Reasoning about Probabilistic Programs
Oregon PL Summer School 2021

Justin Hsu
UW-Madison
Cornell University

Day 1: Introducing Probabilistic Programs

» Motivations and key questions
» Mathematical preliminaries

Day 2: First-Order Programs 1

» Probabilistic While language, monadic semantics
» Weakest pre-expectation calculus

Day 3: First-Order Programs 2

» Probabilistic While language, transformer semantics
» Probabilistic separation logic

Day 4: Higher-Order Programs

» Type system: probability monad
» Type system: probabilistic PCF

Last time: PWHILE programs

Can you guess what this program does?

r < 0;
while r < 4 do
r & Roll

Last time: PWHILE programs

Can you guess what this program does?

r < 0;
while r < 4 do
r & Roll

Uniform sample from {4, 5,6}

» Start with dice roll, condition on » > 4

More formally: PWHILE expressions

Grammar of boolean and numeric expressions

Ede=xeX (variables)
|beB|E>E|E=E (booleans)
IneN|E+E|E-E (numbers)

Basic expression language

» Expression language can be extended if needed
» Assume: programs only use well-typed expressions

More formally: PWHILE d-expressions

Grammar of d-expressions

DE > d = Flip (fair coin flip)
| Flip(p) (p-biased coin flip, p € [0,1])
| Roll (fair dice roll)

“Built-in" or “primitive” distributions
» Distributions can be extended if needed
» “Mathematically standard” distributions
» Distributions that can be sampled from in hardware

More formally: PWHILE commands

Grammar of commands

C > ¢ = skip
| X &
| X & DE
|C;C
| if £ then C else C
| while € do C

Imperative language with sampling
» Bare-bones imperative language

(do nothing)
(assignment)

(sampling)
(sequencing)
(if-then-else)
(while-loop)

» Many possible extensions: procedures, pointers, etc.

A First Semantics for PWHILE
Monadic Semantics

Program states

Programs modify memories

» Memories m assign a value v € V to each variable z € X
» Just like memories in imperative languages

Program states

Programs modify memories

» Memories m assign a value v € V to each variable z € X
» Just like memories in imperative languages

More formally:

meM2X Y

Semantics of expressions

The value of an expression depends on the memory

» Example: value of z + 1 depends on the memory m
» Semantics of expressions takes memory as parameter

Semantics of expressions

The value of an expression depends on the memory

» Example: value of z + 1 depends on the memory m
» Semantics of expressions takes memory as parameter

More formally:

-]:£E > M=V

For example:
» Expression z + 1
» Memory m with m(z) =3
> [z +1]mE[zlm+[1jmE2m(z)+1=3+1=4

Semantics of distributions

Semantics of d-expression is distribution over values

» From d-expression to a (mathematical) distribution
» (Easy) extension: d-expression with parameters

More formally:

[-] : DE — Distr(V)

For example:

» D-expression Flip
» [Flip] £ i € Distr(B), where u(tt) = u(ff) = 1/2

Monadic semantics of commands: overview

First choice:
1. Command takes a memory as input, or:
2. Command takes a distribution over memories as input?

Monadic semantics of commands: overview

First choice:
1. Command takes a memory as input, or:
2. Command takes a distribution over memories as input?

Monadic semantics of commands: overview

First choice:
1. Command takes a memory as input, or:
2. Command takes a distribution over memories as input?

This lecture: monadic semantics
(—):C —- M — Distr(M)

Command: input memory to output distribution over memories.

Operations on distributions: unit

The simplest possible distribution

Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Operations on distributions: unit

The simplest possible distribution

Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a € A. Then unit(a) € Distr(A) is defined to be:

0 :otherwise

unit(a)(z) = {1 e

Why “unit”? The unit (“return”) of the distribution monad.

Semantics of commands: skip

Intuition
» Input: memory m
» Output: distribution that always returns m

Semantics of commands: skip

Intuition
» Input: memory m
» Output: distribution that always returns m

Semantics of skip

(skip)m = unit(m)

Semantics of commands: assignment

Intuition
> Input: memory m

» Output: distribution that always returns m with z — v,
where v is the original value of e in m.

Semantics of commands: assignment

Intuition
> Input: memory m

» Output: distribution that always returns m with z — v,
where v is the original value of e in m.

Semantics of assignment
Let v £ [eJm. Then:

(z + e)m = unit(m|x — v])

Operations on distributions: map

Translate each distribution output to something else
Whenever sample z, sample f(z) instead. Transformation map
f is deterministic: function A — B.

Distribution map

Let f: A — B. Then map(f) : Distr(A) — Distr(B) takes
u € Distr(A) to:

map(f)(w)(d) £ D ula)

a€A:f(a)=b

Probability of b € B is sum probability of a € A mapping to b.

Semantics of commands: sampling

Intuition
> Input: memory m
» Draw sample from [d], call it v
» Given v, map to updated output memory m[z — v]

Semantics of commands: sampling

Intuition
> Input: memory m
» Draw sample from [d], call it v
» Given v, map to updated output memory m[z — v]

Semantics of sampling
Let f(v) & m[x + v]. Then:

(z & d)ym = map(f)([d])

Operations on distributions: bind

Sequence two sampling instructions together

Draw a sample z, then draw a sample from a distribution f(z)
depending on z. Transformation map f is randomized: function
A — Distr(B).

Distribution bind
Let i € Distr(A) and f : A — Distr(B). Then
bind(u, f) € Distr(B) is defined to be:

bind(p, f Z wula
a€A

Semantics of commands: sequencing

Intuition
> Input: memory m
» Run first command, get distribution s,
» Sample m’ from pq, bind into second command

Semantics of commands: sequencing

Intuition
> Input: memory m
» Run first command, get distribution s,
» Sample m’ from pq, bind into second command

Semantics of sequencing

(c1 5 ca)m = bind((c1)m, (cz2))

Semantics of commands: conditionals

Intuition
> Input: memory m
» If guard is true in m run ¢y, else run ¢y
» Note: m is a memory, not a distribution!

Semantics of commands: conditionals

Intuition
> Input: memory m
» If guard is true in m run ¢y, else run ¢y
» Note: m is a memory, not a distribution!

Semantics of conditionals

5 = 7
(if e then ¢ else co)m = (eidm = [e]m

Semantics of loops: first try

Intuition
> Input: memory m
» Idea: while e do ¢ should be sequence of if-then-else:

(if e then ¢); - - - ; (if e then ¢)

Semantics of loops: first try

Intuition
> Input: memory m
» Idea: while e do ¢ should be sequence of if-then-else:

(if e then ¢); - - - ; (if e then ¢)

» Define loop semantics as limit?

(while e do ¢)m - limy,— o0 ((if € then ¢)™)m

Semantics of loops: first try

Intuition
> Input: memory m
» Idea: while e do ¢ should be sequence of if-then-else:

(if e then ¢); - - - ; (if e then ¢)

» Define loop semantics as limit?

(while e do ¢)m - limy, o0 ((if € then ¢)™)m

What does this limit mean?
» Say u, = ((if e then ¢)")m
» Each p, is a distribution in Distr(M). Does limit exist?

Intuitive loop semantics: limit may not exist!

Simple example: flipper

while ¢t do if x then x < [f else x « tt

What does this program do?

Intuitive loop semantics: limit may not exist!

Simple example: flipper

while ¢t do if x then x < [f else x « tt

What does this program do?
Repeatedly changes z to it and ff

» Suppose input m has m(z) = it

» Can verify: p, = ((if e then ¢)”)m has all mass on m for
even n, and all mass on m[z — ff] for odd n

» Oscillates: no sensible limit!

Semantics of loops: approximants

Problem with the flipper example: loop not terminating
» Idea: only “count” probability mass that has terminated
» Why? Once loop terminates, it is always terminated
» Terminated states can’t oscillate: values remain constant

Semantics of loops: approximants

Problem with the flipper example: loop not terminating

» Idea: only “count” probability mass that has terminated
» Why? Once loop terminates, it is always terminated
» Terminated states can’t oscillate: values remain constant

More formally...
» For p € Distr(M), define:

ule](m) 2 {,u(m) : [e]m = tt

0 : otherwise

» Erase weight of memories where e = ff (not conditioning)

Semantics of loops: limit of approximants

Loop approximants
Idea: mass that has terminated after n iterations

pn = (((if e then ¢)™)m)[—e]
Sub-distributions p,, are increasing in n: for any m/,
fin (M) < pnga (m).

Thus limit exists!

Semantics of loops: limit of approximants

Loop approximants
Idea: mass that has terminated after n iterations

i 2 (((if € then ¢)")m)[~c]
Sub-distributions p,, are increasing in n: for any m/,
fin (M) < pnga (m).
Thus limit exists!

Finally: define loop semantics

(while ¢ do e)m = limy, o0 fin

Semantics of loops: example

Consider this loop:
while —stop do

t+—t+1;
stop & Flip(1/4)

Suppose input memory m has m(t) = 0, m(stop) = ff

Semantics of loops: example

Consider this loop:

while —stop do
t+—t+1;
stop & Flip(1/4)

Suppose input memory m has m(t) = 0, m(stop) = [f
» After 1 iters: terminates with prob. 1/4 with ¢ = 1
> After 2 iters: terminates with prob. 3/4-1/4 with ¢t =2
> After n iters: terminates with prob. (3/4)"1.1/4witht =n

Thus approximants are:

pa([t = k]) = (3/4)" " - 1/4
fork =1,...,n. Taking limit as n — oo gives loop semantics.

Reasoning about PWHILE Programs

Weakest Pre-Expectation Calculus

Standard programs: Weakest Pre-conditions (Dijkstra)

Given a program and a post-condition, find pre-condition

» Given: program c and post-condition Q
» Find wp(c, Q): general pre-condition that ensures @ holds

To check @ on output, check wp(c, Q) on input
» If input state m satisfies wp(c, @), then [c]m satisfies @

Example: Weakest Pre-conditions

Example

» Program: z <y
» Post-condition: z > 0

What is the wp?

Example: Weakest Pre-conditions

Example

» Program: z <y
» Post-condition: z > 0

What is the wp?
Answer: wp(z < y,x > 0) = (y > 0)

Why?
Condition y > 0 is the least we need to ensure that z > 0 holds
after running = < y.

Example: Weakest Pre-conditions

Example

» Program: x < y;z < x +1
» Post-condition: z > 0

What is the wp?

Example: Weakest Pre-conditions

Example

» Program: x < y;z < x +1
» Post-condition: z > 0

What is the wp?
Answer: wp(z <~ y;z <~ x4+ 1,z > 0) = (y > —1)
Why?

Condition y > —1 is the least we need to ensure that z > 0
holds after running z < y;x < = + 1.

Example: Weakest Pre-conditions

Example

» Program:if z > Othenz < y;z < x+ lelsex < 5
» Post-condition: z > 0

What is the wp?

Example: Weakest Pre-conditions

Example

» Program:if z > Othenz < y;z < x+ lelsex < 5
» Post-condition: z > 0

What is the wp?
Possible to work out by hand, but getting a bit cumbersome...

How to make computing WP easier?

Idea: compute WP compositionally

» WP of complex command defined in terms of WP for
sub-commands

Benefits
» Simplify computation of WP for complicated programs
» WP can be computed “mechanically” (and automatically)

WP Calculus: Skip

Intuition
» Program: skip
» Post-condition: Q
» To ensure Q holds after, @ must hold before

WP Calculus: Skip

Intuition
» Program: skip
» Post-condition: Q
» To ensure Q holds after, @ must hold before

WP for Skip

wp(skip, Q) = Q

WP Calculus: Assignment

Intuition
» Program: x < e
» Post-condition: Q
» To ensure @ holds after, Q with = — e must hold before

WP Calculus: Assignment

Intuition
» Program: x < e
» Post-condition: Q
» To ensure @ holds after, Q with = — e must hold before

WP for Assignment
wp(z < €,Q) = Qx> €]

WP Calculus: Assignment

Intuition
» Program: x < e
» Post-condition: Q
» To ensure @ holds after, Q with = — e must hold before

WP for Assignment
wp(z < €,Q) = Qx> €]

Brief check

wp(z —x+1,2>0)=(x+1>0)=(zr>-1)

WP Calculus: Sequencing

Intuition
» Program: c; ; co
» Post-condition: Q
» To ensure @ holds after cq, wp(c2, @) must hold after ¢,
» To ensure wp(ce, Q) holds after ¢;, compute another wp

WP Calculus: Sequencing

Intuition
» Program: c; ; co
» Post-condition: Q
» To ensure @ holds after cq, wp(c2, @) must hold after ¢,
» To ensure wp(ce, Q) holds after ¢;, compute another wp

WP for Sequencing
wp(cl ; €2, Q) — wp(cl,wp(02, Q))

WP Calculus: Conditionals

Intuition
> Program: if e then ¢ else co
» Post-condition: Q

» To ensure @ holds after, wp(cq, Q) must hold before if
e = tt, and wp(cq, Q) must hold before if e = ff

WP Calculus: Conditionals

Intuition
> Program: if e then ¢ else co
» Post-condition: @

» To ensure @ holds after, wp(cq, Q) must hold before if
e = tt, and wp(cq, Q) must hold before if e = ff

WP for Conditionals

wp(if e then ¢ else c2, Q) = (e — wp(c1, Q)) A (me — wp(ea, Q))

Example: using the WP calculus

Example

» Program:if z > Othenz < y;z < x+ lelsex < 5
» Post-condition: z > 0

Example: using the WP calculus

Example

» Program:if z > Othenz < y;z < x+ lelsex < 5
» Post-condition: z > 0

What is the wp? A bit ugly, but entirely mechanical:

wp(if z > 0thenz < y;x < xz+ lelse x + 5,2 > 0)
=(z>0—-wp(x+y;zx+1,2>0))

A(z <0 — wp(z < 5,z >0))
=z>0—-wp(z+y;z>—-1)A(2<0—5>0))
=(z>0—-y>-1)

What is WP for loops?

Problem: WP for loops is not easy to compute

» Defined in terms of a least fixed-point
» Might have to unroll loop arbitrarily far to compute wp

What is WP for loops?

Problem: WP for loops is not easy to compute

» Defined in terms of a least fixed-point
» Might have to unroll loop arbitrarily far to compute wp

Idea: we often don’t need to compute WP for loops

» Just want to know: does P imply wp(while e do ¢, Q)?
» Use simpler, sufficient conditions to prove this implication

WP for loops: invariant rule

Setup

» Program while e do ¢
» Pre-condition P, post-condition @

WP for loops: invariant rule

Setup

» Program while e do ¢
» Pre-condition P, post-condition @

If we know I satisfying the invariant conditions...
> P11
> I N—-e—Q
» I Ne— wp(eI)
then we are done:

P — wp(while e do ¢, Q)

WP for loops: invariant rule

Setup

» Program while e do ¢
» Pre-condition P, post-condition @

If we know I satisfying the invariant conditions...

> P 1T

> I N—-e—Q

» I Ne— wp(eI)
then we are done:

P — wp(while e do ¢, Q)

What's the catch? Need to magically find an invariant 7

» Invariant conditions are easy to check

Example: using the invariant rule

Example
» Program: whilen > 0don < n—2
» Pre-condition: P = (n%2 =0 An > 0) (n is even)
» Post-condition: Q = (n = 0)

Example: using the invariant rule

Example

» Program: whilen > 0don < n—2
» Pre-condition: P = (n%2 =0 An > 0) (n is even)
» Post-condition: Q = (n = 0)

Invariant:

I=n>0—-n%2=0)A(n<0—>n=0)

Example: using the invariant rule

Example
» Program: whilen > 0don < n — 2
» Pre-condition: P = (n%2 =0 An > 0) (n is even)
» Post-condition: Q = (n = 0)

Invariant:

I=n>0-n%2=0A(n<0—->n=0)
Check these invariant conditions:
» P]
> I N—-e—Q
» [Ne— wp(e,I)

Generalizing Weakest Preconditions

to Probabilistic Programs

Idea: generalize predicates to expectations

“Real-valued” version of predicates

» Predicate: P: M — B
» Expectation: £ : M — RT

Idea: generalize predicates to expectations

“Real-valued” version of predicates

» Predicate: P: M — B
» Expectation: £ : M — RT

Example: numeric expression

» If z,y, 2z are numeric, then they are all expectations
» Also expressions like z +y,z -y, ...

Idea: generalize predicates to expectations

“Real-valued” version of predicates

» Predicate: P: M — B
» Expectation: £ : M — RT

Example: numeric expression

» If z,y, 2z are numeric, then they are all expectations
» Also expressions like z +y,z -y, ...

Example: indicator function
» If P is a (binary) predicate, then the indicator function is:

=4 F =g

» Turns a predicate into an expectation

What do expectations “mean” in a probabilistic state?

Intuition
» The “value” of a predicate P in a memory m is [P](m): 0 if
false, and 1 if true.

» The “value” of an expectation E in a distribution over
memories u is the average of E over pu.

Example: encoding a probability as an expectation

Suppose that:

» . is a distribution over memories
» FE is the expectation [z = y|

Then we have:
The probability of z = y in i is the average of E over p.

Example: encoding an average as an expectation

Suppose that:

» . is a distribution over memories
» FE is the expectation ¢, where ¢ is the running time

Then we have:
The average running time in y is the average of E over p.

Weakest pre-expectation (Morgan and Mclver)

Looks similar to weakest pre-conditions

» Given: probabilistic program ¢ and expectation £

» Find wpe(c, E): an expectation that computes the average
value of F in the output distribution after running ¢

To find average value of E after, evaluate wpe(c, E)

» For any input state m, the average value of £ in the output
distribution (c)m is exactly wpe(c, E)(m).

Tailored to the monadic semantics for PWHILE

Key property satisfied by wpe
For any program c, expectation FE, and input memory m:

wpe(c, E) (m) — Em’NQcDm[E(m/)]

Tailored to the monadic semantics for PWHILE

Key property satisfied by wpe
For any program c, expectation E, and input memory m:

wPe(ca E) (m) — Em’NQcDm[E(m/)]

Expectation evaluated on input

» Input is a single memory m
» Evaluate expectation on the memory

Tailored to the monadic semantics for PWHILE

Key property satisfied by wpe
For any program c, expectation FE, and input memory m:

wpe(c, E) (m) - Em’w(]c[)m[E(m/)]

Expectation evaluated on input

» Input is a single memory m
» Evaluate expectation on the memory

Expectation evaluated on output

» Output is a distribution over memories (c)m
> Average the expectation over the output distribution

Example: Reasoning with Weakest Pre-expectation

Example

» Program: z & Flip(p)
» Expectation: [z]

What is the wpe?

Example: Reasoning with Weakest Pre-expectation

Example
» Program: z & Flip(p)
» Expectation: [z]

What is the wpe?
Answer: wpe(z < Flip(p), [2]) =p

Why?

Average value of [z] after running z & Flip(p) is the probability
that z = t¢, which is p.

Example: Reasoning with Weakest Pre-expectation

Example
» Program: x & Roll;y £ Roll
» Expectation: z +y

What is the wpe?

Example: Reasoning with Weakest Pre-expectation

Example

» Program: z & Roll;y < Roll
» Expectation: z +y

What is the wpe?
Answer: wpe(x & Roll;y & Roll,z +y) =7

Why? Already not so easy to see...

Average value of z + y after running z & Roll;y & Roll is the
average value of x plus the average value of y, which is
3.5+35="1.

