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LOGICAL RELATIONS

A Recipe
1. Given a programming language, define a type system.

Tu=NAT | T —p EM:T

2. Define a family of relations between programs, indexed by types, and
following their structure.

MR,., N iff (ML)R,(NP) whenever LR, P.

3. Prove the Fundamental Theorem

FM:7 = MR M



LOGICAL RELATIONS

A R(?Kipe

1 1 A

1. Giv

2. Defj
folld

3. Pro

Works extremely well for typed programming languages.

Along the years, adapted to language with non-inductive
type structures, concurrent programming languages, etc.

Often proved fully abstract with respect to contextual
equivalence:

M = N < VC.0bs(C[M]) = Obs(C[N]).

Due to Plotkin, but later studied by many others.

nd

FM:7 = MR M
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BISIMILARITY

- Defi so-called up-to techniques.

A Recipe

. See program (configurations) as statfls of a labelled transition system.

input(z)
Y TxIT |y<—z*x|

Very successful in the absence of types, and in a concurrent

scenario.

Becomes extremely useful in practice when coupled with

Incepted into program semantics by Milner.
(NRM)A(NSP) = 3L.(M 5 L)A (LR P).

Bisimilarity, indicated as ~, is the largest bisimulation relation.

. Prove that bisimilarity is a congruence.

M ~ N = C[M] ~ C|N].
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GAME SEMANTICS

A Recipe

. Types are interpreted as games, namely sets of sequences of moves.

GAME(NAT) = {e,q,q-0,q-1,¢-2,---}
GAME(NAT — BOOL) = {¢, gsoor, gsoor. - True, geoor - False, gsoor - quat, - -+ }

. Programs are interpreted as strategies, namely functions which returns

the next move from the history.
f=STRATEGY (Az.if (z > 0) then True else Fulse)
f(geooL) = quar; f(qeooL - quat - 3) = True

. Computation is seen as the interaction between a program, modeled as a

strategy, and its environment, itself seen as a (possibly nondeterministic)
strategy, called the observer.



GAME SEMANTICS

. Pro

. Types are interpreted as games, naflely sets of sequences of moves.

A Re&ipe

The equivalence induced by interpreting programs as
G/ strategies has been proved to coincide with contextual )

equivalence in many cases.

It has been proved to be adaptable to many different kinds s

of programming languages, and to concurrent languages in
particular.

the

There is a symmetry between the program and the
environment, which can be seen itself as a strategy.

. Cortperreroror—r—reormm—rrre—rrreorercrrorro oo pros o —rrroorored. A8 8

strategy, and its environment, itself seen as a (possibly nondeterministic)
strategy, called the observer.
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...18 This The End?

Definitely No!
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We can answer this question affirmatively [RP2010|! Define a family of
metrics, indexed by types, as follows:
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A (M, M) =0 whenever M : 7



METRIC LOGICAL RELATIONS

Can w¢

We cai

metriq

A

This only works in a affine setting,
so not in the case of the STAC.

Functions on the reals we start
from must be Lipschitz

Categorically, this corresponds to
the fact that metric spaces with
Lipchitz maps form a SMCC, but
not a CCC.

s Ar x A = RS

10]! Define a family of

——

(L, P) whenever L, P : T

The Fundamental Theorem can be extended naturally:

A (M, M) =0 whenever M : 7
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EXAMPLE

Approximate Program Transformation

def A(x): v def B(x):
return sin(x) return x

Not Equivalent
At Infinite Distance
But Very Similar if x is Close to 0
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FURTHER EXAMPLES

|

def A(x):
return 1/sqrt(x)

A

|

def B(x):
return 2.08-1.119*x




Loop perforation

|1 V L]
def sum to_n(n): _ Nl def sum to_n(n):
sum = 0 ] sum = 0
for (i=0, i<n, i++) — for (i=0, i<n, i+=k)
sum += i sum += i
return sum return sum

FURTHER EXAMPLES

Il I I |

float Q_rsqrt( float number )
{

_N long i;

—f float x2, y;

const float threehalfs = 1.5F;
X2 = number * 0.5F;

y number; T
i * ( long * ) &y; — 1

i = OXBF37590F - (45> 1) 'I Fast inverse square root
y =% ( float x ) &i;
Yy

e

=y % ( threehalfs - ( x2 * y *y ) );
return Y

Il 1 1()
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A PARADIGM SHIFT

The Difference is the Meaning.

The Context Matters.

| 4 Jdoe-
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EXAMPLE

def A(x):
return sin(x) /\

def B(x):
return x

A

e~0
0(y) =y —siny
doe=46(e) =0

A

Not Equivalent
At Infinite Distance
But Very Similar if x is Close to 0
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FUNDAMENTAL TENSION

Effective

Not Expressive
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Not Expressive

Expressive
Not Effective

|||||
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FUNDAMENTAL TENSION

Effective

Not Expressive

Expressive
Not Effective
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Expressiveness
< Effectiveness
Relations Metrics

Program Pair
Distances
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FUNDAMENTAL TENSION

Effective
Not Expressive

Expressive
Not Effective

3 7
Expressiveness
< Effectiveness
Relations Metrics DIAPASoN

Program Pair
Distances
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Differential Logical Relations
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A TOY LANGUAGE

Types
T,p := REAL ‘ T—=p | T X p

15



A TOY LANGUAGE

Types

T,p := REAL ‘ T—=p | T X p

Typing Rules

z:T7el T € & Lz:7EM:p

I'Faz:7 I'kr:REAL '+ fn: REAL™ — REAL F'EXeM:17—p

'EM:7—p T'EN:7T ''EM:7 I'N:p

I'EMN :p T'E(M,N):7xp
'EM:7 TEN:T1
'+ iflz M else N : REAL — 7

F'Fm:irxp—r7 F'Em:irxp—p
'-M:7—-7 I'EN:7

' iter M base N : REAL — 1
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A TOY LANGUAGE

Types

T,p := REAL ‘ T—=p | T X p
Typing Rules
z:7T€eT fn € Fn Lx:TEM:p
I'Fa:r I'kr:REAL ' fn: REAL" — REAL 'EXeM:7—p
'EM:7—p T'EN:7T ''EM:7 I'N:p
I'EMN :p T'E(M,N):7xp TFm:Txp—T F'Em:mXp—p
I'EM:7 TEN:7T 'EM:7—717 I'EN:T
I'Fiflz M else N : REAL — 1 I'Fiter M base N : REAL — 7
Denotational Semantics
[REAL] = R; [r = ol = [7] = [ol; [7 > pl = 7] x [p]-

15



THE DEFINITION

(REAL) = RS;

Distance Spaces
(7 = o = [r1x () — (o;

(T x p) = (7) x (o);
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THE DEFINITION

Distance Spaces

(REAL) = Ry; (7 = o) = [r]x(7) — (p; (T x p) = (7) x (o);

DLRs as Ternary Relations

Srpar(M,r, N) & |NF(M) — NF(N)| < r:
(57—><p(M, (dl, dg), N) =1 (57—(7T1M, d1,7T1N) VAN 5p(W2M, dQ,ﬂ'QN)
Srsp(M,d,N) & (VV € CV (7). Yz € (r). YW € CV ().
5.(V,z, W) = 6,(MV,d([V], ), NW)
A S,(MW,d([V],z), NV)).
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THE DEFINITION

Distance Spaces
(REAL) = RZG; (T = p) =[] x(7) = (o); (7 % p) = () < (eD;

DLRs as Ternary Relations

Srpar(M,r, N) & |NF(M) — NF(N)| < r:
(57—><p(M, (dl, dg), N) =1 (57—(7T1M, d1,7T1N) VAN 5p(W2M, dQ,ﬂ'QN)
Srsp(M,d,N) & (VV € CV (7). Yz € (r). YW € CV ().
5.(V,z, W) = 6,(MV,d([V], ), NW)
A S,(MW,d([V],z), NV)).

Theorem (Fundamental Lemma, Version I)
For every = M : 7, there is d € (7| such that 6-(M,d, M).
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BACK TO THE EXAMPLE

Claim

drEAL—REAL(MD, Nz, y).y + |z —sinz|, Mgy)
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BACK TO THE EXAMPLE

Claim
SrEAL—>REAL(Mp, N, y).y + |2 — sinzx|, Mgrn)

Proof.

Consider any pairs of real numbers r, s € R such that |r — s| < e, where
e € RY},. We have that:

lsinr —s| = [sinr —r +7r—s| < [sinr — 7|+ [r — s
<lsinr —r|4+e= f(r,e)

|sins —r| = |sins —sinr + sinr — r|
<|[sins —sinr| + [sinr —r| < |s—r|+ [sinr —r
< e+ [sinr —r| = f(r,e).

17



M[D = \z.x

HOTHLHIN V
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A _or (M, Mip) =0

M[D = A\r.x

HOTHLHIN V
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A METRIC?

Mp = vz

AT—OT(M]D7 MID) =0

5T—>T(MID7 X('x? y>y’ MID)
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The function A, is indeed a (pseudo)-metric.
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The function A, is indeed a (pseudo)-metric.
The function N, y).y is the smallest self distance for Mp.
(The function induced by) d,, indeed, does not satisfy the reflexivity

axiom, and as a consequence does not have the structure of a metric.
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A METRIC?

AT—OT(M]D7 MID) — 0
Mp = vz
5T—>T(MID7 X(Q?, y>y7 MID)

The function A, is indeed a (pseudo)-metric.
The function N, y).y is the smallest self distance for Mp.

(The function induced by) d,, indeed, does not satisfy the reflexivity
axiom, and as a consequence does not have the structure of a metric.

It can however be given the structure of a generalized metric domain.

18



KINDS OF DISTANCES

Hereditarily Null Distances
(REAL)® = {0} (m > p)° = (7)° x ()"
(r = n)° = {f | Vz € [7].Vy € (7)°.f (x,y) € ()"}
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KINDS OF DISTANCES

Hereditarily Null Distances
(REAL)® = {0} (m > p)° = (7)° x ()"
(r = n)° = {f | Vz € [7].Vy € (7)°.f (x,y) € ()"}

Hereditarily Finite Distances
(REAL)~> = Rxo; (7 x p)= = (7= x (p)=>;

(r= o)~ ={felr—p) | Vze[r]vte()~>.f(z,t) € ()=}

Lemma

Whenever = M, N : 7, M is logically related to N iff 6-(M,d, N) where
d e (7))°.
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KINDS OF DISTANCES

Hereditarily Null Distances
(REAL)® = {0} (m > p)° = (7)° x ()"
(r = n)° = {f | Vz € [7].Vy € (7)°.f (x,y) € ()"}

Hereditarily Finite Distances
(REAL)~> = Rxo; (7 x p)= = (7= x (p)=>;
(r=p)~={felr—p) | Vae[r]Vte (r)~*.f(z,1) € ()~}

Lemma

Whenever = M, N : 7, M is logically related to N iff 6-(M,d, N) where
d e (7))°.

Theorem (Fundamental Lemma, Version II)

For every = M : 7, there is d € (7)< such that §(M,d, M). 19



RECURSION

Loops, iteration, ...

i

def sum to_n(n):
sum = 0
for (i=0, i<n,
sum += i
return sum

it+)

def sum to n(n):

sum = 0

for (i=0, i<n, i+=k)
sum += i

return sum

[
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RECURSION

Loops, iteration, ...

T

def sum to_n(n):

sum = 0

for (i=0, i<n, i++)

sum += i
return sum

def sum to n(n):

] sum = 0
= for (i=0, i<n, i+=k)
sum += i

return sum

I [l [

Adding Recursion

,f:r—=px:7TEM:p
MFfix(f,z)M:7—p

20



RECURSION

Step-indexed DLRs

5REAL(')”L,V,T', W) <~ ‘V — W‘ < 75

Srp(n, V,d, W) & (Vk < n,YU € CV(r). Yz € (7). VZ € CV (7).
5. (k,U, 2, Z) = 6,(k, VU, d([U],z), W Z)
A 8,(k,VZ,d([U], ), WU));
S:(n,M,d,N) & Vk <n. (MU VANUIW = 6-(n—k,V,d, W)A
N WAMUYV = 6.(n—k,V,d W)).
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RECURSION

Step-indexed DLRs

5REAL(')”L,V,T', W) <~ ‘V — W‘ < 75

Srp(n, V,d, W) & (Vk < n,YU € CV(r). Yz € (7). VZ € CV (7).
5. (k,U, 2, Z) = 6,(k, VU, d([U],z), W Z)
A 8,(k,VZ,d([U], ), WU));
S:(n,M,d,N) & Vk <n. (MU VANUIW = 6-(n—k,V,d, W)A

Ny WAMUV = 6.(n—k,V,d,W)).

Theorem (Fundamental Lemma, Version III)
For every = M : 7 and n > 0, there is d € (7| such that 0,(n, M,d, M).

21



EFFECTS

|||

float Q_rsqrt( float number )

{

long i;

float x2, y;

const float threehalfs = 1.5F;

X2 = number % 0.5F;

y = number; —
i =* ( long * ) &y;

i = Ox5f3759df - (i > 1);

y =% ( float * ) &i;

y =y * ( threehalfs - ( x2 *y xy ) );
return y;

Imperative features
Errors

Randomness

10

22



EFFECTS

|||

float Q_rsqrt( float number )
{

long i;

float x2, y; Imperative features
const float threehalfs = 1.5F;

X2 = number % 0.5F; Errors

y = number; —_

i = ( long * ) &y; Randomness

i = Ox5f3759df - (i > 1);

y =% ( float * ) &i; 10

y =y * ( threehalfs - ( x2 *y xy ) );

return y;

Adding Effects

Global states
T o= | T(1) == Distribution

Powerset

22



EFFECTS

(REAL) = RSy;

Effectful Distance Spaces

(7 = b = [7]>x(7) — (eb;

(™ x p) = () x(p);

23



EFFECTS

Effectful Distance Spaces

(REAL) = RZp; (7 = p) = [7]x(r) = (o; (7 x o) = (7D x(p);

Randomness. T'= U = D (distribution monad)
Output.

> 7 =%" x — (output monad);

» U =N x — (difference between output strings).
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EFFECTS

Effectful Distance Spaces

(REAL) = RZ; (7 = o) = [7]x(r) — (ob; (7 x o) = (7D x(p); (T(7)) = U(7)

Randomness. T'= U = D (distribution monad)
Output.

> 7 =%" x — (output monad);

» U =N x — (difference between output strings).

DLRs as Ternary Dependent Relations

54 € H 9A(a)x A

o \

C (A): Allowed distances for a € A

23




Denotational Semantics

24



FROM DLRs TO METRIC SEMANTICS

Can we replace DLRs with metrics?

d : [o] x [o] — (o)

25



FROM DLRs TO METRIC SEMANTICS

Can we replace DLRs with metrics?

d : [o] x [o] — (o)

In usual metric semantics each type o is associated with a metric
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FROM DLRs TO METRIC SEMANTICS

Can we replace DLRs with metrics?

d : [o] x [o] — (o)

In usual metric semantics each type o is associated with a metric
d: [o] x o] — RS} with a fixed distance space, R,

However, these semantics cannot account for STAC
(they are not cartesian closed)

By letting the distance spaces (o] depend on o the picture changes

25



FROM DLRs TO METRIC SEMANTICS

Suppose that
(REAL — REAL) = (RS)*®

where Z(R) = {compact intervals of R}.
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(REAL — REAL) = (RS)*®
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FROM DLRs TO METRIC SEMANTICS

Suppose that
(REAL — REAL) = (RS)*®

where Z(R) = {compact intervals of R}.
Then p : [REAL — REAL] x [REAL — REAL] — (R%,)®), where

p(f,9)(I) = diam(f(I) U g(I)).

This way we get a partial metric space:

p(f, ) < p(f,9):p(g, f)
p(f,9) = p(g,
p(f,9) = p(f,
p(f,9) <p(f,h

=pl9,9)=>f=g
+ p(h, g)—p(h, h)

IA

f)
f)
)
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FROM DLRs TO METRIC SEMANTICS

Suppose that
(REAL — REAL) = (RS)*®
where Z(R) = {compact intervals of R}.
Then p : [REAL — REAL] x [REAL — REAL] — (R%,)®), where
p(f,9)(I) = diam(f(I) U g(I)).

This way we get a partial metric space:

p(f, f) < p(f,9),0(g, f)

p(f,9) =p(g, f)
p(f.9)=p(f,f)=p(9,9) = f=9
p(f,9) < p(f,h)+p(h,g)—p(h,h)

And out of it, a proper metric space:

p*(f,9) = 2p(f,9) — p(f, f) — p(9,9)

26



FROM DLRs TO METRIC SEMANTICS

Suppose that
(REAL — REAL) = (RS)*®
where Z(R) = {compact intervals of R}.
Then p : [REAL — REAL] x [REAL — REAL] — (R%,)®), where
p(f,9)(I) = diam(f(I) U g(I)).

This way we get a partial metric space:

p(f, f) < p(f,9),0(g, f)

p(f,9) =p(g, f)
p(f.9)=p(f,f)=p(9,9) = f=9
p(f,9) < p(f,h)+p(h,g)—p(h,h)

And out of it, a proper metric space:

p*(f,9) = 2p(f,9) — p(f, f) — p(9,9)

This way R is extended to all simple types.

26



Coinduction
and Game Semantics
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A METRIC ANALOGUE TO BISIMULATION

Given an LTS (A, LBL,—), we say that 6 : Ax A - R is a
behavioural metric iff

5(M,N) > Obs(M, N)
§(M,N) > 6(L, P) whenever M 5 LAN 5 P
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A METRIC ANALOGUE TO BISIMULATION

Given an LTS (A, LBL,—), we say that 6 : Ax A - R is a
behavioural metric iff
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behavioural metric iff

5(M,N) > Obs(M, N)
§(M,N) > 6(L, P) whenever M 5 LAN 5 P

The (pointwise) smallest behavioural metric is called bisimilarity metric.

Variations along this theme for L'T'Ss in various monadic flavours are very
well known and studied.

When applied to LTSs coming from higher-order languages, these suffer
from the same problems as MLRs:

» Only A-calculi with bounded replication can be modeled [Gavazzo2018|.
» The distance does not depend on the context.
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A DIFFERENTIAL ANALOGUE TO BISIMULATION?

Rather than taking RS as the codomain of d, one could take a set Q such
that, e.g.
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A DIFFERENTIAL ANALOGUE TO BISIMULATION?

Rather than taking RS as the codomain of d, one could take a set Q such
that, e.g.

Then, the bisimulation game could be made contextual:

m1(0(M,N)) > Obs(M,N)
72(8(M, N),€) > 6(L, P) whenever M 5 LAN 5 P

We can capture contextual bisimiliarty [Larsen85].

The properties of the induced notion of distance are still being scrutinized.
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A DIFFERENTIAL ANALOGUE TO GAME SEMANTICS?

Strategies can be seen as sets of sequences of moves rather than as
functions.

The distance 0, (f, g) between two such strategies can then be taken as
fug.
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A DIFFERENTIAL ANALOGUE TO GAME SEMANTICS?

Strategies can be seen as sets of sequences of moves rather than as
functions.

The distance 0, (f, g) between two such strategies can then be taken as

fug.
REAL REAL

OrEAL—REAL(AZ.Z + 2, Az + 3) = n

Quite suprisingly d(f o h,go k) = d(f,g) o d(h, k).
» Very close to program pair distances.
» How about playing on abstract moves?
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Questions?
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