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Day �: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day �: First-Order Programs �
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day �: First-Order Programs �
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day �: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Please ask questions!

OPLSS Slack: #probabilistic
I I will check in periodically for o�ine questions

Zoom chat/raise hand
I Thanks to Breandan Considine for moderating!

We don’t have to get through everything
I We will have to skip over many topics, anyways

Requests are welcome!
I Tell me if you’re curious about something not on the menu



Probabilistic Programs
Are Everywhere!



Executable code: Randomized Algorithms

Better performance in exchange for chance of failure
I Check if n ◊ n matrices A · B = C: O(n2.37...) operations
I Freivalds’ randomized algorithm: O(n2) operations

Improve performance against “worst-case” inputs
I Quicksort: if input is worst-case, O(n2) comparisons
I Randomized quicksort: O(n log n) comparisons on average

Other benefits
I Randomized algorithms can be simpler to describe
I Sometimes: more e�cient than deterministic algorithms
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Executable code: Security and Privacy

Cryptography
I Generate secrets the adversary doesn’t know
I Example: draw encryption/decryption keys randomly

Privacy
I Add random noise to blur private data
I Example: di�erential privacy
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Executable code: Randomized Testing

Randomly generate inputs to a program
I Search a huge space of potential inputs
I Avoid human bias in selecting testcases

Very common strategy for testing programs
I Property-based testing (e.g., QuickCheck)
I Fuzz testing (e.g., AFL, OSS-Fuzz)
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Modeling tool: Representing Uncertainty

Think of uncertain things as drawn from a distribution
I Example: whether a network link fails or not
I Example: tomorrow’s temperature

Di�erent motivation from executable code
I Aim: model some real-world data generation process
I Less important: generating data from this distribution
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Modeling tool: Fitting Empirical Data

Foundation of machine learning
I Human designs a model of how data is generated, with
unknown parameters

I Based on data collected from the world, infer parameters
of the model

Example: learning the bias of a coin
I Boolean data generated by coin flips
I Unknown parameter: bias of the coin
I Flip coin many times, try to infer the bias
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Modeling tool: Approximate Computing

Computing on unreliable hardware
I Hardware operations may occasionally give wrong answer
I Motivation: lower power usage if we allow more errors

Model failures as drawn from a distribution
I Run hardware many times, estimate failures rate
I Randomized program describes approximate computing
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Main Questions
and Research Directions



What to know about probabilistic programs?

Four general categories
I Semantics
I Verification
I Automation
I Implementation



Semantics: what do programs mean mathematically?

Specify what programs are supposed to do
I Programs may generate complicated distributions
I Desired behavior of programs may not be obvious

Common tools
I Denotational semantics: define program behavior using
mathematical concepts from probability theory
(distributions, measures, . . . )

I Operational semantics: define how programs step



Verification: how to prove programs correct?

Design ways to prove probabilistic program properties
I Target properties can be highly mathematical, subtle
I Goal: reusable techniques to prove these properties

Common tools
I Low-level: interactive theorem provers (e.g., Coq, Agda)
I Higher-level: type systems, Hoare logic, and custom logics



Automation: how to analyze programs automatically?

Prove correctness without human help
I Benefit: don’t need any human expertise to run
I Drawback: less expressive than manual techniques

Common tools
I Probabilistic model checking (e.g., PRISM, Storm)
I Abstract interpretation



Implementation: how to run programs e�ciently?

Executing a probabilistic program is not always easy
I Especially: in languages supporting conditioning
I Algorithmic insights to execute probabilistic programs

Common tools: sampling algorithms
I Markov Chain Monte Carlo (MCMC)
I Sequential Monte Carlo (SMC)



Important division: conditioning or not?

No conditioning in language
I Semantics is more straightforward
I Easier to implement; closer to executable code
I Verification and automation are more tractable

Yes conditioning in language
I Semantics is more complicated
I Di�cult to implement e�ciently, but useful for modeling
I Verification and automation are very di�cult
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Our focus, and the plan (can’t cover everything!)

Primary focus: verification
I Main course goal: reasoning about probabilistic programs

Secondary focus: semantics
I Introduce a few semantics for probabilistic languages

Programs without conditioning
I Simpler, and covers many practical applications



Our focus, and the plan (can’t cover everything!)

Primary focus: verification
I Main course goal: reasoning about probabilistic programs

Secondary focus: semantics
I Introduce a few semantics for probabilistic languages

Programs without conditioning
I Simpler, and covers many practical applications



Our focus, and the plan (can’t cover everything!)

Primary focus: verification
I Main course goal: reasoning about probabilistic programs

Secondary focus: semantics
I Introduce a few semantics for probabilistic languages

Programs without conditioning
I Simpler, and covers many practical applications



Our focus, and the plan (can’t cover everything!)

Primary focus: verification
I Main course goal: reasoning about probabilistic programs

Secondary focus: semantics
I Introduce a few semantics for probabilistic languages

Programs without conditioning
I Simpler, and covers many practical applications



What does semantics have to do with verification?

Semantics is the foundation of verification
I Semantics: definition of program behavior
I Verification: prove program behavior satisfies property

Semantics can make properties easier or harder to verify
I Probabilistic programs: several natural semantics
I Choice of semantics strongly a�ects verification
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Verifying Probabilistic Programs
What Are the Challenges?



Traditional verification: big code, general proofs
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Randomized programs: small code, specialized proofs

Small code
I Usually: on the order of 10s of lines of code
I 100-line algorithm: unthinkable (and un-analyzable)

Specialized proofs
I Often: apply combination of known and novel techniques
I Proofs (and techniques) can be research contributions



Simple programs, but complex program states

Programs manipulate distributions over program states
I Each state has a numeric probability
I Probabilities of di�erent states may be totally unrelated

Example: program with 10 Boolean variables
I Non-probabilistic programs: 210 = 1024 possible states
I Probabilistic programs: each state also has a probability
I 1024 possible states versus uncountably many states
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Properties are fundamentally quantitative

Key probabilistic properties often involve...
I Probabilities of events (e.g., returning wrong result)
I Average value of randomized quantities (e.g., running time)

Can’t just “ignore” probabilities
I Treat probabilities as zero or non-zero (non-determinism)
I Simplifies verification, but can’t prove most properties
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Needed: good abstractions for probabilistic programs

Discard unneeded aspects of a program’s state/behavior

— Andy Baio, Jay Maisel
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What do we want from these abstractions?

Desired features
�. Retain enough info to show target probabilistic properties

�. Be easy to establish (or at least not too di�cult)
�. Behave well under program composition
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Mathematical Preliminaries



Distributions and sub-distributions

Distribution over A assigns a probability to each a œ A
Let A be a countable set. A (discrete) distribution over A,
µ œ Distr(A), is a function µ : A æ [0, 1] such that:

ÿ

aœA

µ(a) = 1.

For modeling non-termination: sub-distributions
A (discrete) subdistribution over A, µ œ SDistr(A), is a function
µ : A æ [0, 1] such that:

ÿ

aœA

µ(a) Æ 1.

“Missing” mass is probability of non-termination.



Examples of distributions

Fair coin: Flip
I Distribution over B = {tt, � }
I µ(tt) = µ(� ) , 1/2

Biased coin: Flip(1/4)
I Distribution over B = {tt, � }
I µ(tt) , 1/4, µ(� ) , 3/4

Dice roll: Roll
I Distribution over N = {0, 1, 2, . . . }
I µ(1) = · · · = µ(6) , 1/6
I Otherwise: µ(n) , 0
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Notation for distributions

Probability of a set
Let E ™ A be an event, and let µ œ Distr(A) be a distribution.
Then the probability of E in µ is:

µ(E) ,
ÿ

xœE

µ(x).

Expected value
Let µ œ Distr(A) be a distribution, and f : A æ R+ be a
non-negative function. Then the expected value of f in µ is:

Ex≥µ[f(x)] ,
ÿ

xœA

f(a) · µ(a).
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Operations on distributions: unit

The simplest possible distribution
Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a œ A. Then unit(a) œ Distr(A) is defined to be:

unit(a)(x) =
I

1 : x = a

0 : otherwise

Why “unit”? The unit (“return”) of the distribution monad.
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Operations on distributions: map

Translate each distribution output to something else
Whenever sample x, sample f(x) instead. Transformation map
f is deterministic: function A æ B.

Distribution map
Let f : A æ B. Then map(f) : Distr(A) æ Distr(B) takes
µ œ Distr(A) to:

map(f)(µ)(b) ,
ÿ

aœA:f(a)=b

µ(a)

Probability of b œ B is sum probability of a œ A mapping to b.
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Example: distribution map

Swap results of a biased coin flip
I Let neg : B æ B map tt ‘æ � , and � ‘æ tt.
I Then µ = map(neg)(Flip(1/4)) swaps the results of a
biased coin flip.

I By definition of map: µ(tt) = 3/4, µ(� ) = 1/4.

Try this at home!
What is the distribution obtained by adding 1 to the result of a
dice roll Roll? Compute the probabilities using map.
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Operations on distributions: bind

Sequence two sampling instructions together
Draw a sample x, then draw a sample from a distribution f(x)
depending on x. Transformation map f is randomized: function
A æ Distr(B).

Distribution bind
Let µ œ Distr(A) and f : A æ Distr(B). Then
bind(µ, f) œ Distr(B) is defined to be:

bind(µ, f)(b) ,
ÿ

aœA

µ(a) · f(a)(b)
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Unpacking the formula for bind

bind(µ, f)(b) , q
aœA µ(a) · f(a)(b)

Probability of sampling b is . . .

�. Sample a œ A from µ: probability µ(a)
�. Sample b from f(a): probability f(a)(b)
�. Sum over all possible “intermediate samples” a œ A



Unpacking the formula for bind

bind(µ, f)(b) , q
aœA µ(a) · f(a)(b)

Probability of sampling b is . . .
�. Sample a œ A from µ: probability µ(a)

�. Sample b from f(a): probability f(a)(b)
�. Sum over all possible “intermediate samples” a œ A



Unpacking the formula for bind

bind(µ, f)(b) , q
aœA µ(a) · f(a)(b)

Probability of sampling b is . . .
�. Sample a œ A from µ: probability µ(a)
�. Sample b from f(a): probability f(a)(b)

�. Sum over all possible “intermediate samples” a œ A



Unpacking the formula for bind

bind(µ, f)(b) , q
aœAµ(a) · f(a)(b)

Probability of sampling b is . . .
�. Sample a œ A from µ: probability µ(a)
�. Sample b from f(a): probability f(a)(b)
�. Sum over all possible “intermediate samples” a œ A



Example: distribution bind

Summing two dice rolls
I For n œ N, let f(n) œ Distr(N) be the distribution of adding

n to the result of a fair dice roll Roll.
I Then: µ = bind(Roll, f) is the distribution of the sum of
two fair dice rolls.

I Can check from definition of bind:
µ(2) = (1/6) · (1/6) = 1/36

Try this at home!
I Define f in terms of distribution map.
I What if you try to define µ with map instead of bind?
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Operations on distributions: conditioning

Restrict a distribution to a smaller subset
Given a distribution over A, assume that the result is in E ™ A.
Then what probabilities should we assign elements in A?

Distribution conditioning
Let µ œ Distr(A), and E ™ A. Then µ conditioned on E is the
distribution in Distr(A) defined by:

(µ | E)(a) ,
I

µ(a)/µ(E) : a œ E

0 : a /œ E

Idea: probability of a “assuming that” the result must be in E.
Only makes sense if µ(E) is not zero!



Operations on distributions: conditioning

Restrict a distribution to a smaller subset
Given a distribution over A, assume that the result is in E ™ A.
Then what probabilities should we assign elements in A?

Distribution conditioning
Let µ œ Distr(A), and E ™ A. Then µ conditioned on E is the
distribution in Distr(A) defined by:

(µ | E)(a) ,
I

µ(a)/µ(E) : a œ E

0 : a /œ E

Idea: probability of a “assuming that” the result must be in E.
Only makes sense if µ(E) is not zero!



Example: conditioning

Rolling a dice until even number
Suppose we repeatedly roll a dice until it produces an even
number. What distribution over even numbers will we get?

Model as a conditional distribution
I Let E = {2, 4, 6}
I Resulting distribution is µ = (Roll | E)
I From definition of conditioning: µ(2) = µ(4) = µ(6) = 1/3

Try this at home!
Suppose we keep rolling two dice until the sum of the dice is 6
or larger. What is the distribution of the final sum?
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Operations on distributions: convex combination

Blending/mixing two distributions
Say we have distributions µ1, µ2 over the same set. Blending
the distributions: with probability p, draw something from µ1.
Else, draw something from µ2.

Convex combination
Let µ1, µ2 œ Distr(A), and let p œ [0, 1]. Then the convex
combination of µ1 and µ2 is defined by:

µ1 üp µ2(a) , p · µ1(a) + (1 ≠ p) · µ2(a).
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Example: convex combination

Blend two biased coin flips
I Let µ1 = Flip(1/4), µ2 = Flip(3/4)
I From definition of mixing, µ1 ü1/2 µ2 is a fair coin Flip

Try this at home!
I Show that Flip(r) üp Flip(s) = Flip(p · r + (1 ≠ p) · s).
I Show this relation between mixing and conditioning:

µ = (µ | E) üµ(E) (µ | E)
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Operations on distributions: independent product

Distribution of two “fresh” samples
Common operation in probabilistic programming languages:
draw a sample, and then draw another, “fresh” sample.

Independent product
Let µ1 œ Distr(A1) and µ2 œ Distr(A2). Then the independent
product is the distribution in Distr(A1 ◊ A2) defined by:

(µ1 ¢ µ2)(a1, a2) , µ1(a1) · µ2(a2).
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Example: independent product

Distribution of two fair coin flips
I Let µ1 = µ2 = Flip
I Then distribution of pair of fair coin flips is µ = µ1 ¢ µ2
I By definition, can show µ(b1, b2) = (1/2) · (1/2) = 1/4.

Try this at home!
I Show that unit(a1) ¢ unit(a2) = unit((a1, a2)).
I Can you formulate and prove an interesting property
relating independent product and distribution bind?
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Our First Probabilistic Language
Probabilistic WHILE (�W����)



�W���� by Example

The language, in a nutshell
I Core imperative W����-language
I Assignment, sequencing, if-then-else, while-loops
I Main extension: a command for random sampling x $Ω d,
where d is a built-in distribution

Can you guess what this program does?

x $Ω Roll;
y $Ω Roll;
z Ω x + y
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y $Ω Roll;
z Ω x + y



�W���� by Example

Control flow can be probabilistic
I Branches can depend on random samples
I Challenge for verification: can’t do a simple case analysis
I In some sense, an execution takes both branches

Can you guess what this program does?

choice $Ω Flip;
if choice then

res $Ω Flip(1/4)
else

res $Ω Flip(3/4)



�W���� by Example

Control flow can be probabilistic
I Branches can depend on random samples
I Challenge for verification: can’t do a simple case analysis
I In some sense, an execution takes both branches

Can you guess what this program does?

choice $Ω Flip;
if choice then

res $Ω Flip(1/4)
else

res $Ω Flip(3/4)



�W���� by Example

Loops can also be probabilistic
I Number of iterations can be randomized
I Termination can be probabilistic

Can you guess what this program does?

t Ω 0; stop Ω � ;
while ¬stop do

t Ω t + 1;
stop $Ω Flip(1/4)



�W���� by Example

Loops can also be probabilistic
I Number of iterations can be randomized
I Termination can be probabilistic

Can you guess what this program does?

t Ω 0; stop Ω � ;
while ¬stop do

t Ω t + 1;
stop $Ω Flip(1/4)



More formally: �W���� expressions

Grammar of boolean and numeric expressions

E – e := x œ X (variables)
| b œ B | E > E | E = E (booleans)
| n œ N | E + E | E · E (numbers)

Basic expression language
I Expression language can be extended if needed
I Assume: programs only use well-typed expressions



More formally: �W���� d-expressions

Grammar of d-expressions

DE – d := Flip (fair coin flip)
| Flip(p) (p-biased coin flip, p œ [0, 1])
| Roll (fair dice roll)

“Built-in” or “primitive” distributions
I Distributions can be extended if needed
I “Mathematically standard” distributions
I Distributions that can be sampled from in hardware



More formally: �W���� commands

Grammar of commands

C – c := skip (do nothing)
| X Ω E (assignment)
| X $Ω DE (sampling)
| C ; C (sequencing)
| if E then C else C (if-then-else)
| while E do C (while-loop)

Imperative language with sampling
I Bare-bones imperative language
I Many possible extensions: procedures, pointers, etc.


