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Day �: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day �: First-Order Programs �
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day �: First-Order Programs �
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day �: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Last time: �W���� programs

Can you guess what this program does?

r Ω 0;
while r < 4 do

r $Ω Roll

Uniform sample from {4, 5, 6}
I Start with dice roll, condition on r Ø 4
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More formally: �W���� expressions

Grammar of boolean and numeric expressions

E – e := x œ X (variables)
| b œ B | E > E | E = E (booleans)
| n œ N | E + E | E · E (numbers)

Basic expression language
I Expression language can be extended if needed
I Assume: programs only use well-typed expressions



More formally: �W���� d-expressions

Grammar of d-expressions

DE – d := Flip (fair coin flip)
| Flip(p) (p-biased coin flip, p œ [0, 1])
| Roll (fair dice roll)

“Built-in” or “primitive” distributions
I Distributions can be extended if needed
I “Mathematically standard” distributions
I Distributions that can be sampled from in hardware



More formally: �W���� commands

Grammar of commands

C – c := skip (do nothing)
| X Ω E (assignment)
| X $Ω DE (sampling)
| C ; C (sequencing)
| if E then C else C (if-then-else)
| while E do C (while-loop)

Imperative language with sampling
I Bare-bones imperative language
I Many possible extensions: procedures, pointers, etc.



A First Semantics for �W����
Monadic Semantics



Program states

Programs modify memories
I Memories m assign a value v œ V to each variable x œ X
I Just like memories in imperative languages

More formally:

m œ M , X æ V
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Semantics of expressions

The value of an expression depends on the memory
I Example: value of x + 1 depends on the memory m

I Semantics of expressions takes memory as parameter

More formally:

J≠K : E æ M æ V

For example:
I Expression x + 1
I Memory m with m(x) = 3
I Jx + 1Km , JxKm + J1Km , m(x) + 1 = 3 + 1 = 4



Semantics of expressions

The value of an expression depends on the memory
I Example: value of x + 1 depends on the memory m
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Semantics of distributions

Semantics of d-expression is distribution over values
I From d-expression to a (mathematical) distribution
I (Easy) extension: d-expression with parameters

More formally:

J≠K : DE æ Distr(V)

For example:
I D-expression Flip
I JFlipK , µ œ Distr(B), where µ(tt) = µ(� ) = 1/2



Monadic semantics of commands: overview

First choice:
�. Command takes a memory as input, or:
�. Command takes a distribution over memories as input?

This lecture: monadic semantics

L≠M : C æ M æ Distr(M)
Command: input memory to output distribution over memories.
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Operations on distributions: unit

The simplest possible distribution
Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a œ A. Then unit(a) œ Distr(A) is defined to be:

unit(a)(x) =
I

1 : x = a

0 : otherwise

Why “unit”? The unit (“return”) of the distribution monad.
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Semantics of commands: skip

Intuition
I Input: memory m

I Output: distribution that always returns m

Semantics of skip

LskipMm , unit(m)



Semantics of commands: skip

Intuition
I Input: memory m

I Output: distribution that always returns m

Semantics of skip

LskipMm , unit(m)



Semantics of commands: assignment

Intuition
I Input: memory m

I Output: distribution that always returns m with x ‘æ v,
where v is the original value of e in m.

Semantics of assignment
Let v , JeKm. Then:

Lx Ω eMm , unit(m[x ‘æ v])



Semantics of commands: assignment

Intuition
I Input: memory m

I Output: distribution that always returns m with x ‘æ v,
where v is the original value of e in m.

Semantics of assignment
Let v , JeKm. Then:
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Operations on distributions: map

Translate each distribution output to something else
Whenever sample x, sample f(x) instead. Transformation map
f is deterministic: function A æ B.

Distribution map
Let f : A æ B. Then map(f) : Distr(A) æ Distr(B) takes
µ œ Distr(A) to:

map(f)(µ)(b) ,
ÿ

aœA:f(a)=b

µ(a)

Probability of b œ B is sum probability of a œ A mapping to b.



Semantics of commands: sampling

Intuition
I Input: memory m

I Draw sample from JdK, call it v

I Given v, map to updated output memory m[x ‘æ v]

Semantics of sampling
Let f(v) , m[x ‘æ v]. Then:

Lx $Ω dMm , map(f)(JdK)
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Operations on distributions: bind

Sequence two sampling instructions together
Draw a sample x, then draw a sample from a distribution f(x)
depending on x. Transformation map f is randomized: function
A æ Distr(B).

Distribution bind
Let µ œ Distr(A) and f : A æ Distr(B). Then
bind(µ, f) œ Distr(B) is defined to be:

bind(µ, f)(b) ,
ÿ

aœA

µ(a) · f(a)(b)



Semantics of commands: sequencing

Intuition
I Input: memory m

I Run first command, get distribution µ1
I Sample m

Õ from µ1, bind into second command

Semantics of sequencing

Lc1 ; c2Mm , bind(Lc1Mm, Lc2M)
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Semantics of commands: conditionals

Intuition
I Input: memory m

I If guard is true in m run c1, else run c2
I Note: m is a memory, not a distribution!

Semantics of conditionals

Lif e then c1 else c2Mm ,
I

Lc1Mm : JeKm = tt
Lc2Mm : JeKm = �
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Semantics of loops: first try

Intuition
I Input: memory m

I Idea: while e do c should be sequence of if-then-else:

(if e then c); · · · ; (if e then c)

I Define loop semantics as limit?

Lwhile e do cMm ?= limnæŒL(if e then c)nMm

What does this limit mean?
I Say µn , L(if e then c)nMm
I Each µn is a distribution in Distr(M). Does limit exist?
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Intuitive loop semantics: limit may not exist!

Simple example: flipper

while tt do if x then x Ω � else x Ω tt
What does this program do?

Repeatedly changes x to tt and �
I Suppose input m has m(x) = tt
I Can verify: µn = L(if e then c)nMm has all mass on m for
even n, and all mass on m[x ‘æ � ] for odd n

I Oscillates: no sensible limit!
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Semantics of loops: approximants

Problem with the flipper example: loop not terminating
I Idea: only “count” probability mass that has terminated
I Why? Once loop terminates, it is always terminated
I Terminated states can’t oscillate: values remain constant

More formally...
I For µ œ Distr(M), define:

µ[e](m) ,
I

µ(m) : JeKm = tt
0 : otherwise

I Erase weight of memories where e = � (not conditioning)
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Semantics of loops: limit of approximants

Loop approximants
Idea: mass that has terminated after n iterations

µn , (L(if e then c)nMm)[¬e]

Sub-distributions µn are increasing in n: for any m
Õ,

µn(mÕ) Æ µn+1(mÕ).

Thus limit exists!

Finally: define loop semantics

Lwhile c do eMm , limnæŒ µn
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Semantics of loops: example
Consider this loop:

while ¬stop do
t Ω t + 1;
stop $Ω Flip(1/4)

Suppose input memory m has m(t) = 0, m(stop) = �

I After 1 iters: terminates with prob. 1/4 with t = 1
I After 2 iters: terminates with prob. 3/4 · 1/4 with t = 2
I After n iters: terminates with prob. (3/4)n≠1 · 1/4 with t = n

Thus approximants are:

µn(Jt = kK) = (3/4)k≠1 · 1/4
for k = 1, . . . , n. Taking limit as n æ Œ gives loop semantics.
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Reasoning about �W���� Programs
Weakest Pre-Expectation Calculus



Standard programs: Weakest Pre-conditions (Dijkstra)

Given a program and a post-condition, find pre-condition
I Given: program c and post-condition Q

I Find wp(c, Q): general pre-condition that ensures Q holds

To check Q on output, check wp(c, Q) on input
I If input state m satisfies wp(c, Q), then JcKm satisfies Q



Example: Weakest Pre-conditions

Example
I Program: x Ω y

I Post-condition: x > 0

What is the wp?

Answer: wp(x Ω y, x > 0) = (y > 0)

Why?
Condition y > 0 is the least we need to ensure that x > 0 holds
after running x Ω y.
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Example: Weakest Pre-conditions

Example
I Program: x Ω y; x Ω x + 1
I Post-condition: x > 0

What is the wp?

Answer: wp(x Ω y; x Ω x + 1, x > 0) = (y > ≠1)

Why?
Condition y > ≠1 is the least we need to ensure that x > 0
holds after running x Ω y; x Ω x + 1.



Example: Weakest Pre-conditions

Example
I Program: x Ω y; x Ω x + 1
I Post-condition: x > 0

What is the wp?
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Example: Weakest Pre-conditions

Example
I Program: if z > 0 then x Ω y; x Ω x + 1 else x Ω 5
I Post-condition: x > 0

What is the wp?

Possible to work out by hand, but getting a bit cumbersome...



Example: Weakest Pre-conditions

Example
I Program: if z > 0 then x Ω y; x Ω x + 1 else x Ω 5
I Post-condition: x > 0
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Possible to work out by hand, but getting a bit cumbersome...



How to make computing WP easier?

Idea: compute WP compositionally
I WP of complex command defined in terms of WP for
sub-commands

Benefits
I Simplify computation of WP for complicated programs
I WP can be computed “mechanically” (and automatically)



WP Calculus: Skip

Intuition
I Program: skip
I Post-condition: Q

I To ensure Q holds after, Q must hold before

WP for Skip

wp(skip, Q) = Q
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WP Calculus: Assignment

Intuition
I Program: x Ω e

I Post-condition: Q

I To ensure Q holds after, Q with x ‘æ e must hold before

WP for Assignment

wp(x Ω e, Q) = Q[x ‘æ e]

Brief check

wp(x Ω x + 1, x > 0) = (x + 1 > 0) = (x > ≠1)
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WP Calculus: Sequencing

Intuition
I Program: c1 ; c2
I Post-condition: Q

I To ensure Q holds after c2, wp(c2, Q) must hold after c1
I To ensure wp(c2, Q) holds after c1, compute another wp

WP for Sequencing

wp(c1 ; c2, Q) = wp(c1, wp(c2, Q))



WP Calculus: Sequencing

Intuition
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I Post-condition: Q

I To ensure Q holds after c2, wp(c2, Q) must hold after c1
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WP Calculus: Conditionals

Intuition
I Program: if e then c1 else c2
I Post-condition: Q

I To ensure Q holds after, wp(c1, Q) must hold before if
e = tt, and wp(c2, Q) must hold before if e = �

WP for Conditionals

wp(if e then c1 else c2, Q) = (e æ wp(c1, Q)) · (¬e æ wp(c2, Q))
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Example: using the WP calculus

Example
I Program: if z > 0 then x Ω y; x Ω x + 1 else x Ω 5
I Post-condition: x > 0

What is the wp? A bit ugly, but entirely mechanical:

wp(if z > 0 then x Ω y; x Ω x + 1 else x Ω 5, x > 0)
= (z > 0 æ wp(x Ω y; x Ω x + 1, x > 0))

· (z Æ 0 æ wp(x Ω 5, x > 0))
= (z > 0 æ wp(x Ω y; x > ≠1)) · (z Æ 0 æ 5 > 0))
= (z > 0 æ y > ≠1)
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What is WP for loops?

Problem: WP for loops is not easy to compute
I Defined in terms of a least fixed-point
I Might have to unroll loop arbitrarily far to compute wp

Idea: we often don’t need to compute WP for loops
I Just want to know: does P imply wp(while e do c, Q)?
I Use simpler, su�cient conditions to prove this implication



What is WP for loops?

Problem: WP for loops is not easy to compute
I Defined in terms of a least fixed-point
I Might have to unroll loop arbitrarily far to compute wp

Idea: we often don’t need to compute WP for loops
I Just want to know: does P imply wp(while e do c, Q)?
I Use simpler, su�cient conditions to prove this implication



WP for loops: invariant rule
Setup
I Program while e do c

I Pre-condition P , post-condition Q

If we know I satisfying the invariant conditions...
I P æ I

I I · ¬e æ Q

I I · e æ wp(c, I)
then we are done:

P æ wp(while e do c, Q)

What’s the catch? Need to magically find an invariant I

I Invariant conditions are easy to check



WP for loops: invariant rule
Setup
I Program while e do c

I Pre-condition P , post-condition Q

If we know I satisfying the invariant conditions...
I P æ I

I I · ¬e æ Q

I I · e æ wp(c, I)
then we are done:

P æ wp(while e do c, Q)

What’s the catch? Need to magically find an invariant I

I Invariant conditions are easy to check



WP for loops: invariant rule
Setup
I Program while e do c

I Pre-condition P , post-condition Q

If we know I satisfying the invariant conditions...
I P æ I

I I · ¬e æ Q

I I · e æ wp(c, I)
then we are done:

P æ wp(while e do c, Q)

What’s the catch? Need to magically find an invariant I

I Invariant conditions are easy to check



Example: using the invariant rule

Example
I Program: while n > 0 do n Ω n ≠ 2
I Pre-condition: P = (n%2 = 0 · n Ø 0) (n is even)
I Post-condition: Q = (n = 0)

Invariant:

I = (n > 0 æ n%2 = 0) · (n Æ 0 æ n = 0)
Check these invariant conditions:
I P æ I

I I · ¬e æ Q

I I · e æ wp(c, I)
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Generalizing Weakest Preconditions
to Probabilistic Programs



Idea: generalize predicates to expectations
“Real-valued” version of predicates
I Predicate: P : M æ B
I Expectation: E : M æ R+

Example: numeric expression
I If x, y, z are numeric, then they are all expectations
I Also expressions like x + y, x · y, . . .

Example: indicator function
I If P is a (binary) predicate, then the indicator function is:

[P ](m) =
I

1 : P (m) = tt
0 : P (m) = �

I Turns a predicate into an expectation
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What do expectations “mean” in a probabilistic state?

Intuition
I The “value” of a predicate P in a memory m is [P ](m): 0 if
false, and 1 if true.

I The “value” of an expectation E in a distribution over
memories µ is the average of E over µ.



Example: encoding a probability as an expectation

Suppose that:
I µ is a distribution over memories
I E is the expectation [x = y]

Then we have:
The probability of x = y in µ is the average of E over µ.



Example: encoding an average as an expectation

Suppose that:
I µ is a distribution over memories
I E is the expectation t, where t is the running time

Then we have:
The average running time in µ is the average of E over µ.



Weakest pre-expectation (Morgan and McIver)

Looks similar to weakest pre-conditions
I Given: probabilistic program c and expectation E

I Find wpe(c, E): an expectation that computes the average
value of E in the output distribution after running c

To find average value of E after, evaluate wpe(c, E)
I For any input state m, the average value of E in the output
distribution LcMm is exactly wpe(c, E)(m).



Tailored to the monadic semantics for �W����

Key property satisfied by wpe
For any program c, expectation E, and input memory m:

wpe(c, E)(m) = EmÕ≥LcMm[E(mÕ)]

Expectation evaluated on input
I Input is a single memory m

I Evaluate expectation on the memory

Expectation evaluated on output
I Output is a distribution over memories LcMm
I Average the expectation over the output distribution
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Example: Reasoning with Weakest Pre-expectation

Example
I Program: z $Ω Flip(p)
I Expectation: [z]

What is the wpe?

Answer: wpe(z $Ω Flip(p), [z]) = p

Why?
Average value of [z] after running z $Ω Flip(p) is the probability
that z = tt, which is p.
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Example: Reasoning with Weakest Pre-expectation

Example
I Program: x $Ω Roll; y $Ω Roll
I Expectation: x + y

What is the wpe?

Answer: wpe(x $Ω Roll; y $Ω Roll, x + y) = 7

Why? Already not so easy to see...
Average value of x + y after running x $Ω Roll; y $Ω Roll is the
average value of x plus the average value of y, which is
3.5 + 3.5 = 7.
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