Reasoning about Probabilistic Programs

Oregon PL Summer School 2021

Justin Hsu UW-Madison Cornell University

Day 1: Introducing Probabilistic Programs

- Motivations and key questions
- Mathematical preliminaries

Day 2: First-Order Programs 1

- Probabilistic While language, monadic semantics
- Weakest pre-expectation calculus

Day 3: First-Order Programs 2

- Probabilistic While language, transformer semantics
- Probabilistic separation logic

Day 4: Higher-Order Programs

- Type system: probability monad
- Type system: probabilistic PCF

Last time: PWHILE programs

Can you guess what this program does?

 $r \leftarrow 0;$ while r < 4 do $r \notin \mathbf{Roll}$ Last time: PWHILE programs

Can you guess what this program does?

 $r \leftarrow 0;$ while r < 4 do $r \notin \mathbf{Roll}$

Uniform sample from $\{4, 5, 6\}$

▶ Start with dice roll, condition on $r \ge 4$

More formally: PWHILE expressions

Grammar of boolean and numeric expressions

$$\mathcal{E}
ightarrow e := x \in \mathcal{X}$$
 (variables)
 $| b \in \mathbb{B} | \mathcal{E} > \mathcal{E} | \mathcal{E} = \mathcal{E}$ (booleans)
 $| n \in \mathbb{N} | \mathcal{E} + \mathcal{E} | \mathcal{E} \cdot \mathcal{E}$ (numbers)

Basic expression language

- Expression language can be extended if needed
- Assume: programs only use well-typed expressions

More formally: PWHILE d-expressions

Grammar of d-expressions

 $\mathcal{DE} \ni d := \mathbf{Flip} \\ | \mathbf{Flip}(p) \\ | \mathbf{Roll}$

(fair coin flip) (p-biased coin flip, $p \in [0, 1]$) (fair dice roll)

"Built-in" or "primitive" distributions

- Distributions can be extended if needed
- "Mathematically standard" distributions
- Distributions that can be sampled from in hardware

More formally: PWHILE commands

Grammar of commands

 \mathcal{C}

$$\begin{array}{l} \ni c \coloneqq \mathsf{skip} \\ \mid \mathcal{X} \leftarrow \mathcal{E} \\ \mid \mathcal{X} \xleftarrow{\hspace{0.5mm} \bullet} \mathcal{D}\mathcal{E} \\ \mid \mathcal{C} ; \mathcal{C} \\ \mid \mathsf{if} \ \mathcal{E} \ \mathsf{then} \ \mathcal{C} \ \mathsf{else} \\ \mid \mathsf{while} \ \mathcal{E} \ \mathsf{do} \ \mathcal{C} \end{array}$$

(do nothing) (assignment) (sampling) (sequencing) (if-then-else) (while-loop)

Imperative language with sampling

- Bare-bones imperative language
- Many possible extensions: procedures, pointers, etc.

C

A First Semantics for PWHILE Monadic Semantics

Program states

Programs modify memories

- Memories m assign a value $v \in \mathcal{V}$ to each variable $x \in \mathcal{X}$
- ► Just like memories in imperative languages

Program states

Programs modify memories

 \blacktriangleright Memories m assign a value $v \in \mathcal{V}$ to each variable $x \in \mathcal{X}$

► Just like memories in imperative languages

More formally:

$$m \in \mathcal{M} \triangleq \mathcal{X} \to \mathcal{V}$$

Semantics of expressions

The value of an expression depends on the memory

- Example: value of x + 1 depends on the memory m
- Semantics of expressions takes memory as parameter

Semantics of expressions

The value of an expression depends on the memory

- Example: value of x + 1 depends on the memory m
- Semantics of expressions takes memory as parameter

More formally:

$$\llbracket - \rrbracket : \mathcal{E} \to \mathcal{M} \to \mathcal{V}$$

For example:

- Expression x + 1
- Memory m with m(x) = 3

$$\blacktriangleright \hspace{0.1in} \llbracket x+1 \rrbracket m \triangleq \llbracket x \rrbracket m + \llbracket 1 \rrbracket m \triangleq m(x) + 1 = 3 + 1 = 4$$

Semantics of distributions

Semantics of d-expression is distribution over values

- ► From d-expression to a (mathematical) distribution
- ► (Easy) extension: d-expression with parameters

More formally:

$$[\![-]\!]:\mathcal{DE}\to\mathsf{Distr}(\mathcal{V})$$

For example:

- ► D-expression Flip
- $\llbracket \mathbf{Flip} \rrbracket \triangleq \mu \in \mathsf{Distr}(\mathbb{B})$, where $\mu(tt) = \mu(ff) = 1/2$

Monadic semantics of commands: overview

First choice:

- 1. Command takes a memory as input, or:
- 2. Command takes a distribution over memories as input?

Monadic semantics of commands: overview

First choice:

- 1. Command takes a memory as input, or:
- 2. Command takes a distribution over memories as input?

Monadic semantics of commands: overview

First choice:

- 1. Command takes a memory as input, or:
- 2. Command takes a distribution over memories as input?

This lecture: monadic semantics

$$(\!(-)\!): \mathcal{C} \to \mathcal{M} \to \mathsf{Distr}(\mathcal{M})$$

Command: input memory to output distribution over memories.

Operations on distributions: unit

The simplest possible distribution Dirac distribution: Probability 1 of producing a particular element, and probability 0 of producing anything else.

Operations on distributions: unit

The simplest possible distribution

Dirac distribution: Probability 1 of producing a particular element, and probability 0 of producing anything else.

Distribution unit

Let $a \in A$. Then $unit(a) \in Distr(A)$ is defined to be:

$$unit(a)(x) = \begin{cases} 1 & : x = a \\ 0 & : \text{ otherwise} \end{cases}$$

Why "unit"? The unit ("return") of the distribution monad.

Semantics of commands: skip

Intuition

- ► Input: memory *m*
- \blacktriangleright Output: distribution that always returns m

Semantics of commands: skip

Intuition

- ► Input: memory *m*
- \blacktriangleright Output: distribution that always returns m

Semantics of skip

$$(skip)m \triangleq unit(m)$$

Semantics of commands: assignment

Intuition

- ► Input: memory *m*
- Output: distribution that always returns m with $x \mapsto v$, where v is the original value of e in m.

Semantics of commands: assignment

Intuition

- ► Input: memory *m*
- Output: distribution that always returns m with $x \mapsto v$, where v is the original value of e in m.

Semantics of assignment

Let $v \triangleq \llbracket e \rrbracket m$. Then:

$$(x \leftarrow e)m \triangleq unit(m[x \mapsto v])$$

Operations on distributions: map

Translate each distribution output to something else Whenever sample x, sample f(x) instead. Transformation map f is deterministic: function $A \rightarrow B$.

Distribution map

Let $f : A \to B$. Then $map(f) : \text{Distr}(A) \to \text{Distr}(B)$ takes $\mu \in \text{Distr}(A)$ to:

$$map(f)(\mu)(b) \triangleq \sum_{a \in A: f(a)=b} \mu(a)$$

Probability of $b \in B$ is sum probability of $a \in A$ mapping to b.

Semantics of commands: sampling

Intuition

- ► Input: memory *m*
- Draw sample from $\llbracket d \rrbracket$, call it v
- Given v, map to updated output memory $m[x \mapsto v]$

Semantics of commands: sampling

Intuition

- ► Input: memory *m*
- Draw sample from $\llbracket d \rrbracket$, call it v
- Given v, map to updated output memory $m[x \mapsto v]$

Semantics of sampling

Let $f(v) \triangleq m[x \mapsto v]$. Then:

$$(x \Leftarrow d) m \triangleq map(f)([[d]])$$

Operations on distributions: bind

Sequence two sampling instructions together

Draw a sample x, then draw a sample from a distribution f(x) depending on x. Transformation map f is randomized: function $A \rightarrow \text{Distr}(B)$.

Distribution bind

Let $\mu \in \text{Distr}(A)$ and $f : A \to \text{Distr}(B)$. Then $bind(\mu, f) \in \text{Distr}(B)$ is defined to be:

$$bind(\mu, f)(b) \triangleq \sum_{a \in A} \mu(a) \cdot f(a)(b)$$

Semantics of commands: sequencing

Intuition

- ► Input: memory *m*
- Run first command, get distribution μ_1
- ► Sample m' from μ_1 , bind into second command

Semantics of commands: sequencing

Intuition

- ▶ Input: memory *m*
- Run first command, get distribution μ_1
- ► Sample m' from μ_1 , bind into second command

Semantics of sequencing

$$(c_1; c_2) m \triangleq bind((c_1) m, (c_2))$$

Semantics of commands: conditionals

Intuition

- ► Input: memory *m*
- If guard is true in $m \operatorname{run} c_1$, else run c_2
- ► Note: *m* is a memory, not a distribution!

Semantics of commands: conditionals

Intuition

- ► Input: memory *m*
- If guard is true in m run c_1 , else run c_2
- ► Note: *m* is a memory, not a distribution!

Semantics of conditionals

(if e then
$$c_1$$
 else c_2) $m \triangleq \begin{cases} (c_1)m & : \llbracket e \rrbracket m = tt \\ (c_2)m & : \llbracket e \rrbracket m = ff \end{cases}$

Semantics of loops: first try

Intuition

- ► Input: memory *m*
- ► Idea: while *e* do *c* should be sequence of if-then-else:

```
(if e then c); \cdots; (if e then c)
```

Semantics of loops: first try

Intuition

- ► Input: memory *m*
- ► Idea: while *e* do *c* should be sequence of if-then-else:

```
(if e then c); \cdots; (if e then c)
```

Define loop semantics as limit?

(while $e \operatorname{do} c$) $m \stackrel{?}{=} \lim_{n \to \infty} ((\text{if } e \operatorname{then} c)^n) m$

Semantics of loops: first try

Intuition

- ► Input: memory *m*
- ► Idea: while *e* do *c* should be sequence of if-then-else:

```
(if e then c); \cdots; (if e then c)
```

Define loop semantics as limit?

(while $e \text{ do } \overline{c} m \stackrel{?}{=} \lim_{n \to \infty} ((\text{if } e \text{ then } c)^n) m$

What does this limit mean?

- ► Say $\mu_n \triangleq ((\text{if } e \text{ then } c)^n)m$
- Each μ_n is a distribution in $\text{Distr}(\mathcal{M})$. Does limit exist?

Intuitive loop semantics: limit may not exist!

Simple example: flipper

while tt do if x then $x \leftarrow ff$ else $x \leftarrow tt$

What does this program do?

Intuitive loop semantics: limit may not exist!

Simple example: flipper

while tt do if x then $x \leftarrow ff$ else $x \leftarrow tt$

What does this program do?

Repeatedly changes x to tt and ff

- Suppose input m has m(x) = tt
- ► Can verify: $\mu_n = ((\text{if } e \text{ then } c)^n)m$ has all mass on m for even n, and all mass on $m[x \mapsto ff]$ for odd n
- Oscillates: no sensible limit!

Semantics of loops: approximants

Problem with the flipper example: loop not terminating

- ► Idea: only "count" probability mass that has terminated
- ▶ Why? Once loop terminates, it is always terminated
- Terminated states can't oscillate: values remain constant

Semantics of loops: approximants

Problem with the flipper example: loop not terminating

- ► Idea: only "count" probability mass that has terminated
- Why? Once loop terminates, it is always terminated
- Terminated states can't oscillate: values remain constant

More formally...

▶ For $\mu \in \text{Distr}(\mathcal{M})$, define:

$$\mu[e](m) \triangleq \begin{cases} \mu(m) & : \llbracket e \rrbracket m = tt \\ 0 & : \text{ otherwise} \end{cases}$$

• Erase weight of memories where e = ff (not conditioning)

Semantics of loops: limit of approximants

Loop approximants

Idea: mass that has terminated after n iterations

 $\mu_n \triangleq (((\text{if } e \text{ then } c)^n)m)[\neg e]$

Sub-distributions μ_n are increasing in n: for any m',

 $\mu_n(m') \le \mu_{n+1}(m').$

Thus limit exists!

Semantics of loops: limit of approximants

Loop approximants

Idea: mass that has terminated after n iterations

 $\mu_n \triangleq (((if e then c)^n)m)[\neg e]$

Sub-distributions μ_n are increasing in n: for any m',

$$\mu_n(m') \le \mu_{n+1}(m').$$

Thus limit exists!

Finally: define loop semantics

(while c do e) $m \triangleq \lim_{n \to \infty} \mu_n$

Semantics of loops: example Consider this loop:

while $\neg stop \text{ do}$ $t \leftarrow t + 1;$ $stop \notin \mathbf{Flip}(1/4)$

Suppose input memory m has m(t) = 0, m(stop) = ff

Semantics of loops: example Consider this loop:

while $\neg stop \text{ do}$ $t \leftarrow t + 1;$ $stop \circledast \mathbf{Flip}(1/4)$

Suppose input memory m has m(t) = 0, m(stop) = ff

- After 1 iters: terminates with prob. 1/4 with t = 1
- After 2 iters: terminates with prob. $3/4 \cdot 1/4$ with t = 2
- After *n* iters: terminates with prob. $(3/4)^{n-1} \cdot 1/4$ with t = n

Thus approximants are:

$$\mu_n([t=k]) = (3/4)^{k-1} \cdot 1/4$$

for $k = 1, \ldots, n$. Taking limit as $n \to \infty$ gives loop semantics.

Reasoning about PWHILE Programs Weakest Pre-Expectation Calculus

Standard programs: Weakest Pre-conditions (Dijkstra)

Given a program and a post-condition, find pre-condition

- Given: program c and post-condition Q
- Find wp(c, Q): general pre-condition that ensures Q holds

To check Q on output, check wp(c, Q) on input

▶ If input state m satisfies wp(c, Q), then $\llbracket c \rrbracket m$ satisfies Q

Example

- **•** Program: $x \leftarrow y$
- Post-condition: x > 0

What is the wp?

Example

- Program: $x \leftarrow y$
- Post-condition: x > 0

What is the wp?

Answer: $wp(x \leftarrow y, x > 0) = (y > 0)$

Why?

Condition y > 0 is the least we need to ensure that x > 0 holds after running $x \leftarrow y$.

Example

- $\blacktriangleright \text{ Program: } x \leftarrow y; x \leftarrow x+1$
- Post-condition: x > 0

What is the wp?

Example

• Program:
$$x \leftarrow y; x \leftarrow x+1$$

• Post-condition: x > 0

What is the wp?

Answer: $wp(x \leftarrow y; x \leftarrow x+1, x > 0) = (y > -1)$

Why?

Condition y > -1 is the least we need to ensure that x > 0 holds after running $x \leftarrow y; x \leftarrow x + 1$.

Example

- Program: if z > 0 then $x \leftarrow y; x \leftarrow x + 1$ else $x \leftarrow 5$
- Post-condition: x > 0

What is the wp?

Example

- Program: if z > 0 then $x \leftarrow y; x \leftarrow x + 1$ else $x \leftarrow 5$
- Post-condition: x > 0

What is the wp?

Possible to work out by hand, but getting a bit cumbersome...

How to make computing WP easier?

Idea: compute WP compositionally

 WP of complex command defined in terms of WP for sub-commands

Benefits

- Simplify computation of WP for complicated programs
- WP can be computed "mechanically" (and automatically)

WP Calculus: Skip

Intuition

- Program: skip
- ▶ Post-condition: Q
- To ensure Q holds after, Q must hold before

WP Calculus: Skip

Intuition

- Program: skip
- ▶ Post-condition: Q
- To ensure Q holds after, Q must hold before

WP for Skip

 $wp(\mathsf{skip},Q) = Q$

WP Calculus: Assignment

Intuition

- **Program:** $x \leftarrow e$
- ▶ Post-condition: Q
- ▶ To ensure Q holds after, Q with $x \mapsto e$ must hold before

WP Calculus: Assignment

Intuition

- **Program:** $x \leftarrow e$
- ▶ Post-condition: Q
- ▶ To ensure Q holds after, Q with $x \mapsto e$ must hold before

WP for Assignment

$$wp(x \leftarrow e, Q) = Q[x \mapsto e]$$

WP Calculus: Assignment

Intuition

- **Program:** $x \leftarrow e$
- ▶ Post-condition: Q
- ▶ To ensure Q holds after, Q with $x \mapsto e$ must hold before

WP for Assignment

$$wp(x \leftarrow e, Q) = Q[x \mapsto e]$$

Brief check

$$wp(x \leftarrow x + 1, x > 0) = (x + 1 > 0) = (x > -1)$$

WP Calculus: Sequencing

Intuition

- Program: c_1 ; c_2
- ▶ Post-condition: Q
- ▶ To ensure Q holds after c_2 , $wp(c_2, Q)$ must hold after c_1
- ▶ To ensure $wp(c_2, Q)$ holds after c_1 , compute another wp

WP Calculus: Sequencing

Intuition

- Program: c_1 ; c_2
- Post-condition: Q
- ▶ To ensure Q holds after c_2 , $wp(c_2, Q)$ must hold after c_1
- ▶ To ensure $wp(c_2, Q)$ holds after c_1 , compute another wp

WP for Sequencing

 $wp(c_1; c_2, Q) = wp(c_1, wp(c_2, Q))$

WP Calculus: Conditionals

Intuition

- **• Program:** if e then c_1 else c_2
- ▶ Post-condition: Q
- ► To ensure Q holds after, $wp(c_1, Q)$ must hold before if e = tt, and $wp(c_2, Q)$ must hold before if e = ff

WP Calculus: Conditionals

Intuition

- **• Program:** if e then c_1 else c_2
- Post-condition: Q
- ► To ensure Q holds after, $wp(c_1, Q)$ must hold before if e = tt, and $wp(c_2, Q)$ must hold before if e = ff

WP for Conditionals

 $wp(\text{if } e \text{ then } c_1 \text{ else } c_2, Q) = (e \to wp(c_1, Q)) \land (\neg e \to wp(c_2, Q))$

Example: using the WP calculus

Example

- ▶ Program: if z > 0 then $x \leftarrow y; x \leftarrow x + 1$ else $x \leftarrow 5$
- **•** Post-condition: x > 0

Example: using the WP calculus

Example

- $\blacktriangleright \ \ \, \text{Program: if } z > 0 \text{ then } x \leftarrow y; x \leftarrow x+1 \text{ else } x \leftarrow 5$
- Post-condition: x > 0

What is the wp? A bit ugly, but entirely mechanical:

$$\begin{split} ℘(\text{if } z > 0 \text{ then } x \leftarrow y; x \leftarrow x + 1 \text{ else } x \leftarrow 5, x > 0) \\ &= (z > 0 \rightarrow wp(x \leftarrow y; x \leftarrow x + 1, x > 0)) \\ & \land (z \le 0 \rightarrow wp(x \leftarrow 5, x > 0)) \\ &= (z > 0 \rightarrow wp(x \leftarrow y; x > -1)) \land (z \le 0 \rightarrow 5 > 0)) \\ &= (z > 0 \rightarrow y > -1) \end{split}$$

What is WP for loops?

Problem: WP for loops is not easy to compute

- Defined in terms of a least fixed-point
- Might have to unroll loop arbitrarily far to compute wp

What is WP for loops?

Problem: WP for loops is not easy to compute

- Defined in terms of a least fixed-point
- Might have to unroll loop arbitrarily far to compute wp

Idea: we often don't need to compute WP for loops

- ▶ Just want to know: does P imply wp(while e do c, Q)?
- Use simpler, sufficient conditions to prove this implication

WP for loops: invariant rule

Setup

- $\blacktriangleright \operatorname{Program} while e \operatorname{do} c$
- Pre-condition P, post-condition Q

WP for loops: invariant rule

Setup

- ▶ Program while *e* do *c*
- Pre-condition P, post-condition Q

If we know ${\it I}$ satisfying the invariant conditions...

$$\blacktriangleright \ P \to I$$

$$\blacktriangleright \ I \land \neg e \to Q$$

$$\blacktriangleright \ I \wedge e \to wp(c, I)$$

then we are done:

 $P \to wp(\mathsf{while}\; e \; \mathsf{do}\; c, Q)$

WP for loops: invariant rule

Setup

- ▶ Program while *e* do *c*
- Pre-condition P, post-condition Q

If we know ${\it I}$ satisfying the invariant conditions...

$$\blacktriangleright P \to I$$

$$\blacktriangleright \ I \land \neg e \to Q$$

$$\blacktriangleright \ I \wedge e \to wp(c, I)$$

then we are done:

$$P \to wp(\mathsf{while}\; e \; \mathsf{do}\; c, Q)$$

What's the catch? Need to magically find an invariant I

Invariant conditions are easy to check

Example: using the invariant rule

Example

- ▶ Program: while n > 0 do $n \leftarrow n 2$
- ▶ Pre-condition: $P = (n\%2 = 0 \land n \ge 0)$ (*n* is even)
- ▶ Post-condition: Q = (n = 0)

Example: using the invariant rule

Example

- ▶ Program: while n > 0 do $n \leftarrow n 2$
- ▶ Pre-condition: $P = (n\%2 = 0 \land n \ge 0)$ (*n* is even)
- Post-condition: Q = (n = 0)

Invariant:

$$I=(n>0\rightarrow n\%2=0)\wedge(n\leq 0\rightarrow n=0)$$

Example: using the invariant rule

Example

- **Program:** while n > 0 do $n \leftarrow n 2$
- ▶ Pre-condition: $P = (n\%2 = 0 \land n \ge 0)$ (*n* is even)
- Post-condition: Q = (n = 0)

Invariant:

$$I=(n>0\rightarrow n\%2=0)\wedge(n\leq 0\rightarrow n=0)$$

Check these invariant conditions:

- $\blacktriangleright P \to I$
- $\blacktriangleright \ I \land \neg e \to Q$
- $\blacktriangleright \ I \wedge e \to wp(c,I)$

Generalizing Weakest Preconditions to Probabilistic Programs

Idea: generalize predicates to expectations

"Real-valued" version of predicates

- Predicate: $P : \mathcal{M} \to \mathbb{B}$
- Expectation: $E: \mathcal{M} \to \mathbb{R}^+$

Idea: generalize predicates to expectations

"Real-valued" version of predicates

- Predicate: $P : \mathcal{M} \to \mathbb{B}$
- Expectation: $E: \mathcal{M} \to \mathbb{R}^+$

Example: numeric expression

- If x, y, z are numeric, then they are all expectations
- Also expressions like $x + y, x \cdot y, \dots$

Idea: generalize predicates to expectations

"Real-valued" version of predicates

- Predicate: $P : \mathcal{M} \to \mathbb{B}$
- Expectation: $E: \mathcal{M} \to \mathbb{R}^+$

Example: numeric expression

- If x, y, z are numeric, then they are all expectations
- Also expressions like $x + y, x \cdot y, \dots$

Example: indicator function

► If *P* is a (binary) predicate, then the indicator function is:

$$[P](m) = \begin{cases} 1 & : P(m) = tt \\ 0 & : P(m) = ff \end{cases}$$

Turns a predicate into an expectation

What do expectations "mean" in a probabilistic state?

Intuition

- ► The "value" of a predicate P in a memory m is [P](m): 0 if false, and 1 if true.
- The "value" of an expectation E in a distribution over memories μ is the average of E over μ .

Example: encoding a probability as an expectation

Suppose that:

- $\blacktriangleright \ \mu$ is a distribution over memories
- *E* is the expectation [x = y]

Then we have:

The probability of x = y in μ is the average of E over μ .

Example: encoding an average as an expectation

Suppose that:

- $\blacktriangleright \ \mu$ is a distribution over memories
- \blacktriangleright E is the expectation t, where t is the running time

Then we have:

The average running time in μ is the average of E over μ .

Weakest pre-expectation (Morgan and McIver)

Looks similar to weakest pre-conditions

- Given: probabilistic program c and expectation E
- ► Find wpe(c, E): an expectation that computes the average value of *E* in the output distribution after running *c*

To find average value of E after, evaluate wpe(c, E)

For any input state m, the average value of E in the output distribution (c)m is exactly wpe(c, E)(m).

Tailored to the monadic semantics for PWHILE

Key property satisfied by wpe

For any program c, expectation E, and input memory m:

$$wpe(c, E)(m) = \mathbb{E}_{m' \sim (c)} [E(m')]$$

Tailored to the monadic semantics for PWHILE

Key property satisfied by wpe

For any program c, expectation E, and input memory m:

$$wpe(c, E)(m) = \mathbb{E}_{m' \sim (c)m}[E(m')]$$

Expectation evaluated on input

- \blacktriangleright Input is a single memory m
- ► Evaluate expectation on the memory

Tailored to the monadic semantics for PWHILE

Key property satisfied by wpe

For any program c, expectation E, and input memory m:

$$wpe(c, E)(m) = \mathbb{E}_{m' \sim (c)m}[E(m')]$$

Expectation evaluated on input

- \blacktriangleright Input is a single memory m
- Evaluate expectation on the memory

Expectation evaluated on output

- ► Output is a distribution over memories ((c))m
- Average the expectation over the output distribution

Example

- $\blacktriangleright \text{ Program: } z \xleftarrow{\hspace{0.15cm}\$} \mathbf{Flip}(p)$
- ► Expectation: [z]

What is the wpe?

Example

- ▶ Program: $z \notin \mathbf{Flip}(p)$
- ► Expectation: [z]

What is the wpe?

Answer: $wpe(z \notin \mathbf{Flip}(p), [z]) = p$

Why?

Average value of [z] after running $z \notin \mathbf{Flip}(p)$ is the probability that z = tt, which is p.

Example

- ▶ Program: $x \notin \mathbf{Roll}; y \notin \mathbf{Roll}$
- **•** Expectation: x + y

What is the wpe?

Example

- Program: $x \notin \mathbf{Roll}; y \notin \mathbf{Roll}$
- Expectation: x + y

What is the wpe?

Answer: $wpe(x \notin \mathbf{Roll}; y \notin \mathbf{Roll}, x + y) = 7$

Why? Already not so easy to see...

Average value of x + y after running $x \notin \text{Roll}; y \notin \text{Roll}$ is the average value of x plus the average value of y, which is 3.5 + 3.5 = 7.