

$$\tau ::= \operatorname{NAT} \mid \tau \to \rho \qquad \qquad \vdash M : \tau$$

2. Define a **family of relations** between programs, indexed by types, and following their structure.

 $M \mathcal{R}_{\tau \to \rho} N$ iff $(ML) \mathcal{R}_{\rho} (NP)$ whenever $L \mathcal{R}_{\tau} P$.

3. Prove the Fundamental Theorem

$$\vdash M : \tau \implies M \mathcal{R}_{\tau} M$$

1. See program (configurations) as states of a labelled transition system.

1. See program (configurations) as states of a labelled transition system.

2. Define a notion of **bisimulation relation**.

 $(M \mathcal{R} N) \land (M \xrightarrow{\ell} L) \implies \exists P.(N \xrightarrow{\ell} P) \land (L \mathcal{R} P),$ $(N \mathcal{R} M) \land (N \xrightarrow{\ell} P) \implies \exists L.(M \xrightarrow{\ell} L) \land (L \mathcal{R} P).$

Bisimilarity, indicated as \sim , is the largest bisimulation relation.

1. See program (configurations) as states of a labelled transition system.

2. Define a notion of **bisimulation relation**.

$$(M \mathcal{R} N) \land (M \xrightarrow{\ell} L) \implies \exists P.(N \xrightarrow{\ell} P) \land (L \mathcal{R} P),$$
$$(N \mathcal{R} M) \land (N \xrightarrow{\ell} P) \implies \exists L.(M \xrightarrow{\ell} L) \land (L \mathcal{R} P).$$

Bisimilarity, indicated as \sim , is the largest bisimulation relation. 3. Prove that **bisimilarity is a congruence**.

$$M \sim N \Longrightarrow C[M] \sim C[N]$$

1. See program (configurations) as stat s of a labelled transition system.

- ▶ Very successful in the absence of types, and in a concurrent scenario.
- ▶ Becomes extremely useful in practice when coupled with so-called up-to techniques.

▶ Incepted into program semantics by Milner.

$$(N \mathcal{R} M) \land (N \xrightarrow{\ell} P) \Longrightarrow \exists L. (M \xrightarrow{\ell} L) \land (L \mathcal{R} P).$$

Bisimilarity, indicated as \sim , is the largest bisimulation relation. 3. Prove that **bisimilarity is a congruence**.

$$M \sim N \Longrightarrow C[M] \sim C[N]$$

2. Def

1. Types are interpreted as **games**, namely sets of sequences of **moves**.

 $GAME(\mathtt{NAT}) = \{\varepsilon, q, q \cdot 0, q \cdot 1, q \cdot 2, \cdots\}$

 $GAME(\mathtt{NAT} \to \mathtt{BOOL}) = \{\varepsilon, q_{\mathtt{BOOL}}, q_{\mathtt{BOOL}} \cdot True, q_{\mathtt{BOOL}} \cdot False, q_{\mathtt{BOOL}} \cdot q_{\mathtt{NAT}}, \cdots \}$

1. Types are interpreted as **games**, namely sets of sequences of **moves**.

 $GAME(NAT) = \{\varepsilon, q, q \cdot 0, q \cdot 1, q \cdot 2, \cdots\}$

 $GAME(\mathtt{NAT} \to \mathtt{BOOL}) = \{\varepsilon, q_{\mathtt{BOOL}}, q_{\mathtt{BOOL}} \cdot True, q_{\mathtt{BOOL}} \cdot False, q_{\mathtt{BOOL}} \cdot q_{\mathtt{NAT}}, \cdots \}$

2. Programs are interpreted as **strategies**, namely functions which returns *the next move* from the history.

$$f = STRATEGY(\lambda x.if (x > 0) \text{ then } True \text{ else } False$$
$$f(q_{\text{BOOL}}) = q_{\text{NAT}}; \qquad f(q_{\text{BOOL}} \cdot q_{\text{NAT}} \cdot 3) = True$$

1. Types are interpreted as **games**, namely sets of sequences of **moves**.

 $GAME(NAT) = \{\varepsilon, q, q \cdot 0, q \cdot 1, q \cdot 2, \cdots\}$

 $GAME(\mathtt{NAT} \to \mathtt{BOOL}) = \{\varepsilon, q_{\mathtt{BOOL}}, q_{\mathtt{BOOL}} \cdot True, q_{\mathtt{BOOL}} \cdot False, q_{\mathtt{BOOL}} \cdot q_{\mathtt{NAT}}, \cdots \}$

2. Programs are interpreted as **strategies**, namely functions which returns *the next move* from the history.

$$f = STRATEGY(\lambda x.if (x > 0) \text{ then } True \text{ else } False$$
$$f(q_{\text{BOOL}}) = q_{\text{NAT}}; \qquad f(q_{\text{BOOL}} \cdot q_{\text{NAT}} \cdot 3) = True$$

3. Computation is seen as the **interaction** between a program, modeled as a strategy, and its environment, itself seen as a (possibly nondeterministic) strategy, called the **observer**.

 G_{4}

2. Pro

the

A **Recipe**

1. Types are interpreted as **games**, namely sets of sequences of **moves**.

- The equivalence induced by interpreting programs as strategies has been proved to *coincide* with contextual equivalence in many cases.
- It has been proved to be adaptable to many different kinds of programming languages, and to concurrent languages in particular.
- There is a symmetry between the program and the environment, which can be seen itself as a strategy.

· · · }

rns

3. Consputation is been as the interaction between a program, instanted as a strategy, and its environment, itself seen as a (possibly nondeterministic) strategy, called the **observer**.

A Story of Successes...

A Story of Successes... ... is This The End?

A Story of Successes... ... is This The End? Definitely No! ▶ Can we turn logical relations into a *metric*?

$$\mathcal{R}_{ au} \subseteq \Lambda_{ au} imes \Lambda_{ au} \qquad \longmapsto \qquad \Delta_{ au} : \Lambda_{ au} imes \Lambda_{ au} o \mathbb{R}^{\infty}_{> 0}$$

• Can we turn logical relations into a *metric*?

$$\mathcal{R}_{ au} \subseteq \Lambda_{ au} imes \Lambda_{ au} \qquad \longmapsto \qquad \Delta_{ au} : \Lambda_{ au} imes \Lambda_{ au} o \mathbb{R}^{\infty}_{\geq 0}$$

• We can answer this question affirmatively [RP2010]! Define a **family of metrics**, indexed by types, as follows:

 $\Delta_{\tau \to \rho}(M, N) \leq k$ iff $\Delta_{\rho}(ML, NP) \leq k + \Delta_{\tau}(L, P)$ whenever $L, P : \tau$

• Can we turn logical relations into a *metric*?

$$\mathcal{R}_{\tau} \subseteq \Lambda_{\tau} imes \Lambda_{\tau} \qquad \longmapsto \qquad \Delta_{\tau} : \Lambda_{\tau} imes \Lambda_{\tau} o \mathbb{R}_{\geq 0}^{\infty}$$

• We can answer this question affirmatively [RP2010]! Define a **family of metrics**, indexed by types, as follows:

 $\Delta_{\tau \to \rho}(M, N) \leq k$ iff $\Delta_{\rho}(ML, NP) \leq k + \Delta_{\tau}(L, P)$ whenever $L, P : \tau$

> The **Fundamental Theorem** can be extended naturally:

 $\Delta_{\tau}(M, M) = 0$ whenever $M : \tau$

► Can we	 This only works in a affine setting, so not in the case of the STλC. Functions on the reals we start from must be Lipschitz 	$\cdot:\Lambda_ au imes\Lambda_ au o\mathbb{R}^\infty_{\geq 0}$
► We car metric	 Categorically, this corresponds to the fact that metric spaces with Lipchitz maps form a SMCC, but 	10]! Define a family of
$\Delta_{ au o ho}$	not a CCC.	$L(L, P)$ whenever $L, P : \tau$
► The Fundamental Theorem can be extended naturally:		

 $\Delta_\tau(M,M)=0$ whenever $M:\tau$

But Very Similar if x is Close to 0

8

A PARADIGM SHIFT

The **Difference** is the Meaning.

The **Difference** is the Meaning. The Context **Matters**.

A PARADIGM SHIFT

The **Difference** is the Meaning. The Context **Matters**.

A PARADIGM SHIFT

The **Difference** is the Meaning. The Context **Matters**.

1 1 1 def A(x): def B(x): return sin(x) return x $\varepsilon \approx 0$ $\delta(y) = y - \sin y$ $\delta \circ \varepsilon = \delta(\varepsilon) \approx 0$ Not Equivalent At **Infinite** Distance But Very Similar if x is Close to 0

FUNDAMENTAL TENSION

TENSION FUNDAMENTAI

TENSION FUNDAMENTAI

Differential Logical Relations

$\mathbf{Types} \\ \tau, \rho ::= REAL \mid \tau \to \rho \mid \tau \times \rho$

_	Types
5	$\tau, \rho ::= REAL \mid \tau \to \rho \mid \tau \times \rho$
$\sum_{i=1}^{n}$	Typing Rules
2	$x: \tau \in \Gamma \qquad \qquad f_n \in \mathcal{F}_n \qquad \qquad \Gamma, x: \tau \vdash M: \rho$
	$\Gamma \vdash x : \tau \qquad \Gamma \vdash r : REAL \qquad \Gamma \vdash f_n : REAL^n \to REAL \qquad \Gamma \vdash \lambda x.M : \tau \to \rho$
5	$\underline{\Gamma \vdash M : \tau \to \rho \Gamma \vdash N : \tau} \qquad \underline{\Gamma \vdash M : \tau \Gamma \vdash N : \rho}$
-	$\Gamma \vdash MN : \rho \qquad \qquad \Gamma \vdash \langle M, N \rangle : \tau \times \rho \qquad \qquad \Gamma \vdash \pi_1 : \tau \times \rho \to \tau \qquad \qquad \Gamma \vdash \pi_2 : \tau \times \rho \to \rho$
_	$\frac{\Gamma \vdash M : \tau \Gamma \vdash N : \tau}{\Gamma \vdash N : \tau} \qquad \qquad \frac{\Gamma \vdash M : \tau \to \tau \Gamma \vdash N : \tau}{\Gamma \vdash N : \tau}$
	$\Gamma \vdash \texttt{ifiz} \ M \ \texttt{else} \ N : \textit{REAL} \to au \qquad \Gamma \vdash \texttt{ifer} \ M \ \texttt{base} \ N : \textit{REAL} \to au$

	Types
GE	$\tau, \rho ::= REAL \mid \tau \to \rho \mid \tau \times \rho$
JA	
F	Typing Rules
	$\frac{x:\tau\in\Gamma}{\Gamma\vdash\pi:\tau\in\Gamma} \qquad \frac{f_n\in\mathcal{F}_n}{\Gamma\vdash\tau:\tau\in\Gamma} \qquad \frac{\Gamma,x:\tau\vdash M:\rho}{\Gamma\vdash\tau:\tau\in\Gamma}$
	$\Gamma \vdash x: \tau \qquad \Gamma \vdash \tau: RLAL \qquad \Gamma \vdash J_n: RLAL \rightarrow RLAL \qquad \Gamma \vdash Ax.M: \tau \rightarrow \rho$
1	$\frac{1 \vdash M : \tau \rightarrow \rho 1 \vdash N : \tau}{\Gamma \vdash M N} = \frac{1 \vdash M : \tau 1 \vdash N : \rho}{\Gamma \vdash M N} = \frac{\Gamma}{\Gamma}$
	$1 \vdash MN : \rho \qquad 1 \vdash \langle M, N \rangle : \tau \times \rho \qquad 1 \vdash \pi_1 : \tau \times \rho \to \tau \qquad 1 \vdash \pi_2 : \tau \times \rho \to \rho$
	$\frac{1 \vdash M : \tau 1 \vdash N : \tau}{1 \vdash M : \tau \rightarrow \tau 1 \vdash N : \tau}$
5	$\Gamma \vdash \text{iflz } M \text{ else } N : REAL \to \tau$ $\Gamma \vdash \text{iter } M \text{ base } N : REAL \to \tau$
$\sum_{i=1}^{n}$	
	Denotational Semantics

 $\llbracket REAL \rrbracket = \mathbb{R};$

 $\llbracket \tau \to \rho \rrbracket = \llbracket \tau \rrbracket \to \llbracket \rho \rrbracket; \qquad \qquad \llbracket \tau \times \rho \rrbracket = \llbracket \tau \rrbracket \times \llbracket \rho \rrbracket.$

THE DEFINITION

 $(REAL) = \mathbb{R}_{\geq 0}^{\infty};$

Distance Spaces

 $(\tau \to \rho) = \llbracket \tau \rrbracket \times (\tau) \to (\rho);$

$$(\tau \times \rho) = (\tau) \times (\rho);$$

 $(REAL) = \mathbb{R}_{>0}^{\infty};$

Distance Spaces $(\tau \to \rho) = [\tau] \times (\tau) \to (\rho);$ $(\tau \times \rho) = (\tau) \times (\rho);$

DLRs as Ternary Relations

 $\delta_{REAL}(M, r, N) \Leftrightarrow |NF(M) - NF(N)| \leq r;$ $\delta_{\tau \times \rho}(M, (d_1, d_2), N) \Leftrightarrow \delta_{\tau}(\pi_1 M, d_1, \pi_1 N) \wedge \delta_{\rho}(\pi_2 M, d_2, \pi_2 N)$ $\delta_{\tau \to \rho}(M, d, N) \Leftrightarrow (\forall V \in CV(\tau). \ \forall x \in (\![\tau]\!]. \ \forall W \in CV(\tau).$ $\delta_{\tau}(V, x, W) \Rightarrow \delta_{\rho}(MV, d([\![V]\!], x), NW)$ $\wedge \delta_{\rho}(MW, d([\![V]\!], x), NV)).$ $(REAL) = \mathbb{R}_{>0}^{\infty};$

Distance Spaces $(\tau \to \rho) = [\tau] \times (\tau) \to (\rho);$ $(\tau \times \rho) = (\tau) \times (\rho);$

DLRs as Ternary Relations

 $\delta_{REAL}(M, r, N) \Leftrightarrow |NF(M) - NF(N)| \leq r;$ $\delta_{\tau \times \rho}(M, (d_1, d_2), N) \Leftrightarrow \delta_{\tau}(\pi_1 M, d_1, \pi_1 N) \wedge \delta_{\rho}(\pi_2 M, d_2, \pi_2 N)$ $\delta_{\tau \to \rho}(M, d, N) \Leftrightarrow (\forall V \in CV(\tau). \ \forall x \in (\![\tau]\!]. \ \forall W \in CV(\tau).$ $\delta_{\tau}(V, x, W) \Rightarrow \delta_{\rho}(MV, d([\![V]\!], x), NW)$ $\wedge \delta_{\rho}(MW, d([\![V]\!], x), NV)).$

Theorem (Fundamental Lemma, Version I) For every $\vdash M : \tau$, there is $d \in (|\tau|)$ such that $\delta_{\tau}(M, d, M)$. Claim

 $\delta_{REAL \to REAL}(M_{ID}, \lambda \langle x, y \rangle . y + |x - \sin x|, M_{SIN})$

Claim

$$\delta_{REAL \to REAL}(M_{ID}, \lambda \langle x, y \rangle . y + |x - \sin x|, M_{SIN})$$

Proof.

Consider any pairs of real numbers $r, s \in \mathbb{R}$ such that $|r - s| \leq \varepsilon$, where $\varepsilon \in \mathbb{R}_{\geq 0}^{\infty}$. We have that:

$$\begin{aligned} |\sin r - s| &= |\sin r - r + r - s| \le |\sin r - r| + |r - s| \\ &\le |\sin r - r| + \varepsilon = f(r, \varepsilon) \\ |\sin s - r| &= |\sin s - \sin r + \sin r - r| \\ &\le |\sin s - \sin r| + |\sin r - r| \le |s - r| + |\sin r - r| \\ &\le \varepsilon + |\sin r - r| = f(r, \varepsilon). \end{aligned}$$

 $M_{ID} = \lambda x.x$

$$\Delta_{\tau \to \tau}(M_{ID}, M_{ID}) = 0$$

$$M_{ID} = \lambda x.x$$

$$\Delta_{\tau \to \tau}(M_{ID}, M_{ID}) = 0$$
$$M_{ID} = \lambda x.x$$
$$\delta_{\tau \to \tau}(M_{ID}, \lambda \langle x, y \rangle.y, M_{ID})$$

▶ The function Δ_{ρ} is indeed a (pseudo)-metric.

 M_I

$$\Delta_{\tau \to \tau}(M_{ID}, M_{ID}) = 0$$
$$\delta_{\tau \to \tau}(M_{ID}, \lambda \langle x, y \rangle . y, M_{ID})$$

▶ The function Δ_{ρ} is indeed a (pseudo)-metric.

▶ The function $\lambda \langle x, y \rangle \cdot y$ is the smallest self distance for M_{ID} .

$$\Delta_{\tau \to \tau}(M_{ID}, M_{ID}) = 0$$
$$= \lambda x.x$$
$$\delta_{\tau \to \tau}(M_{ID}, \lambda \langle x, y \rangle.y, M_{ID})$$

▶ The function Δ_{ρ} is indeed a (pseudo)-metric.

 M_{ID}

- The function $\lambda \langle x, y \rangle y$ is the smallest self distance for M_{ID} .
- (The function induced by) δ_{ρ} , indeed, does not satisfy the reflexivity axiom, and as a consequence does not have the structure of a metric.

 $\Delta_{\tau \to \tau}(M_{ID}, M_{ID}) = 0$ $M_{ID} = \lambda x.x$ $\delta_{\tau \to \tau}(M_{ID}, \lambda \langle x, y \rangle. y, M_{ID})$

- ▶ The function Δ_{ρ} is indeed a (pseudo)-metric.
- ▶ The function $\lambda \langle x, y \rangle . y$ is the smallest self distance for M_{ID} .
- (The function induced by) δ_{ρ} , indeed, does not satisfy the reflexivity axiom, and as a consequence does not have the structure of a metric.
- ▶ It can however be given the structure of a generalized metric domain.

Hereditarily Finite Distances $(REAL)^{<\infty} = \mathbb{R}_{\geq 0}; \qquad (\tau \times \rho)^{<\infty} = (\tau)^{<\infty} \times (\rho)^{<\infty};$ $(\tau \to \rho)^{<\infty} = \{f \in (\tau \to \rho) \mid \forall x \in [[\tau]]. \forall t \in (\tau)^{<\infty}. f(x, t) \in (\rho)^{<\infty}\}.$

Hereditarily Finite Distances

 $(REAL)^{<\infty} = \mathbb{R}_{\geq 0}; \qquad (\tau \times \rho)^{<\infty} = (\tau)^{<\infty} \times (\rho)^{<\infty};$

$$(\tau \to \rho)^{<\infty} = \{ f \in (\tau \to \rho) \mid \forall x \in [\tau]] . \forall t \in (\tau)^{<\infty} . f(x, t) \in (\rho)^{<\infty} \}$$

Lemma

Whenever $\vdash M, N : \tau$, M is logically related to N iff $\delta_{\tau}(M, d, N)$ where $d \in (|\tau|)^0$.

Hereditarily Finite Distances $(REAL)^{<\infty} = \mathbb{R}_{\geq 0};$ $(\tau \times \rho)^{<\infty} = (\tau)^{<\infty} \times (\rho)^{<\infty};$

$$(\tau \to \rho)^{<\infty} = \{ f \in (\tau \to \rho) \mid \forall x \in [\tau]] . \forall t \in (\tau)^{<\infty} . f(x,t) \in (\rho)^{<\infty} \} .$$

Lemma

Whenever $\vdash M, N : \tau$, M is logically related to N iff $\delta_{\tau}(M, d, N)$ where $d \in (|\tau|)^0$.

Theorem (Fundamental Lemma, Version II)

For every $\vdash M : \tau$, there is $d \in (|\tau|)^{<\infty}$ such that $\delta_{\tau}(M, d, M)$.

RECURSION

RECURSION

 $\begin{array}{l} \textbf{Adding Recursion} \\ \hline \Gamma, f: \tau \to \rho, x: \tau \vdash M: \rho \\ \hline \Gamma \vdash \texttt{fix}(f, x).M: \tau \to \rho \end{array}$

20

Step-indexed DLRs

 $\delta_{REAL}(\boldsymbol{n}, V, r, W) \Leftrightarrow |V - W| \leq r;$

•

RECURSION

δ

$$\begin{split} \tau_{\to\rho}(n,V,d,W) &\Leftrightarrow (\forall k < n, \forall U \in CV(\tau). \ \forall x \in (\![\tau]\!], \ \forall Z \in CV(\tau). \\ \delta_{\tau}(k,U,x,Z) &\Rightarrow \delta_{\rho}(k,VU,d([\![U]\!],x),WZ) \\ &\wedge \delta_{\rho}(k,VZ,d([\![U]\!],x),WU)); \end{split}$$
$$\delta_{\tau}(n,M,d,N) &\Leftrightarrow \forall k < n. \ (M \Downarrow_{k} V \land N \Downarrow W \Rightarrow \delta_{\tau}(n-k,V,d,W) \land N \Downarrow_{k} W \land M \Downarrow V \Rightarrow \delta_{\tau}(n-k,V,d,W)) \end{split}$$
Step-indexed DLRs

 $\delta_{REAL}(\boldsymbol{n}, V, r, W) \Leftrightarrow |V - W| \leq r;$

RECURSION

$$\begin{split} \tau_{\to\rho}(n,V,d,W) &\Leftrightarrow (\forall k < n, \forall U \in CV(\tau). \ \forall x \in (\![\tau]\!], \ \forall Z \in CV(\tau). \\ \delta_{\tau}(k,U,x,Z) &\Rightarrow \delta_{\rho}(k,VU,d([\![U]\!],x),WZ) \\ &\wedge \delta_{\rho}(k,VZ,d([\![U]\!],x),WU)); \\ \delta_{\tau}(n,M,d,N) &\Leftrightarrow \forall k < n. \ (M \Downarrow_{k} V \land N \Downarrow W \Rightarrow \delta_{\tau}(n-k,V,d,W) \land N \Downarrow_{k} W \land M \Downarrow V \Rightarrow \delta_{\tau}(n-k,V,d,W). \end{split}$$

Theorem (Fundamental Lemma, Version III) For every $\vdash M : \tau$ and $n \ge 0$, there is $d \in ([\tau])$ such that $\delta_{\tau}(n, M, d, M)$.

EFFECTS

$$\tau ::= \cdots \mid T(\tau)$$

Effectful Distance Spaces

 $(\!(REAL)) = \mathbb{R}^{\infty}_{\geq 0}; \quad (\!(\tau \to \rho)) = [\![\tau]\!] \times (\!(\tau)) \to (\!(\rho)); \quad (\!(\tau \times \rho)) = (\!(\tau)) \times (\!(\rho)); \quad (\!(T(\tau))) = U(\!(\tau))$

Effectful Distance Spaces

 $(\!(REAL)) = \mathbb{R}^{\infty}_{\geq 0}; \quad (\!(\tau \to \rho)) = [\![\tau]\!] \times (\!(\tau)) \to (\!(\rho)); \quad (\!(\tau \times \rho)) = (\!(\tau)) \times (\!(\rho)); \quad (\!(T(\tau))) = U(\!(\tau))$

- ▶ Randomness. $T = U = \mathcal{D}$ (distribution monad)
- ▶ Output.
 - $\blacktriangleright T = \Sigma^* \times$ (output monad);
 - $U = \mathbb{N} \times -$ (difference between output strings).

Effectful Distance Spaces

 $(\!(REAL)) = \mathbb{R}^{\infty}_{\geq 0}; \quad (\!(\tau \to \rho)) = [\![\tau]\!] \times (\!(\tau)) \to (\!(\rho)); \quad (\!(\tau \times \rho)) = (\!(\tau)) \times (\!(\rho)); \quad (\!(T(\tau))) = U(\!(\tau))$

- ▶ Randomness. $T = U = \mathcal{D}$ (distribution monad)
- ▶ Output.
 - $\blacktriangleright T = \Sigma^* \times$ (output monad);
 - $U = \mathbb{N} \times -$ (difference between output strings).

DLRs as Ternary Dependent Relations

$$\delta_A \in \prod_{a \in A} 2^{\Delta(a) \times A}$$

$$\subseteq (A): \text{ Allowed distances for } a \in A$$

EFFECTS

Denotational Semantics

▶ Can we replace DLRs with **metrics**?

$$d \; : \; \llbracket \sigma \rrbracket \times \llbracket \sigma \rrbracket \longrightarrow (\!\! \sigma)\!\!\!)$$

▶ Can we replace DLRs with **metrics**?

$$d : \llbracket \sigma \rrbracket \times \llbracket \sigma \rrbracket \longrightarrow (\!\! \sigma)\!\!\!)$$

▶ In usual metric semantics each type σ is associated with a metric $d : \llbracket \sigma \rrbracket \times \llbracket \sigma \rrbracket \longrightarrow \mathbb{R}_{\geq 0}^{\infty}$ with a **fixed** distance space, $\mathbb{R}_{\geq 0}^{\infty}$.

• Can we replace DLRs with **metrics**?

```
d : \llbracket \sigma \rrbracket \times \llbracket \sigma \rrbracket \longrightarrow (\!\! \sigma )\!\!\!
```

- ▶ In usual metric semantics each type σ is associated with a metric $d : \llbracket \sigma \rrbracket \times \llbracket \sigma \rrbracket \longrightarrow \mathbb{R}_{\geq 0}^{\infty}$ with a **fixed** distance space, $\mathbb{R}_{\geq 0}^{\infty}$.
- ► However, these semantics cannot account for $ST\lambda C$ (they are not **cartesian closed**)
- ▶ By letting the distance spaces (σ) depend on σ the picture changes

▶ Suppose that

$(REAL \to REAL) = (\mathbb{R}_{\geq 0}^{\infty})^{\mathcal{I}(\mathbb{R})}$

where $\mathcal{I}(\mathbb{R}) = \{ \text{compact intervals of } \mathbb{R} \}.$

► Suppose that

$(REAL \to REAL) = (\mathbb{R}_{>0}^{\infty})^{\mathcal{I}(\mathbb{R})}$

where $\mathcal{I}(\mathbb{R}) = \{ \text{compact intervals of } \mathbb{R} \}.$

▶ Then p : $\llbracket REAL \to REAL \rrbracket \times \llbracket REAL \to REAL \rrbracket \longrightarrow (\mathbb{R}_{\geq 0}^{\infty})^{\mathcal{I}(\mathbb{R})}$, where $p(f,g)(I) = \operatorname{diam}(f(I) \cup g(I))$.

Suppose that

$(REAL \to REAL) = (\mathbb{R}_{>0}^{\infty})^{\mathcal{I}(\mathbb{R})}$

where $\mathcal{I}(\mathbb{R}) = \{ \text{compact intervals of } \mathbb{R} \}.$

- ► Then p : $[\![REAL \to REAL]\!] \times [\![REAL \to REAL]\!] \longrightarrow (\mathbb{R}_{\geq 0}^{\infty})^{\mathcal{I}(\mathbb{R})}$, where $p(f,g)(I) = \operatorname{diam}(f(I) \cup g(I))$.
- ▶ This way we get a **partial metric space**:

$$\begin{split} p(f,f) &\leq p(f,g), p(g,f) \\ p(f,g) &= p(g,f) \\ p(f,g) &= p(f,f) = p(g,g) \Rightarrow f = g \\ p(f,g) &\leq p(f,h) + p(h,g) - p(h,h) \end{split}$$

Suppose that

$(REAL \to REAL) = (\mathbb{R}_{>0}^{\infty})^{\mathcal{I}(\mathbb{R})}$

where $\mathcal{I}(\mathbb{R}) = \{ \text{compact intervals of } \mathbb{R} \}.$

- ► Then p : $[\![REAL \to REAL]\!] \times [\![REAL \to REAL]\!] \longrightarrow (\mathbb{R}_{\geq 0}^{\infty})^{\mathcal{I}(\mathbb{R})}$, where $p(f,g)(I) = \operatorname{diam}(f(I) \cup g(I))$.
- ▶ This way we get a **partial metric space**:

$$\begin{split} p(f,f) &\leq p(f,g), p(g,f) \\ p(f,g) &= p(g,f) \\ p(f,g) &= p(f,f) = p(g,g) \Rightarrow f = g \\ p(f,g) &\leq p(f,h) + p(h,g) - p(h,h) \end{split}$$

And out of it, a proper **metric space**:

$$p^*(f,g) = 2p(f,g) - p(f,f) - p(g,g)$$

Suppose that

$(REAL \to REAL) = (\mathbb{R}_{>0}^{\infty})^{\mathcal{I}(\mathbb{R})}$

where $\mathcal{I}(\mathbb{R}) = \{ \text{compact intervals of } \mathbb{R} \}.$

- ► Then p : $[\![REAL \to REAL]\!] \times [\![REAL \to REAL]\!] \longrightarrow (\mathbb{R}_{\geq 0}^{\infty})^{\mathcal{I}(\mathbb{R})}$, where $p(f,g)(I) = \operatorname{diam}(f(I) \cup g(I))$.
- ▶ This way we get a **partial metric space**:

$$\begin{split} p(f,f) &\leq p(f,g), p(g,f) \\ p(f,g) &= p(g,f) \\ p(f,g) &= p(f,f) = p(g,g) \Rightarrow f = g \\ p(f,g) &\leq p(f,h) + p(h,g) - p(h,h) \end{split}$$

And out of it, a proper **metric space**:

$$p^*(f,g) = 2p(f,g) - p(f,f) - p(g,g)$$

• This way \mathbb{R} is extended to all simple types.

Coinduction and Game Semantics

► Given an LTS $(A, \mathcal{LBL}, \rightarrow)$, we say that $\delta : A \times A \rightarrow \mathbb{R}_{\geq 0}^{\infty}$ is a **behavioural metric** iff

$$\begin{split} \delta(M,N) &\geq Obs(M,N) \\ \delta(M,N) &\geq \delta(L,P) \text{ whenever } M \xrightarrow{\ell} L \wedge N \xrightarrow{\ell} P \end{split}$$

► Given an LTS $(A, \mathcal{LBL}, \rightarrow)$, we say that $\delta : A \times A \rightarrow \mathbb{R}_{\geq 0}^{\infty}$ is a **behavioural metric** iff

$$\begin{split} \delta(M,N) &\geq Obs(M,N) \\ \delta(M,N) &\geq \delta(L,P) \text{ whenever } M \xrightarrow{\ell} L \wedge N \xrightarrow{\ell} P \end{split}$$

• The (pointwise) smallest behavioural metric is called **bisimilarity metric**.

Given an LTS $(A, \mathcal{LBL}, \rightarrow)$, we say that $\delta : A \times A \rightarrow \mathbb{R}_{\geq 0}^{\infty}$ is a **behavioural metric** iff

$$\begin{split} \delta(M,N) &\geq Obs(M,N) \\ \delta(M,N) &\geq \delta(L,P) \text{ whenever } M \xrightarrow{\ell} L \wedge N \xrightarrow{\ell} P \end{split}$$

The (pointwise) smallest behavioural metric is called **bisimilarity metric**.
Variations along this theme for LTSs in various monadic flavours are very well known and studied.

► Given an LTS $(A, \mathcal{LBL}, \rightarrow)$, we say that $\delta : A \times A \rightarrow \mathbb{R}_{\geq 0}^{\infty}$ is a **behavioural metric** iff

$$\begin{split} \delta(M,N) &\geq Obs(M,N) \\ \delta(M,N) &\geq \delta(L,P) \text{ whenever } M \xrightarrow{\ell} L \wedge N \xrightarrow{\ell} P \end{split}$$

- > The (pointwise) smallest behavioural metric is called **bisimilarity metric**.
- ▶ Variations along this theme for LTSs in various monadic flavours are very well known and studied.
- ▶ When applied to LTSs coming from higher-order languages, these suffer from the same problems as MLRs:
 - Only λ -calculi with bounded replication can be modeled [Gavazzo2018].
 - ▶ The distance does not depend on the context.

Given an LTS $(A, \mathcal{LBL}, \rightarrow)$, we say that $\delta : A \times A \rightarrow \mathbb{R}_{\geq 0}^{\infty}$ is a **behavioural metric** iff

 $\delta(M,N) \ge Obs(M,N)$

 $\delta(M,N) \geq \delta(L,P)$ whenever $M \xrightarrow{\ell} L \wedge N \xrightarrow{\ell} P$

• The (pointwise) smallest behavior ral metric is called **bisimilarity metric**.

- ▶ Variations along this theme for I Ss in various monadic flavours are very
 - well known and stud
- ▶ When applied to LTS from the same proble
 - Only λ-calculi wit
 The distance does
- ► The label ℓ is arbitrary.
- $\delta(M, N)$ can be much bigger than $\delta(L, P)$ for some ℓ .

er languages, these suffer

e modeled [Gavazzo2018].

▶ Rather than taking $\mathbb{R}_{\geq 0}^{\infty}$ as the codomain of δ , one could take a set \mathbb{Q} such that, e.g.

 $\mathbb{Q} \simeq \mathbb{R}^{\infty}_{\geq 0} \times (\mathcal{LBL} \to \mathbb{Q})$

► Rather than taking $\mathbb{R}_{\geq 0}^{\infty}$ as the codomain of δ , one could take a set \mathbb{Q} such that, e.g.

$$\mathbb{Q} \simeq \mathbb{R}_{\geq 0}^{\infty} \times (\mathcal{LBL} \to \mathbb{Q})$$

• Then, the bisimulation game could be made **contextual**:

 $\pi_1(\delta(M,N)) \ge Obs(M,N)$ $\pi_2(\delta(M,N),\ell) \ge \delta(L,P) \text{ whenever } M \xrightarrow{\ell} L \land N \xrightarrow{\ell} P$ ► Rather than taking $\mathbb{R}_{\geq 0}^{\infty}$ as the codomain of δ , one could take a set \mathbb{Q} such that, e.g.

$$\mathbb{Q} \simeq \mathbb{R}_{\geq 0}^{\infty} \times (\mathcal{LBL} \to \mathbb{Q})$$

• Then, the bisimulation game could be made **contextual**:

 $\pi_1(\delta(M,N)) \ge Obs(M,N)$ $\pi_2(\delta(M,N),\ell) \ge \delta(L,P) \text{ whenever } M \xrightarrow{\ell} L \land N \xrightarrow{\ell} P$

▶ We can capture contextual bisimiliarty [Larsen85].

> The properties of the induced notion of distance are still being scrutinized.

- ▶ Strategies can be seen as **sets of sequences of moves** rather than as functions.
- ► The distance $\delta_{\tau}(f,g)$ between two such strategies can then be taken as $f \cup g$.

- ▶ Strategies can be seen as **sets of sequences of moves** rather than as functions.
- ► The distance $\delta_{\tau}(f,g)$ between two such strategies can then be taken as $f \cup g$.

 $\blacktriangleright \text{ Quite suprisingly } \delta(f \circ h, g \circ k) = \delta(f, g) \circ \delta(h, k).$

- Very close to program pair distances.
- ▶ How about playing on *abstract moves*?

Questions?