
ONDIFFERENTIAL
PROGRAM SEMANTICS

A Bδ

ε
C

Ugo Dal Lago
Department of

Computer Science and Engineering
University of Bologna

P
R
O
G
R
A
M

SE
M
A
N
T
IC

S

A B∼

1

P
R
O
G
R
A
M

SE
M
A
N
T
IC

S

A

A B∼

1

P
R
O
G
R
A
M

SE
M
A
N
T
IC

S

A B∼

1

P
R
O
G
R
A
M

SE
M
A
N
T
IC

S

B

A B∼

1

P
R
O
G
R
A
M

SE
M
A
N
T
IC

S
A B∼

1

D
E
N
O
T
A
T
IO

N
A
L
S
E
M
A
N
T
IC

S

A

C∗ : τ → ρ

A∗ ∈ τ

2

D
E
N
O
T
A
T
IO

N
A
L
S
E
M
A
N
T
IC

S

A

C∗ : τ → ρ

A∗ ∈ τ

C∗(A∗) A

2

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S A Recipe

1. Given a programming language, define a type system.

τ ::= NAT | τ → ρ `M : τ

2. Define a family of relations between programs, indexed by types, and
following their structure.

M Rτ→ρ N iff (ML) Rρ (NP) whenever L Rτ P.

3. Prove the Fundamental Theorem

`M : τ =⇒ M Rτ M

I Works extremely well for typed programming languages.
I Along the years, adapted to language with non-inductive

type structures, concurrent programming languages, etc.
I Often proved fully abstract with respect to contextual

equivalence:

M ≡ N ⇐⇒ ∀C.Obs(C[M]) = Obs(C[N]).

I Due to Plotkin, but later studied by many others.

3

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S A Recipe

1. Given a programming language, define a type system.

τ ::= NAT | τ → ρ

`M : τ

2. Define a family of relations between programs, indexed by types, and
following their structure.

M Rτ→ρ N iff (ML) Rρ (NP) whenever L Rτ P.

3. Prove the Fundamental Theorem

`M : τ =⇒ M Rτ M

I Works extremely well for typed programming languages.
I Along the years, adapted to language with non-inductive

type structures, concurrent programming languages, etc.
I Often proved fully abstract with respect to contextual

equivalence:

M ≡ N ⇐⇒ ∀C.Obs(C[M]) = Obs(C[N]).

I Due to Plotkin, but later studied by many others.

3

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S A Recipe

1. Given a programming language, define a type system.

τ ::= NAT | τ → ρ `M : τ

2. Define a family of relations between programs, indexed by types, and
following their structure.

M Rτ→ρ N iff (ML) Rρ (NP) whenever L Rτ P.

3. Prove the Fundamental Theorem

`M : τ =⇒ M Rτ M

I Works extremely well for typed programming languages.
I Along the years, adapted to language with non-inductive

type structures, concurrent programming languages, etc.
I Often proved fully abstract with respect to contextual

equivalence:

M ≡ N ⇐⇒ ∀C.Obs(C[M]) = Obs(C[N]).

I Due to Plotkin, but later studied by many others.

3

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S A Recipe

1. Given a programming language, define a type system.

τ ::= NAT | τ → ρ `M : τ

2. Define a family of relations between programs, indexed by types, and
following their structure.

M Rτ→ρ N iff (ML) Rρ (NP) whenever L Rτ P.

3. Prove the Fundamental Theorem

`M : τ =⇒ M Rτ M

I Works extremely well for typed programming languages.
I Along the years, adapted to language with non-inductive

type structures, concurrent programming languages, etc.
I Often proved fully abstract with respect to contextual

equivalence:

M ≡ N ⇐⇒ ∀C.Obs(C[M]) = Obs(C[N]).

I Due to Plotkin, but later studied by many others.

3

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S A Recipe

1. Given a programming language, define a type system.

τ ::= NAT | τ → ρ `M : τ

2. Define a family of relations between programs, indexed by types, and
following their structure.

M Rτ→ρ N iff (ML) Rρ (NP) whenever L Rτ P.

3. Prove the Fundamental Theorem

`M : τ =⇒ M Rτ M

I Works extremely well for typed programming languages.
I Along the years, adapted to language with non-inductive

type structures, concurrent programming languages, etc.
I Often proved fully abstract with respect to contextual

equivalence:

M ≡ N ⇐⇒ ∀C.Obs(C[M]) = Obs(C[N]).

I Due to Plotkin, but later studied by many others.

3

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S A Recipe

1. Given a programming language, define a type system.

τ ::= NAT | τ → ρ `M : τ

2. Define a family of relations between programs, indexed by types, and
following their structure.

M Rτ→ρ N iff (ML) Rρ (NP) whenever L Rτ P.

3. Prove the Fundamental Theorem

`M : τ =⇒ M Rτ M

I Works extremely well for typed programming languages.
I Along the years, adapted to language with non-inductive

type structures, concurrent programming languages, etc.
I Often proved fully abstract with respect to contextual

equivalence:

M ≡ N ⇐⇒ ∀C.Obs(C[M]) = Obs(C[N]).

I Due to Plotkin, but later studied by many others.

3

B
IS
IM

IL
A
R
IT

Y
A Recipe

1. See program (configurations) as states of a labelled transition system.
input(x)
y ← x ∗ x
output(y)

x
y

0
0

y ← x ∗ x
output(y)

x
y

3
0

output(y)

x
y

3
9

x
y

3
9

i(3) o(9)

2. Define a notion of bisimulation relation.

(M R N) ∧ (M
`→ L) =⇒ ∃P.(N `→ P) ∧ (L R P),

(N RM) ∧ (N
`→ P) =⇒ ∃L.(M `→ L) ∧ (L R P).

Bisimilarity, indicated as ∼, is the largest bisimulation relation.
3. Prove that bisimilarity is a congruence.

M ∼ N =⇒ C[M] ∼ C[N].

I Very successful in the absence of types, and in a concurrent
scenario.

I Becomes extremely useful in practice when coupled with
so-called up-to techniques.

I Incepted into program semantics by Milner.

4

B
IS
IM

IL
A
R
IT

Y
A Recipe

1. See program (configurations) as states of a labelled transition system.
input(x)
y ← x ∗ x
output(y)

x
y

0
0

y ← x ∗ x
output(y)

x
y

3
0

output(y)

x
y

3
9

x
y

3
9

i(3) o(9)

2. Define a notion of bisimulation relation.

(M R N) ∧ (M
`→ L) =⇒ ∃P.(N `→ P) ∧ (L R P),

(N RM) ∧ (N
`→ P) =⇒ ∃L.(M `→ L) ∧ (L R P).

Bisimilarity, indicated as ∼, is the largest bisimulation relation.

3. Prove that bisimilarity is a congruence.

M ∼ N =⇒ C[M] ∼ C[N].

I Very successful in the absence of types, and in a concurrent
scenario.

I Becomes extremely useful in practice when coupled with
so-called up-to techniques.

I Incepted into program semantics by Milner.

4

B
IS
IM

IL
A
R
IT

Y
A Recipe

1. See program (configurations) as states of a labelled transition system.
input(x)
y ← x ∗ x
output(y)

x
y

0
0

y ← x ∗ x
output(y)

x
y

3
0

output(y)

x
y

3
9

x
y

3
9

i(3) o(9)

2. Define a notion of bisimulation relation.

(M R N) ∧ (M
`→ L) =⇒ ∃P.(N `→ P) ∧ (L R P),

(N RM) ∧ (N
`→ P) =⇒ ∃L.(M `→ L) ∧ (L R P).

Bisimilarity, indicated as ∼, is the largest bisimulation relation.
3. Prove that bisimilarity is a congruence.

M ∼ N =⇒ C[M] ∼ C[N].

I Very successful in the absence of types, and in a concurrent
scenario.

I Becomes extremely useful in practice when coupled with
so-called up-to techniques.

I Incepted into program semantics by Milner.

4

B
IS
IM

IL
A
R
IT

Y
A Recipe

1. See program (configurations) as states of a labelled transition system.
input(x)
y ← x ∗ x
output(y)

x
y

0
0

y ← x ∗ x
output(y)

x
y

3
0

output(y)

x
y

3
9

x
y

3
9

i(3) o(9)

2. Define a notion of bisimulation relation.

(M R N) ∧ (M
`→ L) =⇒ ∃P.(N `→ P) ∧ (L R P),

(N RM) ∧ (N
`→ P) =⇒ ∃L.(M `→ L) ∧ (L R P).

Bisimilarity, indicated as ∼, is the largest bisimulation relation.
3. Prove that bisimilarity is a congruence.

M ∼ N =⇒ C[M] ∼ C[N].

I Very successful in the absence of types, and in a concurrent
scenario.

I Becomes extremely useful in practice when coupled with
so-called up-to techniques.

I Incepted into program semantics by Milner.

4

G
A
M
E
SE

M
A
N
T
IC

S A Recipe

1. Types are interpreted as games, namely sets of sequences of moves.

GAME (NAT) = {ε, q, q · 0, q · 1, q · 2, · · · }
GAME (NAT→ BOOL) = {ε, qBOOL, qBOOL · True, qBOOL · False, qBOOL · qNAT, · · · }

2. Programs are interpreted as strategies, namely functions which returns
the next move from the history.

f = STRATEGY (λx.if (x > 0) then True else False)

f(qBOOL) = qNAT; f(qBOOL · qNAT · 3) = True

3. Computation is seen as the interaction between a program, modeled as a
strategy, and its environment, itself seen as a (possibly nondeterministic)
strategy, called the observer.

I The equivalence induced by interpreting programs as
strategies has been proved to coincide with contextual
equivalence in many cases.

I It has been proved to be adaptable to many different kinds
of programming languages, and to concurrent languages in
particular.

I There is a symmetry between the program and the
environment, which can be seen itself as a strategy.

5

G
A
M
E
SE

M
A
N
T
IC

S A Recipe
1. Types are interpreted as games, namely sets of sequences of moves.

GAME (NAT) = {ε, q, q · 0, q · 1, q · 2, · · · }
GAME (NAT→ BOOL) = {ε, qBOOL, qBOOL · True, qBOOL · False, qBOOL · qNAT, · · · }

2. Programs are interpreted as strategies, namely functions which returns
the next move from the history.

f = STRATEGY (λx.if (x > 0) then True else False)

f(qBOOL) = qNAT; f(qBOOL · qNAT · 3) = True

3. Computation is seen as the interaction between a program, modeled as a
strategy, and its environment, itself seen as a (possibly nondeterministic)
strategy, called the observer.

I The equivalence induced by interpreting programs as
strategies has been proved to coincide with contextual
equivalence in many cases.

I It has been proved to be adaptable to many different kinds
of programming languages, and to concurrent languages in
particular.

I There is a symmetry between the program and the
environment, which can be seen itself as a strategy.

5

G
A
M
E
SE

M
A
N
T
IC

S A Recipe
1. Types are interpreted as games, namely sets of sequences of moves.

GAME (NAT) = {ε, q, q · 0, q · 1, q · 2, · · · }
GAME (NAT→ BOOL) = {ε, qBOOL, qBOOL · True, qBOOL · False, qBOOL · qNAT, · · · }

2. Programs are interpreted as strategies, namely functions which returns
the next move from the history.

f = STRATEGY (λx.if (x > 0) then True else False)

f(qBOOL) = qNAT; f(qBOOL · qNAT · 3) = True

3. Computation is seen as the interaction between a program, modeled as a
strategy, and its environment, itself seen as a (possibly nondeterministic)
strategy, called the observer.

I The equivalence induced by interpreting programs as
strategies has been proved to coincide with contextual
equivalence in many cases.

I It has been proved to be adaptable to many different kinds
of programming languages, and to concurrent languages in
particular.

I There is a symmetry between the program and the
environment, which can be seen itself as a strategy.

5

G
A
M
E
SE

M
A
N
T
IC

S A Recipe
1. Types are interpreted as games, namely sets of sequences of moves.

GAME (NAT) = {ε, q, q · 0, q · 1, q · 2, · · · }
GAME (NAT→ BOOL) = {ε, qBOOL, qBOOL · True, qBOOL · False, qBOOL · qNAT, · · · }

2. Programs are interpreted as strategies, namely functions which returns
the next move from the history.

f = STRATEGY (λx.if (x > 0) then True else False)

f(qBOOL) = qNAT; f(qBOOL · qNAT · 3) = True

3. Computation is seen as the interaction between a program, modeled as a
strategy, and its environment, itself seen as a (possibly nondeterministic)
strategy, called the observer.

I The equivalence induced by interpreting programs as
strategies has been proved to coincide with contextual
equivalence in many cases.

I It has been proved to be adaptable to many different kinds
of programming languages, and to concurrent languages in
particular.

I There is a symmetry between the program and the
environment, which can be seen itself as a strategy.

5

G
A
M
E
SE

M
A
N
T
IC

S A Recipe
1. Types are interpreted as games, namely sets of sequences of moves.

GAME (NAT) = {ε, q, q · 0, q · 1, q · 2, · · · }
GAME (NAT→ BOOL) = {ε, qBOOL, qBOOL · True, qBOOL · False, qBOOL · qNAT, · · · }

2. Programs are interpreted as strategies, namely functions which returns
the next move from the history.

f = STRATEGY (λx.if (x > 0) then True else False)

f(qBOOL) = qNAT; f(qBOOL · qNAT · 3) = True

3. Computation is seen as the interaction between a program, modeled as a
strategy, and its environment, itself seen as a (possibly nondeterministic)
strategy, called the observer.

I The equivalence induced by interpreting programs as
strategies has been proved to coincide with contextual
equivalence in many cases.

I It has been proved to be adaptable to many different kinds
of programming languages, and to concurrent languages in
particular.

I There is a symmetry between the program and the
environment, which can be seen itself as a strategy.

5

A Story of Successes. . .

. . . is This The End?

Definitely No!

6

A Story of Successes. . .

. . . is This The End?

Definitely No!

6

A Story of Successes. . .

. . . is This The End?

Definitely No!

6

M
E
T
R
IC

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S

I Can we turn logical relations into a metric?

Rτ ⊆ Λτ × Λτ 7−→ ∆τ : Λτ × Λτ → R∞≥0

I We can answer this question affirmatively [RP2010]! Define a family of
metrics, indexed by types, as follows:

∆τ→ρ(M,N) ≤ k iff ∆ρ(ML,NP) ≤ k + ∆τ (L,P) whenever L,P : τ

I The Fundamental Theorem can be extended naturally:

∆τ (M,M) = 0 whenever M : τ

I This only works in a affine setting,
so not in the case of the STλC.

I Functions on the reals we start
from must be Lipschitz

I Categorically, this corresponds to
the fact that metric spaces with
Lipchitz maps form a SMCC, but
not a CCC.

7

M
E
T
R
IC

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S

I Can we turn logical relations into a metric?

Rτ ⊆ Λτ × Λτ 7−→ ∆τ : Λτ × Λτ → R∞≥0

I We can answer this question affirmatively [RP2010]! Define a family of
metrics, indexed by types, as follows:

∆τ→ρ(M,N) ≤ k iff ∆ρ(ML,NP) ≤ k + ∆τ (L,P) whenever L,P : τ

I The Fundamental Theorem can be extended naturally:

∆τ (M,M) = 0 whenever M : τ

I This only works in a affine setting,
so not in the case of the STλC.

I Functions on the reals we start
from must be Lipschitz

I Categorically, this corresponds to
the fact that metric spaces with
Lipchitz maps form a SMCC, but
not a CCC.

7

M
E
T
R
IC

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S

I Can we turn logical relations into a metric?

Rτ ⊆ Λτ × Λτ 7−→ ∆τ : Λτ × Λτ → R∞≥0

I We can answer this question affirmatively [RP2010]! Define a family of
metrics, indexed by types, as follows:

∆τ→ρ(M,N) ≤ k iff ∆ρ(ML,NP) ≤ k + ∆τ (L,P) whenever L,P : τ

I The Fundamental Theorem can be extended naturally:

∆τ (M,M) = 0 whenever M : τ

I This only works in a affine setting,
so not in the case of the STλC.

I Functions on the reals we start
from must be Lipschitz

I Categorically, this corresponds to
the fact that metric spaces with
Lipchitz maps form a SMCC, but
not a CCC.

7

M
E
T
R
IC

L
O
G
IC

A
L
R
E
L
A
T
IO

N
S

I Can we turn logical relations into a metric?

Rτ ⊆ Λτ × Λτ 7−→ ∆τ : Λτ × Λτ → R∞≥0

I We can answer this question affirmatively [RP2010]! Define a family of
metrics, indexed by types, as follows:

∆τ→ρ(M,N) ≤ k iff ∆ρ(ML,NP) ≤ k + ∆τ (L,P) whenever L,P : τ

I The Fundamental Theorem can be extended naturally:

∆τ (M,M) = 0 whenever M : τ

I This only works in a affine setting,
so not in the case of the STλC.

I Functions on the reals we start
from must be Lipschitz

I Categorically, this corresponds to
the fact that metric spaces with
Lipchitz maps form a SMCC, but
not a CCC.

7

E
X
A
M
P
L
E

def A(x):

return sin(x)

def B(x):

return x

Not Equivalent
At Infinite Distance

But Very Similar if x is Close to 0

Approximate Program Transformation

8

E
X
A
M
P
L
E

def A(x):

return sin(x)

def B(x):

return x

Not Equivalent
At Infinite Distance

But Very Similar if x is Close to 0

Approximate Program Transformation

8

E
X
A
M
P
L
E

def A(x):

return sin(x)

def B(x):

return x

Not Equivalent

At Infinite Distance
But Very Similar if x is Close to 0

Approximate Program Transformation

8

E
X
A
M
P
L
E

def A(x):

return sin(x)

def B(x):

return x

Not Equivalent
At Infinite Distance

But Very Similar if x is Close to 0

Approximate Program Transformation

8

E
X
A
M
P
L
E

def A(x):

return sin(x)

def B(x):

return x

Not Equivalent
At Infinite Distance

But Very Similar if x is Close to 0

Approximate Program Transformation

8

E
X
A
M
P
L
E

def A(x):

return sin(x)

def B(x):

return x

Not Equivalent
At Infinite Distance

But Very Similar if x is Close to 0

Approximate Program Transformation

8

F
U
R
T
H
E
R

E
X
A
M
P
L
E
S

9

F
U
R
T
H
E
R

E
X
A
M
P
L
E
S

9

F
U
R
T
H
E
R

E
X
A
M
P
L
E
S Loop perforation

Fast inverse square root

10

A
P
A
R
A
D
IG

M
SH

IF
T

The Difference is the Meaning.

The Context Matters.

A Bδ

=⇒ A B
ε

δ ◦ ε

11

A
P
A
R
A
D
IG

M
SH

IF
T

The Difference is the Meaning.
The Context Matters.

A Bδ

=⇒ A B
ε

δ ◦ ε

11

A
P
A
R
A
D
IG

M
SH

IF
T

The Difference is the Meaning.
The Context Matters.

A Bδ

ε
C

11

A
P
A
R
A
D
IG

M
SH

IF
T

The Difference is the Meaning.
The Context Matters.

A Bδ

=⇒ A B
ε

δ ◦ εC

C C

11

E
X
A
M
P
L
E

def A(x):

return sin(x)

def B(x):

return x

Not Equivalent
At Infinite Distance

But Very Similar if x is Close to 0

ε ≈ 0
δ(y) = y − sin y
δ ◦ ε = δ(ε) ≈ 0

12

F
U
N
D
A
M
E
N
T
A
L
T
E
N
SI
O
N

A Bδ

ε
C

Effective
Not Expressive

Expressive
Not Effective

Relations
Program Pair

Expressiveness

13

F
U
N
D
A
M
E
N
T
A
L
T
E
N
SI
O
N

A Bδ

ε
Cδ ∈ R+

ε ∈ R+

Effective
Not Expressive

Expressive
Not Effective

Relations
Program Pair

Expressiveness

13

F
U
N
D
A
M
E
N
T
A
L
T
E
N
SI
O
N

A Bδ

ε
C δ = (A,B)

ε = C
δ ∈ R+

ε ∈ R+

Effective
Not Expressive

Expressive
Not Effective

Relations
Program Pair

Expressiveness

13

F
U
N
D
A
M
E
N
T
A
L
T
E
N
SI
O
N

A Bδ

ε
C δ = (A,B)

ε = C
δ ∈ R+

ε ∈ R+

Effective
Not Expressive

Expressive
Not Effective

Relations Metrics Program Pair

Expressiveness

Effectiveness

Distances

13

F
U
N
D
A
M
E
N
T
A
L
T
E
N
SI
O
N

A Bδ

ε
C δ = (A,B)

ε = C
δ ∈ R+

ε ∈ R+

Effective
Not Expressive

Expressive
Not Effective

Relations Metrics Program Pair

Expressiveness

Effectiveness

DIAPASoN Distances

13

Differential Logical Relations

14

A
T
O
Y

L
A
N
G
U
A
G
E
Types

τ, ρ ::= REAL | τ → ρ | τ × ρ

Typing Rules
x : τ ∈ Γ
Γ ` x : τ Γ ` r : REAL

fn ∈ Fn

Γ ` fn : REALn → REAL

Γ, x : τ `M : ρ

Γ ` λx.M : τ → ρ

Γ `M : τ → ρ Γ ` N : τ

Γ `MN : ρ

Γ `M : τ Γ ` N : ρ

Γ ` 〈M,N〉 : τ × ρ Γ ` π1 : τ × ρ→ τ Γ ` π2 : τ × ρ→ ρ

Γ `M : τ Γ ` N : τ
Γ ` iflzM else N : REAL→ τ

Γ `M : τ → τ Γ ` N : τ
Γ ` iterM base N : REAL→ τ

Denotational Semantics
JREALK = R; Jτ → ρK = JτK→ JρK; Jτ × ρK = JτK× JρK.

15

A
T
O
Y

L
A
N
G
U
A
G
E
Types

τ, ρ ::= REAL | τ → ρ | τ × ρ

Typing Rules
x : τ ∈ Γ
Γ ` x : τ Γ ` r : REAL

fn ∈ Fn

Γ ` fn : REALn → REAL

Γ, x : τ `M : ρ

Γ ` λx.M : τ → ρ

Γ `M : τ → ρ Γ ` N : τ

Γ `MN : ρ

Γ `M : τ Γ ` N : ρ

Γ ` 〈M,N〉 : τ × ρ Γ ` π1 : τ × ρ→ τ Γ ` π2 : τ × ρ→ ρ

Γ `M : τ Γ ` N : τ
Γ ` iflzM else N : REAL→ τ

Γ `M : τ → τ Γ ` N : τ
Γ ` iterM base N : REAL→ τ

Denotational Semantics
JREALK = R; Jτ → ρK = JτK→ JρK; Jτ × ρK = JτK× JρK.

15

A
T
O
Y

L
A
N
G
U
A
G
E
Types

τ, ρ ::= REAL | τ → ρ | τ × ρ

Typing Rules
x : τ ∈ Γ
Γ ` x : τ Γ ` r : REAL

fn ∈ Fn

Γ ` fn : REALn → REAL

Γ, x : τ `M : ρ

Γ ` λx.M : τ → ρ

Γ `M : τ → ρ Γ ` N : τ

Γ `MN : ρ

Γ `M : τ Γ ` N : ρ

Γ ` 〈M,N〉 : τ × ρ Γ ` π1 : τ × ρ→ τ Γ ` π2 : τ × ρ→ ρ

Γ `M : τ Γ ` N : τ
Γ ` iflzM else N : REAL→ τ

Γ `M : τ → τ Γ ` N : τ
Γ ` iterM base N : REAL→ τ

Denotational Semantics
JREALK = R; Jτ → ρK = JτK→ JρK; Jτ × ρK = JτK× JρK.

15

T
H
E
D
E
F
IN

IT
IO

N
Distance Spaces

LREALM = R∞≥0; Lτ → ρM = JτK×LτM→ LρM; Lτ × ρM = LτM×LρM;

DLRs as Ternary Relations

δREAL(M, r,N)⇔ |NF (M)−NF (N)| ≤ r;
δτ×ρ(M, (d1, d2), N)⇔ δτ (π1M,d1, π1N) ∧ δρ(π2M,d2, π2N)

δτ→ρ(M,d,N)⇔ (∀V ∈ CV (τ). ∀x ∈ LτM. ∀W ∈ CV (τ).

δτ (V, x,W)⇒ δρ(MV , d(JV K, x), NW)

∧ δρ(MW,d(JV K, x), NV)).

Theorem (Fundamental Lemma, Version I)
For every `M : τ , there is d ∈ (|τ |) such that δτ (M,d,M).

16

T
H
E
D
E
F
IN

IT
IO

N
Distance Spaces

LREALM = R∞≥0; Lτ → ρM = JτK×LτM→ LρM; Lτ × ρM = LτM×LρM;

DLRs as Ternary Relations

δREAL(M, r,N)⇔ |NF (M)−NF (N)| ≤ r;
δτ×ρ(M, (d1, d2), N)⇔ δτ (π1M,d1, π1N) ∧ δρ(π2M,d2, π2N)

δτ→ρ(M,d,N)⇔ (∀V ∈ CV (τ). ∀x ∈ LτM. ∀W ∈ CV (τ).

δτ (V, x,W)⇒ δρ(MV , d(JV K, x), NW)

∧ δρ(MW,d(JV K, x), NV)).

Theorem (Fundamental Lemma, Version I)
For every `M : τ , there is d ∈ (|τ |) such that δτ (M,d,M).

16

T
H
E
D
E
F
IN

IT
IO

N
Distance Spaces

LREALM = R∞≥0; Lτ → ρM = JτK×LτM→ LρM; Lτ × ρM = LτM×LρM;

DLRs as Ternary Relations

δREAL(M, r,N)⇔ |NF (M)−NF (N)| ≤ r;
δτ×ρ(M, (d1, d2), N)⇔ δτ (π1M,d1, π1N) ∧ δρ(π2M,d2, π2N)

δτ→ρ(M,d,N)⇔ (∀V ∈ CV (τ). ∀x ∈ LτM. ∀W ∈ CV (τ).

δτ (V, x,W)⇒ δρ(MV , d(JV K, x), NW)

∧ δρ(MW,d(JV K, x), NV)).

Theorem (Fundamental Lemma, Version I)
For every `M : τ , there is d ∈ (|τ |) such that δτ (M,d,M).

16

B
A
C
K

T
O

T
H
E
E
X
A
M
P
L
E

Claim

δREAL→REAL(MID , λλ〈x, y〉.y + |x− sinx| ,MSIN)

Proof.
Consider any pairs of real numbers r, s ∈ R such that |r − s| ≤ ε, where
ε ∈ R∞≥0. We have that:

|sin r − s| = |sin r − r + r − s| ≤ |sin r − r|+ |r − s|
≤ |sin r − r|+ ε = f(r, ε)

|sin s− r| = |sin s− sin r + sin r − r|
≤ |sin s− sin r|+ |sin r − r| ≤ |s− r|+ |sin r − r|
≤ ε+ |sin r − r| = f(r, ε).

17

B
A
C
K

T
O

T
H
E
E
X
A
M
P
L
E

Claim

δREAL→REAL(MID , λλ〈x, y〉.y + |x− sinx| ,MSIN)

Proof.
Consider any pairs of real numbers r, s ∈ R such that |r − s| ≤ ε, where
ε ∈ R∞≥0. We have that:

|sin r − s| = |sin r − r + r − s| ≤ |sin r − r|+ |r − s|
≤ |sin r − r|+ ε = f(r, ε)

|sin s− r| = |sin s− sin r + sin r − r|
≤ |sin s− sin r|+ |sin r − r| ≤ |s− r|+ |sin r − r|
≤ ε+ |sin r − r| = f(r, ε).

17

A
M
E
T
R
IC

? MID = λx.x

∆τ(τ(MID ,MID) = 0

δτ→τ(MID , λλ〈x, y〉.y,MID)

I The function ∆ρ is indeed a (pseudo)-metric.
I The function λλ〈x, y〉.y is the smallest self distance for MID .
I (The function induced by) δρ, indeed, does not satisfy the reflexivity

axiom, and as a consequence does not have the structure of a metric.
I It can however be given the structure of a generalized metric domain.

18

A
M
E
T
R
IC

? MID = λx.x

∆τ(τ(MID ,MID) = 0

δτ→τ(MID , λλ〈x, y〉.y,MID)

I The function ∆ρ is indeed a (pseudo)-metric.
I The function λλ〈x, y〉.y is the smallest self distance for MID .
I (The function induced by) δρ, indeed, does not satisfy the reflexivity

axiom, and as a consequence does not have the structure of a metric.
I It can however be given the structure of a generalized metric domain.

18

A
M
E
T
R
IC

? MID = λx.x

∆τ(τ(MID ,MID) = 0

δτ→τ(MID , λλ〈x, y〉.y,MID)

I The function ∆ρ is indeed a (pseudo)-metric.
I The function λλ〈x, y〉.y is the smallest self distance for MID .
I (The function induced by) δρ, indeed, does not satisfy the reflexivity

axiom, and as a consequence does not have the structure of a metric.
I It can however be given the structure of a generalized metric domain.

18

A
M
E
T
R
IC

? MID = λx.x

∆τ(τ(MID ,MID) = 0

δτ→τ(MID , λλ〈x, y〉.y,MID)

I The function ∆ρ is indeed a (pseudo)-metric.

I The function λλ〈x, y〉.y is the smallest self distance for MID .
I (The function induced by) δρ, indeed, does not satisfy the reflexivity

axiom, and as a consequence does not have the structure of a metric.
I It can however be given the structure of a generalized metric domain.

18

A
M
E
T
R
IC

? MID = λx.x

∆τ(τ(MID ,MID) = 0

δτ→τ(MID , λλ〈x, y〉.y,MID)

I The function ∆ρ is indeed a (pseudo)-metric.
I The function λλ〈x, y〉.y is the smallest self distance for MID .

I (The function induced by) δρ, indeed, does not satisfy the reflexivity
axiom, and as a consequence does not have the structure of a metric.

I It can however be given the structure of a generalized metric domain.

18

A
M
E
T
R
IC

? MID = λx.x

∆τ(τ(MID ,MID) = 0

δτ→τ(MID , λλ〈x, y〉.y,MID)

I The function ∆ρ is indeed a (pseudo)-metric.
I The function λλ〈x, y〉.y is the smallest self distance for MID .
I (The function induced by) δρ, indeed, does not satisfy the reflexivity

axiom, and as a consequence does not have the structure of a metric.

I It can however be given the structure of a generalized metric domain.

18

A
M
E
T
R
IC

? MID = λx.x

∆τ(τ(MID ,MID) = 0

δτ→τ(MID , λλ〈x, y〉.y,MID)

I The function ∆ρ is indeed a (pseudo)-metric.
I The function λλ〈x, y〉.y is the smallest self distance for MID .
I (The function induced by) δρ, indeed, does not satisfy the reflexivity

axiom, and as a consequence does not have the structure of a metric.
I It can however be given the structure of a generalized metric domain.

18

K
IN

D
S
O
F
D
IS
T
A
N
C
E
S Hereditarily Null Distances

LREALM0 = {0} Lτ × ρM0 = LτM0 × LρM0

Lτ → ρM0 = {f | ∀x ∈ JτK.∀y ∈ LτM0.f(x, y) ∈ LρM0}

Hereditarily Finite Distances
LREALM<∞ = R≥0; Lτ × ρM<∞ = LτM<∞ × LρM<∞;

Lτ → ρM<∞ = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀t ∈ LτM<∞.f(x, t) ∈ LρM<∞}.

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N) where
d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).

19

K
IN

D
S
O
F
D
IS
T
A
N
C
E
S Hereditarily Null Distances

LREALM0 = {0} Lτ × ρM0 = LτM0 × LρM0

Lτ → ρM0 = {f | ∀x ∈ JτK.∀y ∈ LτM0.f(x, y) ∈ LρM0}

Hereditarily Finite Distances
LREALM<∞ = R≥0; Lτ × ρM<∞ = LτM<∞ × LρM<∞;

Lτ → ρM<∞ = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀t ∈ LτM<∞.f(x, t) ∈ LρM<∞}.

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N) where
d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).

19

K
IN

D
S
O
F
D
IS
T
A
N
C
E
S Hereditarily Null Distances

LREALM0 = {0} Lτ × ρM0 = LτM0 × LρM0

Lτ → ρM0 = {f | ∀x ∈ JτK.∀y ∈ LτM0.f(x, y) ∈ LρM0}

Hereditarily Finite Distances
LREALM<∞ = R≥0; Lτ × ρM<∞ = LτM<∞ × LρM<∞;

Lτ → ρM<∞ = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀t ∈ LτM<∞.f(x, t) ∈ LρM<∞}.

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N) where
d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).

19

K
IN

D
S
O
F
D
IS
T
A
N
C
E
S Hereditarily Null Distances

LREALM0 = {0} Lτ × ρM0 = LτM0 × LρM0

Lτ → ρM0 = {f | ∀x ∈ JτK.∀y ∈ LτM0.f(x, y) ∈ LρM0}

Hereditarily Finite Distances
LREALM<∞ = R≥0; Lτ × ρM<∞ = LτM<∞ × LρM<∞;

Lτ → ρM<∞ = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀t ∈ LτM<∞.f(x, t) ∈ LρM<∞}.

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N) where
d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).

19

R
E
C
U
R
SI
O
N

Loops, iteration, . . .

Adding Recursion
Γ, f : τ → ρ, x : τ `M : ρ

Γ ` fix(f, x).M : τ → ρ

20

R
E
C
U
R
SI
O
N

Loops, iteration, . . .

Adding Recursion
Γ, f : τ → ρ, x : τ `M : ρ

Γ ` fix(f, x).M : τ → ρ

20

R
E
C
U
R
SI
O
N
Step-indexed DLRs

δREAL(n, V , r,W)⇔ |V −W | ≤ r;
...

δτ→ρ(n, V , d,W)⇔ (∀k < n,∀U ∈ CV (τ). ∀x ∈ LτM. ∀Z ∈ CV (τ).

δτ (k, U, x, Z)⇒ δρ(k, V U, d(JUK, x),WZ)

∧ δρ(k, V Z, d(JUK, x),WU));

δτ (n,M, d,N)⇔ ∀k < n. (M ⇓k V ∧N ⇓W ⇒ δτ (n− k, V , d,W)∧
N ⇓k W ∧M ⇓ V ⇒ δτ (n− k, V , d,W)).

Theorem (Fundamental Lemma, Version III)
For every `M : τ and n ≥ 0, there is d ∈ (|τ |) such that δτ (n,M, d,M).

21

R
E
C
U
R
SI
O
N
Step-indexed DLRs

δREAL(n, V , r,W)⇔ |V −W | ≤ r;
...

δτ→ρ(n, V , d,W)⇔ (∀k < n,∀U ∈ CV (τ). ∀x ∈ LτM. ∀Z ∈ CV (τ).

δτ (k, U, x, Z)⇒ δρ(k, V U, d(JUK, x),WZ)

∧ δρ(k, V Z, d(JUK, x),WU));

δτ (n,M, d,N)⇔ ∀k < n. (M ⇓k V ∧N ⇓W ⇒ δτ (n− k, V , d,W)∧
N ⇓k W ∧M ⇓ V ⇒ δτ (n− k, V , d,W)).

Theorem (Fundamental Lemma, Version III)
For every `M : τ and n ≥ 0, there is d ∈ (|τ |) such that δτ (n,M, d,M).

21

E
F
F
E
C
T
S

I Imperative features
I Errors
I Randomness
I IO

Adding Effects

τ ::= · · · | T (τ)

I Global states
I Distribution
I Powerset

22

E
F
F
E
C
T
S

I Imperative features
I Errors
I Randomness
I IO

Adding Effects

τ ::= · · · | T (τ)

I Global states
I Distribution
I Powerset

22

E
F
F
E
C
T
S

Effectful Distance Spaces

LREALM = R∞≥0; Lτ → ρM = JτK×LτM→ LρM; Lτ × ρM = LτM×LρM; LT (τ)M = ULτM

I Randomness. T = U = D (distribution monad)
I Output.

I T = Σ∗ ×− (output monad);
I U = N×− (difference between output strings).

DLRs as Ternary Dependent Relations

δA ∈
∏
a∈A

2∆(a)×A

⊆ LAM: Allowed distances for a ∈ A

23

E
F
F
E
C
T
S

Effectful Distance Spaces

LREALM = R∞≥0; Lτ → ρM = JτK×LτM→ LρM; Lτ × ρM = LτM×LρM; LT (τ)M = ULτM

I Randomness. T = U = D (distribution monad)
I Output.

I T = Σ∗ ×− (output monad);
I U = N×− (difference between output strings).

DLRs as Ternary Dependent Relations

δA ∈
∏
a∈A

2∆(a)×A

⊆ LAM: Allowed distances for a ∈ A

23

E
F
F
E
C
T
S

Effectful Distance Spaces

LREALM = R∞≥0; Lτ → ρM = JτK×LτM→ LρM; Lτ × ρM = LτM×LρM; LT (τ)M = ULτM

I Randomness. T = U = D (distribution monad)
I Output.

I T = Σ∗ ×− (output monad);
I U = N×− (difference between output strings).

DLRs as Ternary Dependent Relations

δA ∈
∏
a∈A

2∆(a)×A

⊆ LAM: Allowed distances for a ∈ A
23

Denotational Semantics

24

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S

I Can we replace DLRs with metrics?

d : JσK× JσK −→ LσM

I In usual metric semantics each type σ is associated with a metric
d : JσK× JσK −→ R∞≥0 with a fixed distance space, R∞≥0.

I However, these semantics cannot account for STλC
(they are not cartesian closed)

I By letting the distance spaces LσM depend on σ the picture changes

25

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S

I Can we replace DLRs with metrics?

d : JσK× JσK −→ LσM

I In usual metric semantics each type σ is associated with a metric
d : JσK× JσK −→ R∞≥0 with a fixed distance space, R∞≥0.

I However, these semantics cannot account for STλC
(they are not cartesian closed)

I By letting the distance spaces LσM depend on σ the picture changes

25

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S

I Can we replace DLRs with metrics?

d : JσK× JσK −→ LσM

I In usual metric semantics each type σ is associated with a metric
d : JσK× JσK −→ R∞≥0 with a fixed distance space, R∞≥0.

I However, these semantics cannot account for STλC
(they are not cartesian closed)

I By letting the distance spaces LσM depend on σ the picture changes

25

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S I Suppose that
LREAL→ REALM = (R∞≥0)I(R)

where I(R) = {compact intervals of R}.

I Then p : JREAL→ REALK× JREAL→ REALK −→ (R∞≥0)I(R), where
p(f, g)(I) = diam(f(I) ∪ g(I)).

I This way we get a partial metric space:

p(f, f) ≤ p(f, g), p(g, f)

p(f, g) = p(g, f)

p(f, g) = p(f, f) = p(g, g)⇒ f = g

p(f, g) ≤ p(f, h) + p(h, g)−p(h, h)

I And out of it, a proper metric space:

p∗(f, g) = 2p(f, g)− p(f, f)− p(g, g)

I This way R is extended to all simple types.

26

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S I Suppose that
LREAL→ REALM = (R∞≥0)I(R)

where I(R) = {compact intervals of R}.
I Then p : JREAL→ REALK× JREAL→ REALK −→ (R∞≥0)I(R), where
p(f, g)(I) = diam(f(I) ∪ g(I)).

I This way we get a partial metric space:

p(f, f) ≤ p(f, g), p(g, f)

p(f, g) = p(g, f)

p(f, g) = p(f, f) = p(g, g)⇒ f = g

p(f, g) ≤ p(f, h) + p(h, g)−p(h, h)

I And out of it, a proper metric space:

p∗(f, g) = 2p(f, g)− p(f, f)− p(g, g)

I This way R is extended to all simple types.

26

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S I Suppose that
LREAL→ REALM = (R∞≥0)I(R)

where I(R) = {compact intervals of R}.
I Then p : JREAL→ REALK× JREAL→ REALK −→ (R∞≥0)I(R), where
p(f, g)(I) = diam(f(I) ∪ g(I)).

I This way we get a partial metric space:

p(f, f) ≤ p(f, g), p(g, f)

p(f, g) = p(g, f)

p(f, g) = p(f, f) = p(g, g)⇒ f = g

p(f, g) ≤ p(f, h) + p(h, g)−p(h, h)

I And out of it, a proper metric space:

p∗(f, g) = 2p(f, g)− p(f, f)− p(g, g)

I This way R is extended to all simple types.

26

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S I Suppose that
LREAL→ REALM = (R∞≥0)I(R)

where I(R) = {compact intervals of R}.
I Then p : JREAL→ REALK× JREAL→ REALK −→ (R∞≥0)I(R), where
p(f, g)(I) = diam(f(I) ∪ g(I)).

I This way we get a partial metric space:

p(f, f) ≤ p(f, g), p(g, f)

p(f, g) = p(g, f)

p(f, g) = p(f, f) = p(g, g)⇒ f = g

p(f, g) ≤ p(f, h) + p(h, g)−p(h, h)

I And out of it, a proper metric space:

p∗(f, g) = 2p(f, g)− p(f, f)− p(g, g)

I This way R is extended to all simple types.

26

F
R
O
M

D
L
R
s
T
O

M
E
T
R
IC

S
E
M
A
N
T
IC

S I Suppose that
LREAL→ REALM = (R∞≥0)I(R)

where I(R) = {compact intervals of R}.
I Then p : JREAL→ REALK× JREAL→ REALK −→ (R∞≥0)I(R), where
p(f, g)(I) = diam(f(I) ∪ g(I)).

I This way we get a partial metric space:

p(f, f) ≤ p(f, g), p(g, f)

p(f, g) = p(g, f)

p(f, g) = p(f, f) = p(g, g)⇒ f = g

p(f, g) ≤ p(f, h) + p(h, g)−p(h, h)

I And out of it, a proper metric space:

p∗(f, g) = 2p(f, g)− p(f, f)− p(g, g)

I This way R is extended to all simple types. 26

Coinduction
and Game Semantics

27

A
M
E
T
R
IC

A
N
A
L
O
G
U
E
T
O

B
IS
IM

U
L
A
T
IO

N
I Given an LTS (A,LBL,→), we say that δ : A×A→ R∞≥0 is a

behavioural metric iff

δ(M,N) ≥ Obs(M,N)

δ(M,N) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I The (pointwise) smallest behavioural metric is called bisimilarity metric.
I Variations along this theme for LTSs in various monadic flavours are very

well known and studied.
I When applied to LTSs coming from higher-order languages, these suffer

from the same problems as MLRs:
I Only λ-calculi with bounded replication can be modeled [Gavazzo2018].
I The distance does not depend on the context.

I The label ` is
arbitrary.

I δ(M,N) can be
much bigger than
δ(L,P) for some `.

28

A
M
E
T
R
IC

A
N
A
L
O
G
U
E
T
O

B
IS
IM

U
L
A
T
IO

N
I Given an LTS (A,LBL,→), we say that δ : A×A→ R∞≥0 is a

behavioural metric iff

δ(M,N) ≥ Obs(M,N)

δ(M,N) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I The (pointwise) smallest behavioural metric is called bisimilarity metric.

I Variations along this theme for LTSs in various monadic flavours are very
well known and studied.

I When applied to LTSs coming from higher-order languages, these suffer
from the same problems as MLRs:
I Only λ-calculi with bounded replication can be modeled [Gavazzo2018].
I The distance does not depend on the context.

I The label ` is
arbitrary.

I δ(M,N) can be
much bigger than
δ(L,P) for some `.

28

A
M
E
T
R
IC

A
N
A
L
O
G
U
E
T
O

B
IS
IM

U
L
A
T
IO

N
I Given an LTS (A,LBL,→), we say that δ : A×A→ R∞≥0 is a

behavioural metric iff

δ(M,N) ≥ Obs(M,N)

δ(M,N) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I The (pointwise) smallest behavioural metric is called bisimilarity metric.
I Variations along this theme for LTSs in various monadic flavours are very

well known and studied.

I When applied to LTSs coming from higher-order languages, these suffer
from the same problems as MLRs:
I Only λ-calculi with bounded replication can be modeled [Gavazzo2018].
I The distance does not depend on the context.

I The label ` is
arbitrary.

I δ(M,N) can be
much bigger than
δ(L,P) for some `.

28

A
M
E
T
R
IC

A
N
A
L
O
G
U
E
T
O

B
IS
IM

U
L
A
T
IO

N
I Given an LTS (A,LBL,→), we say that δ : A×A→ R∞≥0 is a

behavioural metric iff

δ(M,N) ≥ Obs(M,N)

δ(M,N) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I The (pointwise) smallest behavioural metric is called bisimilarity metric.
I Variations along this theme for LTSs in various monadic flavours are very

well known and studied.
I When applied to LTSs coming from higher-order languages, these suffer

from the same problems as MLRs:
I Only λ-calculi with bounded replication can be modeled [Gavazzo2018].
I The distance does not depend on the context.

I The label ` is
arbitrary.

I δ(M,N) can be
much bigger than
δ(L,P) for some `.

28

A
M
E
T
R
IC

A
N
A
L
O
G
U
E
T
O

B
IS
IM

U
L
A
T
IO

N
I Given an LTS (A,LBL,→), we say that δ : A×A→ R∞≥0 is a

behavioural metric iff

δ(M,N) ≥ Obs(M,N)

δ(M,N) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I The (pointwise) smallest behavioural metric is called bisimilarity metric.
I Variations along this theme for LTSs in various monadic flavours are very

well known and studied.
I When applied to LTSs coming from higher-order languages, these suffer

from the same problems as MLRs:
I Only λ-calculi with bounded replication can be modeled [Gavazzo2018].
I The distance does not depend on the context.

I The label ` is
arbitrary.

I δ(M,N) can be
much bigger than
δ(L,P) for some `.

28

A
D

IF
F
E
R

E
N

T
IA

L
A

N
A

L
O

G
U

E
T

O
B

IS
IM

U
L
A
T

IO
N

?

I Rather than taking R∞≥0 as the codomain of δ, one could take a set Q such
that, e.g.

Q ' R∞≥0 × (LBL → Q)

I Then, the bisimulation game could be made contextual:

π1(δ(M,N)) ≥ Obs(M,N)

π2(δ(M,N), `) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I We can capture contextual bisimiliarty [Larsen85].
I The properties of the induced notion of distance are still being scrutinized.

29

A
D

IF
F
E
R

E
N

T
IA

L
A

N
A

L
O

G
U

E
T

O
B

IS
IM

U
L
A
T

IO
N

?

I Rather than taking R∞≥0 as the codomain of δ, one could take a set Q such
that, e.g.

Q ' R∞≥0 × (LBL → Q)

I Then, the bisimulation game could be made contextual:

π1(δ(M,N)) ≥ Obs(M,N)

π2(δ(M,N), `) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I We can capture contextual bisimiliarty [Larsen85].
I The properties of the induced notion of distance are still being scrutinized.

29

A
D

IF
F
E
R

E
N

T
IA

L
A

N
A

L
O

G
U

E
T

O
B

IS
IM

U
L
A
T

IO
N

?

I Rather than taking R∞≥0 as the codomain of δ, one could take a set Q such
that, e.g.

Q ' R∞≥0 × (LBL → Q)

I Then, the bisimulation game could be made contextual:

π1(δ(M,N)) ≥ Obs(M,N)

π2(δ(M,N), `) ≥ δ(L,P) whenever M `→ L ∧N `→ P

I We can capture contextual bisimiliarty [Larsen85].
I The properties of the induced notion of distance are still being scrutinized.

29

A
D

IF
F
E
R

E
N

T
IA

L
A

N
A

L
O

G
U

E
T

O
G

A
M

E
S
E
M

A
N

T
IC

S
?

I Strategies can be seen as sets of sequences of moves rather than as
functions.

I The distance δτ (f, g) between two such strategies can then be taken as
f ∪ g.

δREAL→REAL(λx.x+ 2, λx.x+ 3) =

q

q

n

n+ 2

n+ 3

REAL REAL

I Quite suprisingly δ(f ◦ h, g ◦ k) = δ(f, g) ◦ δ(h, k).
I Very close to program pair distances.
I How about playing on abstract moves?

30

A
D

IF
F
E
R

E
N

T
IA

L
A

N
A

L
O

G
U

E
T

O
G

A
M

E
S
E
M

A
N

T
IC

S
?

I Strategies can be seen as sets of sequences of moves rather than as
functions.

I The distance δτ (f, g) between two such strategies can then be taken as
f ∪ g.

δREAL→REAL(λx.x+ 2, λx.x+ 3) =

q

q

n

n+ 2

n+ 3

REAL REAL

I Quite suprisingly δ(f ◦ h, g ◦ k) = δ(f, g) ◦ δ(h, k).
I Very close to program pair distances.
I How about playing on abstract moves?

30

Questions?

31

