Reasoning about Probabilistic Programs

Oregon PL Summer School 2021

Justin Hsu
UW–Madison
Cornell University
Day 1: Introducing Probabilistic Programs
- Motivations and key questions
- Mathematical preliminaries

Day 2: First-Order Programs 1
- Probabilistic While language, monadic semantics
- Weakest pre-expectation calculus

Day 3: First-Order Programs 2
- Probabilistic While language, transformer semantics
- Probabilistic separation logic

Day 4: Higher-Order Programs
- Type system: probability monad
- Type system: probabilistic PCF
Last time: monadic semantics for PWHILE

The PWHILE language

- Core imperative language extended with random sampling
Last time: monadic semantics for PWHILE

The PWHILE language
- Core imperative language extended with random sampling

Monadic semantics

\((|c|) : \mathcal{M} \rightarrow \text{Distr}(\mathcal{M}) \)

- Input: memory
- Output: distribution over memories
Last time: weakest pre-expectations

Weakest pre-expectation calculus

- Given: PWHILE program c
- Given: post-expectation $E : \mathcal{M} \rightarrow \mathbb{R}^+$
- Compute $wpe(c, E)$: maps an input m to c to the expected value of E in the output of c executed on m.

What is this useful for?

1. "The probability of $x = y$ is $1/2$" in the output
2. "The expected value of t in the output is $n + 42$"
Last time: weakest pre-expectations

Weakest pre-expectation calculus

- Given: PWHILE program c
- Given: post-expectation $E : M \rightarrow \mathbb{R}^+$
- Compute $wpe(c, E)$: maps an input m to c to the expected value of E in the output of c executed on m.

What is this useful for?

- “The probability of $x = y$ is $1/2$” in the output
- “The expected value of t in the output is $n + 42$”
How to compute Weakest Pre-expectations easier?

Same idea as for wp: define \textit{wpe} compositionally

- Compute \textit{wpe} of a program from \textit{wpe} of sub-programs
- Break down a complicated computation into simpler parts
How to compute Weakest Pre-expectations easier?

Same idea as for wp: define \(wpe\) compositionally

- Compute \(wpe\) of a program from \(wpe\) of sub-programs
- Break down a complicated computation into simpler parts

Overall framework developed by Morgan and McIver

- Work over multiple decades, building on work by Kozen
- Also covered non-deterministic choice (we won’t do this)
WPE Calculus: Skip

Intuition
- Program: skip
- Post-expectation: E
- Average value of E after is just E before
WPE Calculus: Skip

Intuition
- Program: skip
- Post-expectation: E
- Average value of E after is just E before

WPE for Skip

\[\text{wpe}(\text{skip}, E) = E \]
Intuition

- Program: $x \leftarrow e$
- Post-expectation: E
- Average value of E after is E with $x \mapsto e$ before
WPE Calculus: Assignment

Intuition

- Program: $x \leftarrow e$
- Post-expectation: E
- Average value of E after is E with $x \mapsto e$ before

WPE for Assignment

$$wpe(x \leftarrow e, E) = E[x \mapsto e]$$
Intuition

- Program: $x \xleftarrow{\$} d$
- Post-expectation: E
- Average value of E computed from averaging over x
WPE Calculus: Random sampling

Intuition

- Program: $x \overset{\$}{\leftarrow} d$
- Post-expectation: E
- Average value of E computed from averaging over x

WPE for sampling $\text{Flip}(p)$

$$wpe(x \overset{\$}{\leftarrow} \text{Flip}(p), E) = p \cdot E[x \mapsto tt] + (1 - p) \cdot E[x \mapsto ff]$$

Try this at home!
What is $wpe(x \overset{\$}{\leftarrow} \text{Roll}, E)$?
Intuition

- Program: $c_1 ; c_2$
- Post-expectation: E
- Average value of E after c_2 is $wpe(c_2, E)$ before c_2
- Average value of $wpe(c_2, E)$ before c_1: another wpe
WPE Calculus: Sequencing

Intuition

- **Program**: $c_1 ; c_2$
- **Post-expectation**: E
- **Average value of E after c_2 is $wpe(c_2, E)$ before c_2**
- **Average value of $wpe(c_2, E)$ before c_1: another wpe**

WPE for Sequencing

$$wpe(c_1 ; c_2, E) = wpe(c_1, wpe(c_2, E))$$
WPE Calculus: Conditionals

Intuition

- Program: if \(e \) then \(c_1 \) else \(c_2 \)
- Post-expectation: \(E \)
- Average value of \(E \) after is \(\text{wpe}(c_1, E) \) before if \(e = tt \), else \(\text{wpe}(c_2, E) \) before if \(e = ff \)
Intuition

- Program: if e then c_1 else c_2
- Post-expectation: E
- Average value of E after is $wpe(c_1, E)$ before if $e = tt$, else $wpe(c_2, E)$ before if $e = ff$

WPE for Conditionals

$$wpe(\text{if } e \text{ then } c_1 \text{ else } c_2, E) = [e] \cdot wpe(c_1, E) + [\neg e] \cdot wpe(c_2, E)$$

Indicator functions play the role of if-then-else.
Theorem
Let c be a PWHILE program, E be an expectation, and $m \in \mathcal{M}$ be any input state. If $\mu = (c|m)$ is the output memory, then:

$$\mathbb{E}_{m' \sim \mu}[E(m')] = \text{wpe}(c, E)(m).$$
Theorem

Let c be a PWHILE program, E be an expectation, and $m \in \mathcal{M}$ be any input state. If $\mu = (c)m$ is the output memory, then:

$$E_{m' \sim \mu}[E(m')] = \text{wpe}(c, E)(m).$$

Try this at home!

Prove this for loop-free programs, by induction on the program structure.
Weakest Pre-expectations

for Probabilistic Loops
Can you guess this WPE?

Program:

\[
\begin{align*}
 n &\leftarrow 100; \\
 \text{while } n > 42 \text{ do} \\
 &\quad n \leftarrow n - 1
\end{align*}
\]

Post-expectation: \(n \)
Can you guess this WPE?

Program:

\[
\begin{align*}
n &\leftarrow 100; \\
\text{while } n > 42 \text{ do} & \\
& \quad n \leftarrow n - 1
\end{align*}
\]

Post-expectation: \(n \)

Answer

Deterministic program, always terminates with \(n = 42 \). So \(wpe(c, n) = 42 \).
What about this one?

Program:

\[
n \leftarrow 100; \\
\text{while } n > 42 \text{ do} \\
\quad \text{dec } \leftarrow \text{Flip;} \\
\quad \text{if } \text{dec} \text{ then } n \leftarrow n - 1
\]

Post-expectation: \(n \)
Program:

\[
\begin{align*}
 n &\leftarrow 100; \\
 \text{while } n > 42 \text{ do } \\
 \quad \text{dec } &\leftarrow \text{ Flip;} \\
 \quad \text{if } \text{dec} \text{ then } n &\leftarrow n - 1
\end{align*}
\]

Post-expectation: \(n \)

Answer
Randomized program, but always terminates with \(n = 42 \). So \(wpe(c, n) = 42 \).
Program:

```plaintext
\begin{align*}
t & \leftarrow 0; \quad \text{stop} \leftarrow \text{ff}; \\
\text{while } \neg \text{stop} \text{ do} \quad \\
& \quad t \leftarrow t + 1; \\
& \quad \text{stop} \leftarrow \text{Flip}(1/4)
\end{align*}
```

Post-expectation: t
What about this one?

Program:

\[
\begin{align*}
t &\leftarrow 0; \quad stop \leftarrow \text{ff}; \\
\text{while } \neg stop \text{ do} \\
&\quad t \leftarrow t + 1; \\
&\quad stop \leftarrow \text{Flip}(1/4)
\end{align*}
\]

Post-expectation: \(t\)

Starting to get more complicated...
Can we give a general method to compute \(wpe\) for loops?
What is the WPE of a loop?

Can define \(wpe \) for loops mathematically, but...

- Defined in terms of a least fixed point
- Hard to compute \(wpe(\text{while } b \text{ do } c, E) \) in terms of \(wpe(c, -) \)
What is the WPE of a loop?

Can define wpe for loops mathematically, but...

- Defined in terms of a least fixed point
- Hard to compute $wpe(\text{while } b \text{ do } c, E)$ in terms of $wpe(c, -)$

Idea: prove upper and lower bounds on wpe

- Analog of wp: implication becomes inequality
- Don’t aim to compute wpe exactly
Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on wpe

- Program: while e do c
- Pre-expectation E', Post-expectation E
- Goal: Check if $wpe(\text{while } e \text{ do } c, E) \leq E'$
Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on \(wpe \)
- Program: \(\text{while } e \text{ do } c \)
- Pre-expectation \(E' \), Post-expectation \(E \)
- Goal: Check if \(wpe(\text{while } e \text{ do } c, E) \leq E' \)

Super-invariant rule
Suppose we have an expectation \(I \) (the invariant) satisfying the super-invariant conditions:
- \(I \leq E' \)
- \([e] \cdot wpe(c, I) + [\neg e] \cdot E \leq I\)
Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on \(wpe \)
- Program: \(\text{while } e \text{ do } c \)
- Pre-expectation \(E' \), Post-expectation \(E \)
- Goal: Check if \(wpe(\text{while } e \text{ do } c, E) \leq E' \)

Super-invariant rule
Suppose we have an expectation \(I \) (the invariant) satisfying the super-invariant conditions:
- \(I \leq E' \)
- \([e] \cdot wpe(c, I) + [\neg e] \cdot E \leq I \)

Then we can conclude the upper-bound:

\[
\text{wpe(while } e \text{ do } c, E) \leq E'
\]
Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe

- Program: while e do c
- Pre-expectation E', Post-expectation E
- Goal: Check if $E'wpe(\text{while } e \text{ do } c, E)$
Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on \textit{wpe}

- Program: \textit{while }e\textit{ do }c
- Pre-expectation \(E' \), Post-expectation \(E \)
- Goal: Check if \(E' \textit{wpe} \text{(while }e\textit{ do }c, E) \)

Sub-invariant rule
Suppose we have an expectation \(I \) (the \textit{invariant}) satisfying the sub-invariant conditions and \(I \) is bounded in \([0, 1]\):

- \(E' \leq I \)
- \(I \leq [e] \cdot \textit{wpe}(c, I) + [\neg e] \cdot E \)
Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe

- Program: while e do c
- Pre-expectation E', Post-expectation E
- Goal: Check if $E' wpe(\text{while } e \text{ do } c, E)$

Sub-invariant rule
Suppose we have an expectation I (the invariant) satisfying the sub-invariant conditions and I is bounded in $[0, 1]$:

- $E' \leq I$
- $I \leq [e] \cdot wpe(c, I) + [\neg e] \cdot E$

Then we can conclude the lower-bound:

$$E' \leq wpe(\text{while } e \text{ do } c, E)$$
An example: FAIR

Simulate a fair coin flip from biased coin flips

\[
\text{while } x = y \text{ do } \\
x \leftarrow \text{Flip}(p) ; \\
y \leftarrow \text{Flip}(p) ;
\]
An example: FAIR

Simulate a fair coin flip from biased coin flips

while $x = y$ do
 $x \leftarrow \text{Flip}(p)$;
 $y \leftarrow \text{Flip}(p)$;

Goal: show that if $x = y$ initially, then final x is fair coin

In terms of wpe, this follows from proving:

$$wpe(\text{FAIR}, [x]) = [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$$
An example: FAIR

Simulate a fair coin flip from biased coin flips

\[
\text{while } x = y \text{ do}
\]
\[
x \leftarrow \text{Flip}(p);
\]
\[
y \leftarrow \text{Flip}(p);
\]

Goal: show that if \(x = y \) initially, then final \(x \) is fair coin

In terms of \(\text{wpe} \), this follows from proving:

\[
\text{wpe}(\text{FAIR}, [x]) = [x = y] \cdot 0.5 + [x \neq y] \cdot [x]
\]

Prove this in two steps:

1. Upper-bound: \(\text{wpe}(\text{FAIR}, [x]) \leq [x = y] \cdot 0.5 + [x \neq y] \cdot [x] \)
2. Lower-bound: \(\text{wpe}(\text{FAIR}, [x]) \geq [x = y] \cdot 0.5 + [x \neq y] \cdot [x] \)
FAIR: proving the upper-bound

Want I satisfying super-invariant conditions:

$$I \leq [x = y] \cdot wpe(x \leftarrow Flip(p); y \leftarrow Flip(p), I) + [x \neq y] \cdot [x]$$
FAIR: proving the upper-bound

Want I satisfying super-invariant conditions:

$$I \leq [x = y] \cdot \text{wpe}(x \overset{\$}{\leftrightarrow} \text{Flip}(p); y \overset{\$}{\leftrightarrow} \text{Flip}(p), I) + [x \neq y] \cdot [x]$$

Take the following invariant:

$$I \triangleq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$$
FAIR: checking the super-invariant condition

Apply the \textit{wpe} calculus rules

\[[x = y] \cdot wpe(x \leftarrow \text{Flip}(p); y \leftarrow \text{Flip}(p), I) + [x \neq y] \cdot [x] \]
FAIR: checking the super-invariant condition

Apply the \textit{wpe} calculus rules

\[[x = y] \cdot \text{wpe}(x \leftarrow ^s \text{Flip}(p); y \leftarrow ^s \text{Flip}(p), I) + [x \neq y] \cdot [x] \]

\[= [x = y] \cdot \text{wpe}(x \leftarrow ^s \text{Flip}(p), \]

\[p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \]
FAIR: checking the super-invariant condition

Apply the \(\text{wpe}\) calculus rules

\[
[x = y] \cdot \text{wpe}(x \xleftarrow{s} \text{Flip}(p); y \xleftarrow{s} \text{Flip}(p), I) + [x \neq y] \cdot [x] \\
= [x = y] \cdot \text{wpe}(x \xleftarrow{s} \text{Flip}(p),)
\]

\[
p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\
= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1 - p) \cdot I[x, y \mapsto tt, ff]
\]

\[
+ p \cdot (1 - p) \cdot I[x, y \mapsto ff, tt] + (1 - p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x]
\]
FAIR: checking the super-invariant condition

Apply the wpe calculus rules

$$\begin{align*}
[x = y] \cdot wpe(x \leftarrow_s \text{Flip}(p); y \leftarrow_s \text{Flip}(p), I) + [x \neq y] \cdot [x] \\
= [x = y] \cdot wpe(x \leftarrow_s \text{Flip}(p), \\
p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\
= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1 - p) \cdot I[x, y \mapsto tt, ff] \\
+ p \cdot (1 - p) \cdot I[x, y \mapsto ff, tt] + (1 - p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x] \\
= [x = y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1 - p) \cdot 1 \\
+ p \cdot (1 - p) \cdot 0 + (1 - p)^2 \cdot 0.5) + [x \neq y] \cdot [x]
\end{align*}$$
FAIR: checking the super-invariant condition

Apply the \(wpe \) calculus rules

\[
[x = y] \cdot wpe(x \leftarrow Flip(p); y \leftarrow Flip(p), I) + [x \neq y] \cdot [x]
\]

\[
= [x = y] \cdot wpe(x \leftarrow Flip(p),
\]

\[
p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x]
\]

\[
= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1 - p) \cdot I[x, y \mapsto tt, ff]
\]

\[
+ p \cdot (1 - p) \cdot I[x, y \mapsto ff, tt] + (1 - p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x]
\]

\[
= [x = y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1 - p) \cdot 1
\]

\[
+ p \cdot (1 - p) \cdot 0 + (1 - p)^2 \cdot 0.5) + [x \neq y] \cdot [x]
\]

\[
= [x = y] + [x \neq y] \cdot [x] \leq I
\]
FAIR: checking the super-invariant condition

Apply the \textit{wpe} calculus rules

\[
[x = y] \cdot \text{wpe}(x \leftarrow \text{Flip}(p); y \leftarrow \text{Flip}(p), I) + [x \neq y] \cdot [x]
\]
\[
= [x = y] \cdot \text{wpe}(x \leftarrow \text{Flip}(p),
\]
\[
p \cdot I[y \mapsto \text{tt}] + (1 - p) \cdot I[y \mapsto \text{ff}]) + [x \neq y] \cdot [x]
\]
\[
= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto \text{tt}] + p \cdot (1 - p) \cdot I[x, y \mapsto \text{tt}, \text{ff}]
\]
\[
+ p \cdot (1 - p) \cdot I[x, y \mapsto \text{ff}, \text{tt}] + (1 - p)^2 \cdot I[x, y \mapsto \text{ff}]) + [x \neq y] \cdot [x]
\]
\[
= [x = y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1 - p) \cdot 1
\]
\[
+ p \cdot (1 - p) \cdot 0 + (1 - p)^2 \cdot 0.5) + [x \neq y] \cdot [x]
\]
\[
= [x = y] + [x \neq y] \cdot [x] \leq I
\]
FAIR: checking the super-invariant condition

Apply the \textit{wpe} calculus rules

\[
[x = y] \cdot \text{wpe}(x \xleftarrow{\$} \text{Flip}(p); y \xleftarrow{\$} \text{Flip}(p), I) + [x \neq y] \cdot [x] \\
= [x = y] \cdot \text{wpe}(x \xleftarrow{\$} \text{Flip}(p), \\
p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\
= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1 - p) \cdot I[x, y \mapsto tt, ff] \\
+ p \cdot (1 - p) \cdot I[x, y \mapsto ff, tt] + (1 - p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x] \\
= [x = y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1 - p) \cdot 1 \\
+ p \cdot (1 - p) \cdot 0 + (1 - p)^2 \cdot 0.5) + [x \neq y] \cdot [x] \\
= [x = y] + [x \neq y] \cdot [x] \leq I
\]

Thus the super-invariant rule proves the upper-bound:

\[
\text{wpe}(\text{FAIR}, [x]) \leq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]
\]
FAIR: proving the lower-bound

Want I satisfying sub-invariant conditions:

$$I \geq [x = y] \cdot \text{wpe}(x \xleftarrow{\$} \text{Flip}(p); y \xleftarrow{\$} \text{Flip}(p), I) + [x \neq y] \cdot [x]$$

The same invariant works:

$$I \triangleq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$$

And I is bounded in $[0, 1]$.

Thus the sub-invariant rule proves the lower-bound:

$$\text{wpe(FAIR, } [x]) \geq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$$
WPE: references and further reading

Recent survey of the area
https://moves.rwth-aachen.de/people/kaminski/thesis/

Comprehensive book
Related methods: Hoare logics for monadic PWHILE

Prove judgments of the following form:

\[\{ P \} \text{ } c \text{ } \{ Q \} \]

- Pre-condition \(P \) describes input memory
- Post-condition \(Q \) describes output memory distribution

Example systems
- A program logic for union bounds (ICALP16)
- Formal certification of code-based cryptographic proofs (POPL09)
- Probabilistic relational reasoning for differential privacy (POPL12)
- A pre-expectation calculus for probabilistic sensitivity (POPL21)
A Second Semantics for PWHILE
Transformer Semantics
Why a second semantics?

- Alternative view of what the program does
- Gives us a new way of understanding the program behavior
- Enable new extensions of the language
- Allows extending the language with different features
- Support different verification methods
- Can make some properties easier (or harder) to verify
Why a second semantics?

Alternative view of what the program does

- Gives us a new way of understanding the program behavior
Why a second semantics?

Alternative view of what the program does
 ► Gives us a new way of understanding the program behavior

Enable new extensions of the language
 ► Allows extending the language with different features
Why a second semantics?

Alternative view of what the program does
- Gives us a new way of understanding the program behavior

Enable new extensions of the language
- Allows extending the language with different features

Support different verification methods
- Can make some properties easier (or harder) to verify
Recall: program states are memories
Memory m maps each variable to a value:

$$m \in \mathcal{M} = \mathcal{X} \rightarrow \mathcal{V}$$
Semantics of expressions/distributions: unchanged

Recall: program states are memories
Memory m maps each variable to a value:

$$m \in \mathcal{M} = \mathcal{X} \rightarrow \mathcal{V}$$

Expression semantics: map memory to value

$$[-] : \mathcal{E} \rightarrow \mathcal{M} \rightarrow \mathcal{V}$$
Semantics of expressions/distributions: unchanged

Recall: program states are memories
Memory \(m \) maps each variable to a value:

\[
m \in \mathcal{M} = \mathcal{X} \rightarrow \mathcal{V}
\]

Expression semantics: map memory to value

\[
[-] : \mathcal{E} \rightarrow \mathcal{M} \rightarrow \mathcal{V}
\]

D-expression semantics: distribution over values

\[
[-] : \mathcal{DE} \rightarrow \text{Distr}(\mathcal{V})
\]
Transformer semantics of commands: overview

Last time: monadic semantics

\[(|-|) : C \to M \to \text{Distr}(M) \]

Command: input memory to output distribution over memories.

This time: transformer semantics (Kozen)

\[J \neq K : C \to \mathcal{M} \to \text{Distr}(\mathcal{M}) \]

Command: input distribution over memories to output distribution over memories.
Transformer semantics of commands: overview

Last time: monadic semantics

$$\langle - \rangle : \mathcal{C} \to \mathcal{M} \to \text{Distr}(\mathcal{M})$$

Command: input memory to output distribution over memories.

This time: transformer semantics (Kozen)

$$\llbracket - \rrbracket : \mathcal{C} \to \text{Distr}(\mathcal{M}) \to \text{Distr}(\mathcal{M})$$

Command: input distribution over memories to output distribution over memories.
Semantics of commands: skip

Intuition
- Input: memory distribution μ
- Output: the same memory distribution μ
Semantics of commands: skip

Intuition
- Input: memory distribution μ
- Output: the same memory distribution μ

Semantics of skip

$\llbracket \text{skip} \rrbracket \mu \triangleq \mu$
Semantics of commands: assignment

Intuition

- Input: memory distribution μ
- Output: distribution from sampling m from μ, and mapping to m with $x \mapsto v$, where v is the original value of e in m.
Semantics of commands: assignment

Intuition

- Input: memory distribution μ
- Output: distribution from sampling m from μ, and mapping to m with $x \mapsto v$, where v is the original value of e in m.

Semantics of assignment

Let $f(m) = m[x \mapsto [e]m]$. Then:

$$\sem{x \leftarrow e}\mu \triangleq \map(f)(\mu)$$
Semantics of commands: sampling

Intuition

- **Input:** memory distribution μ
- **Sample** m from μ, and sample v from d-expression
- **Output:** return updated memory, m with $x \mapsto v$
Semantics of commands: sampling

Intuition

- Input: memory distribution μ
- Sample m from μ, and sample v from d-expression
- Output: return updated memory, m with $x \rightarrow v$

Semantics of sampling

Let $g(m)(v) = m[x \rightarrow v]$. Then:

$$\lbrack x \leftarrow d \rbrack \mu \triangleq bind(\mu, \lambda m. \ map(g(m))(\lbrack d \rbrack))$$
Semantics of commands: sequencing

Intuition

- Input: memory distribution μ
- Transform μ to μ' using first command
- Output: transform μ' to μ'' using second command
Semantics of commands: sequencing

Intuition
- Input: memory distribution μ
- Transform μ to μ' using first command
- Output: transform μ' to μ'' using second command

Semantics of sequencing

$$[c_1 ; c_2] \mu \triangleq [c_2]([c_1] \mu)$$
Intuition

- Input: memory distribution μ
- ???
Semantics of commands: conditionals (first try)

Intuition

- Input: memory distribution μ
- ???

Problem: what should input to branches be?

- First branch: distribution where guard holds
- Second branch: distribution where guard doesn’t hold
- But μ may have some probability of both cases
- Can’t case analysis on guard in μ (cf. monadic semantics)
Operations on distributions: conditioning

Restrict a distribution to a smaller subset
Given a distribution over A, assume that the result is in $E \subseteq A$. Then what probabilities should we assign elements in A?

Distribution conditioning
Let $\mu \in \text{Distr}(A)$, and $E \subseteq A$. Then μ conditioned on E is the distribution in $\text{Distr}(A)$ defined by:

$$(\mu \mid E)(a) \triangleq \begin{cases} \frac{\mu(a)}{\mu(E)} & : a \in E \\ 0 & : a \notin E \end{cases}$$

Idea: probability of a “assuming that” the result must be in E. Only makes sense if $\mu(E)$ is not zero!
Semantics of commands: conditionals (second try)

Intuition

- Input: memory distribution μ
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- Output: ???

Problem: how to combine outputs of branches?

First branch: some output distribution
Second branch: some other output distribution
But we want a single output for the if-then-else
Semantics of commands: conditionals (second try)

Intuition
- Input: memory distribution μ
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- Output: ???

Problem: how to combine outputs of branches?
- First branch: some output distribution
- Second branch: some other output distribution
- But we want a single output for the if-then-else
Operations on distributions: convex combination

Blending/mixing two distributions
Say we have distributions μ_1, μ_2 over the same set. Blending the distributions: with probability p, draw something from μ_1. Else, draw something from μ_2.

Convex combination
Let $\mu_1, \mu_2 \in \text{Distr}(A)$, and let $p \in [0, 1]$. Then the convex combination of μ_1 and μ_2 is defined by:

$$\mu_1 \oplus_p \mu_2(a) \triangleq p \cdot \mu_1(a) + (1 - p) \cdot \mu_2(a).$$
Semantics of commands: conditionals

Intuition
- Input: memory distribution μ
- Record probability p of guard true
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- Output: take p-convex combination of two results
Semantics of commands: conditionals

Intuition

- Input: memory distribution μ
- Record probability p of guard true
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- Output: take p-convex combination of two results

Semantics of conditionals

Let $p = \mu([e])$ be the probability the guard is true. Then:

$$[[\text{if } e \text{ then } c_1 \text{ else } c_2]]\mu \triangleq [c_1](\mu \mid [e = tt]) \oplus_p [c_2](\mu \mid [e = ff])$$
Semantics of commands: loops

Same strategy works as before

- Define sequence of loop approximants μ_1, μ_2, \ldots
- Each μ_n: outputs terminating after n iterations
- Take limit μ_n as $n \to \infty$ to define output of loop
Semantics of commands: loops

Same strategy works as before

- Define sequence of loop approximants μ_1, μ_2, \ldots
- Each μ_n: outputs terminating after n iterations
- Take limit μ_n as $n \to \infty$ to define output of loop

Maybe don’t try this at home:

Work out the gory details and define a transformer semantics for loops.
Comparing the two semantics:

Monadic versus Transformer
Monadic semantics to transformer semantics

Useful construction

- Given: $f : \mathcal{M} \rightarrow \text{Distr}(\mathcal{M})$
- Define $f^\# : \text{Distr}(\mathcal{M}) \rightarrow \text{Distr}(\mathcal{M})$ by “averaging f” over input distribution:

$$f^\#(\mu)(m') \triangleq \sum_{m \in \mathcal{M}} \mu(m) \cdot f(m)(m')$$
Monadic semantics to transformer semantics

Useful construction

- Given: \(f : \mathcal{M} \rightarrow \text{Distr}(\mathcal{M}) \)
- Define \(f^\# : \text{Distr}(\mathcal{M}) \rightarrow \text{Distr}(\mathcal{M}) \) by “averaging \(f \)” over input distribution:

\[
 f^\#(\mu)(m') \triangleq \sum_{m \in \mathcal{M}} \mu(m) \cdot f(m)(m')
\]

Relation between semantics

For any PWHILE program \(c \) and input distribution \(\mu \), we have:

\[
 (\langle c \rangle^\#(\mu) = \llbracket c \rrbracket \mu
\]

Good sanity check: would be strange if monadic semantics disagrees with transformer semantics when we feed in the same input distribution.
Transformer semantics to monadic semantics?

Not so useful fact

- Given: \(\overline{f} : \text{Distr}(\mathcal{M}) \rightarrow \text{Distr}(\mathcal{M}) \)
- There does not always exist \(f : \mathcal{M} \rightarrow \text{Distr}(\mathcal{M}) \) such that \(\overline{f} = f\# \).
- Transformer semantics supports fancier PPL features

Notable example: conditioning
New command to condition the input distribution on a guard being true:
\[
\text{observe}(e, \mu, \mu | e = \text{true})
\]
Not possible to give a monadic semantics to this command.
Transformer semantics to monadic semantics?

Not so useful fact

- Given: $\overline{f} : \text{Distr}(\mathcal{M}) \rightarrow \text{Distr}(\mathcal{M})$
- There does not always exist $f : \mathcal{M} \rightarrow \text{Distr}(\mathcal{M})$ such that $\overline{f} = f^\#$.
- Transformer semantics supports fancier PPL features

Notable example: conditioning

New command to condition the input distribution on a guard being true:

$$\llbracket \text{observe}(e) \rrbracket \mu \triangleq \mu \mid \llbracket e = tt \rrbracket$$

Not possible to give a monadic semantics to this command.
For verification: what is the tradeoff?

Why prefer monadic semantics?

- Memory assertions are simpler than distribution assertions.
- Can do case analysis on memory if input is a memory.
For verification: what is the tradeoff?

Why prefer monadic semantics?
- Memory assertions are simpler than distribution assertions
- Can do case analysis on memory if input is a memory

Why prefer transformer semantics?
- Sometimes, want to assume property of input distribution
- Can enable verifying richer probabilistic properties
Reasoning about pWHILE Programs

Probabilistic Separation Logic
Two random variables x and y are independent if they are uncorrelated: the value of x gives no information about the value or distribution of y.
Things that are independent

Fresh random samples

- x is the result of a fair coin flip
- y is the result of another, “fresh” coin flip
- More generally: “separate” sources of randomness
Things that are independent

Fresh random samples

- x is the result of a fair coin flip
- y is the result of another, “fresh” coin flip
- More generally: “separate” sources of randomness

Uncorrelated things

- x is today’s winning lottery number
- y is the closing price of the stock market
Things that are **not** independent

Re-used samples

- x is the result of a fair coin flip
- y is the result of the same coin flip
Things that are not independent

Re-used samples
- x is the result of a fair coin flip
- y is the result of the same coin flip

Common cause
- x is today’s ice cream sales
- y is today’s sunglasses sales
What Is Independence, Formally?

Definition
Two random variables x and y are **independent** (in some implicit distribution over x and y) if for all values a and b:

$$\Pr(x = a \land y = b) = \Pr(x = a) \cdot \Pr(y = b)$$

That is, the distribution over (x, y) is the **product** of a distribution over x and a distribution over y.
Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

- A “fresh” random sample is independent of the state.
Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

- A “fresh” random sample is independent of the state.

Simplifies reasoning about groups of variables

- Complicated: general distribution over many variables
- Simple: product of distributions over each variable
Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs
- A “fresh” random sample is independent of the state.

Simplifies reasoning about groups of variables
- Complicated: general distribution over many variables
- Simple: product of distributions over each variable

Preserved under common program operations
- Local operations independent of “separate” randomness
- Behaves well under conditioning (prob. control flow)
Reasoning about Independence: Challenges

Formal definition isn’t very promising

- Quantification over all values: lots of probabilities!
- Computing exact probabilities: often difficult

How can we leverage the intuition behind probabilistic independence?
Main Observation: Independence is Separation

Two variables x and y in a distribution μ are independent if μ is the product of two distributions μ_x and μ_y with disjoint domains, containing x and y.

Leverage separation logic to reason about independence

- Pioneered by O’Hearn, Reynolds, and Yang
- Highly developed area of program verification research
- Rich logical theory, automated tools, etc.
Our Approach: Two Ingredients

- Develop a probabilistic model of the logic BI
- Design a probabilistic separation logic PSL
Bunched Implications and Separation Logics
What Goes into a Separation Logic?

- Programs
 - Transform input states to output states
 - Done

- Assertions
 - Formulas describe pieces of program states
 - Semantics defined by a model of BI (Pym and O'Hearn)

- Program logic
 - Formulas describe programs
 - Assertions specify pre- and post-conditions
What Goes into a Separation Logic?

1. Programs
 - Transform input states to output states
 - **Done:** PWHILE with transformer semantics
What Goes into a Separation Logic?

1. Programs
 - Transform input states to output states
 - **Done:** PWHILE with transformer semantics

2. Assertions
 - Formulas describe pieces of program states
 - Semantics defined by a model of BI (Pym and O’Hearn)
What Goes into a Separation Logic?

1. Programs
 ▶ Transform input states to output states
 ▶ Done: PWHILE with transformer semantics

2. Assertions
 ▶ Formulas describe pieces of program states
 ▶ Semantics defined by a model of BI (Pym and O’Hearn)

3. Program logic
 ▶ Formulas describe programs
 ▶ Assertions specify pre- and post-conditions
Classical Setting: Heaps

Program states \((s, h)\)

- A store \(s : \mathcal{X} \rightarrow \mathcal{V}\), map from variables to values
- A heap \(h : \mathbb{N} \rightarrow \mathcal{V}\), partial map from addresses to values
Classical Setting: Heaps

Program states \((s, h)\)
- A store \(s : \mathcal{X} \rightarrow \mathcal{V}\), map from variables to values
- A heap \(h : \mathbb{N} \rightarrow \mathcal{V}\), partial map from addresses to values

Pointer-manipulating programs
- Control flow: sequence, if-then-else, loops
- Read/write addresses in heap
- Allocate/free heap cells
Substructural logic (O’Hearn and Pym)

- Start with regular propositional logic ($\top, \bot, \land, \lor, \rightarrow$)
- Add a new conjunction (“star”): $P \star Q$
- Add a new implication (“magic wand”): $P \rightarrow Q$
Substructural logic (O’Hearn and Pym)

- Start with regular propositional logic ($\top, \bot, \land, \lor, \rightarrow$)
- Add a new conjunction (“star”): $P \star Q$
- Add a new implication (“magic wand”): $P \rightarrow Q$

Star is a multiplicative conjunction

- $P \land Q$: P and Q hold on the entire state
- $P \star Q$: P and Q hold on disjoint parts of the entire state
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ : S \times S \to S$ (assoc., comm., ...)
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ : S \times S \to S$ (assoc., comm., ...)

Inductively define states that satisfy formulas
Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

\[
\begin{align*}
 s &\models \top \quad \text{always} \\
 s &\models \bot \quad \text{never}
\end{align*}
\]
Suppose states form a pre-ordered, partial monoid.

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas:

- $s \models \top$ always
- $s \models \bot$ never
- $s \models P \land Q$ iff $s \models P$ and $s \models Q$
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

\[
\begin{align*}
s \models T & \quad \text{always} \\
s \models \bot & \quad \text{never} \\
s \models P \land Q & \quad \text{iff } s \models P \text{ and } s \models Q \\
s \models P \ast Q & \quad \text{iff } s_1 \circ s_2 \sqsubseteq s \text{ with } s_1 \models P \text{ and } s_2 \models Q
\end{align*}
\]

State s can be split into two “disjoint” states, one satisfying P and one satisfying Q
Example: Heap Model of BI

Set of states: heaps

\[S = \mathbb{N} \rightarrow \mathcal{V}, \text{ partial maps from addresses to values} \]
Example: Heap Model of BI

Set of states: heaps

- $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

- $s_1 \circ s_2$ is defined to be union iff $\text{dom}(s_1) \cap \text{dom}(s_2) = \emptyset$
Example: Heap Model of BI

Set of states: heaps

- \(S = \mathbb{N} \rightarrow \mathcal{V} \), partial maps from addresses to values

Monoid operation: combine disjoint heaps

- \(s_1 \circ s_2 \) is defined to be union iff \(\text{dom}(s_1) \cap \text{dom}(s_2) = \emptyset \)

Pre-order: extend/project heaps

- \(s_1 \sqsubseteq s_2 \) iff \(\text{dom}(s_1) \subseteq \text{dom}(s_2) \), and \(s_1, s_2 \) agree on \(\text{dom}(s_1) \)
Propositions for Heaps

Atomic propositions: “points-to”

- $x \mapsto v$ holds in heap s iff $x \in \text{dom}(s)$ and $s(x) = v$

Example axioms (not complete)

- Deterministic: $x \mapsto v \land y \mapsto w \land x = y \rightarrow v = w$
- Disjoint: $x \mapsto v \land y \mapsto w \rightarrow x \neq y$
The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: $x := *e$
- Write to location: $*e := e'$
The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: $x := *e$
- Write to location: $*e := e'$

Program logic judgments

\[
\{ P \} \ c \ \{ Q \}
\]

Reading

Executing c on any input state satisfying P leads to an output state satisfying Q, without invalid reads or writes.
A Probabilistic Model of BI
States: Distributions over Memories

Memories (not heaps)

Fix sets \(X \) of variables and \(V \) of values

Memories indexed by domains \(A \): \(M(A) = A \otimes V \)

Program states: randomized memories

States are distributions over memories with same domain

Formally:

\[S = \{ s | s \in \text{Distr}(M(A)) \} \]

When \(s \in \text{Distr}(M(A)) \), write \(\text{dom}(s) \) for \(A \)
States: Distributions over Memories

Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$
States: Distributions over Memories

Memories (not heaps)
- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $M(A) = A \rightarrow \mathcal{V}$

Program states: randomized memories
- States are distributions over memories with same domain
- Formally: $S = \{ s \mid s \in \text{Distr}(M(A)), A \subseteq \mathcal{X} \}$
- When $s \in \text{Distr}(M(A))$, write $\text{dom}(s)$ for A
Monoid: “Disjoint” Product Distribution

Intuition

- Two distributions **can be combined** iff domains are disjoint
- Combine by taking product distribution, union of domains
Intuition

- Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

More formally...

Suppose that \(s \in \text{Distr}(\mathcal{M}(A)) \) and \(s' \in \text{Distr}(\mathcal{M}(B)) \). If \(A, B \) are disjoint, then:

\[
(s \circ s')(m \cup m') = s(m) \cdot s'(m')
\]

for \(m \in \mathcal{M}(A) \) and \(m' \in \mathcal{M}(B) \). Otherwise, \(s \circ s' \) is undefined.
Pre-Order: Extension/Projection

Intuition

- Define $s \sqsubseteq s'$ if s “has less information than” s'
- In probabilistic setting: s is a projection of s'

More formally...

Suppose that $s \sim \text{Distr}(M(A))$ and $s' \sim \text{Distr}(M(B))$. Then $s \sqsubseteq s'$, and for all $m \sim M(A)$, we have:

$$s(m) = \sum_{m' \sim M(B)} s'(m') \cdot m'$$

That is, s is obtained from s' by marginalizing variables in $B \setminus A$.
Pre-Order: Extension/Projection

Intuition
- Define $s \sqsubseteq s'$ if s “has less information than” s'
- In probabilistic setting: s is a projection of s'

More formally...
Suppose that $s \in \text{Distr}(\mathcal{M}(A))$ and $s' \in \text{Distr}(\mathcal{M}(B))$. Then $s \sqsubseteq s'$ iff $A \subseteq B$, and for all $m \in \mathcal{M}(A)$, we have:

$$s(m) = \sum_{m' \in \mathcal{M}(B)} s'(m \cup m').$$

That is, s is obtained from s' by marginalizing variables in $B \setminus A$.