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Day �: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day �: First-Order Programs �
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day �: First-Order Programs �
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day �: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF



Last time: monadic semantics for �W����

The �W���� language
I Core imperative language extended with random sampling

Monadic semantics

LcM : M æ Distr(M)
I Input: memory
I Output: distribution over memories
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Last time: weakest pre-expectations

Weakest pre-expectation calculus
I Given: �W���� program c

I Given: post-expectation E : M æ R+

I Compute wpe(c, E): maps an input m to c to the expected
value of E in the output of c executed on m.

What is this useful for?
I “The probability of x = y is 1/2” in the output
I “The expected value of t in the output is n + 42”
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How to compute Weakest Pre-expectations easier?

Same idea as for wp: define wpe compositionally
I Compute wpe of a program from wpe of sub-programs
I Break down a complicated computation into simpler parts

Overall framework developed by Morgan and McIver
I Work over multiple decades, building on work by Kozen
I Also covered non-deterministic choice (we won’t do this)
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WPE Calculus: Skip

Intuition
I Program: skip
I Post-expectation: E

I Average value of E after is just E before

WPE for Skip

wpe(skip, E) = E
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WPE Calculus: Assignment

Intuition
I Program: x Ω e

I Post-expectation: E

I Average value of E after is E with x ‘æ e before

WPE for Assignment

wpe(x Ω e, E) = E[x ‘æ e]
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WPE Calculus: Random sampling

Intuition
I Program: x $Ω d

I Post-expectation: E

I Average value of E computed from averaging over x

WPE for sampling Flip(p)

wpe(x $Ω Flip(p), E) = p · E[x ‘æ tt] + (1 ≠ p) · E[x ‘æ � ]

Try this at home!
What is wpe(x $Ω Roll, E)?
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WPE Calculus: Sequencing

Intuition
I Program: c1 ; c2
I Post-expectation: E

I Average value of E after c2 is wpe(c2, E) before c2
I Average value of wpe(c2, E) before c1: another wpe

WPE for Sequencing

wpe(c1 ; c2, E) = wpe(c1, wpe(c2, E))
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WPE Calculus: Conditionals

Intuition
I Program: if e then c1 else c2
I Post-expectation: E

I Average value of E after is wpe(c1, E) before if e = tt, else
wpe(c2, E) before if e = �

WPE for Conditionals

wpe(if e then c1 else c2, E) = [e] · wpe(c1, E) + [¬e] · wpe(c2, E)

Indicator functions play the role of if-then-else.
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WPE Calculus: Main soundness theorem

Theorem
Let c be a �W���� program, E be an expectation, and m œ M
be any input state. If µ = LcMm is the output memory, then:

EmÕ≥µ[E(mÕ)] = wpe(c, E)(m).

Try this at home!
Prove this for loop-free programs, by induction on the program
structure.
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Weakest Pre-expectations
for Probabilistic Loops



Can you guess this WPE?

Program:
n Ω 100;
while n > 42 do

n Ω n ≠ 1
Post-expectation: n

Answer
Deterministic program, always terminates with n = 42. So
wpe(c, n) = 42.
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What about this one?

Program:
n Ω 100;
while n > 42 do

dec $Ω Flip;
if dec then n Ω n ≠ 1

Post-expectation: n

Answer
Randomized program, but always terminates with n = 42. So
wpe(c, n) = 42.
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What about this one?

Program:
t Ω 0; stop Ω � ;
while ¬stop do

t Ω t + 1;
stop $Ω Flip(1/4)

Post-expectation: t

Starting to get more complicated...
Can we give a general method to compute wpe for loops?
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What is the WPE of a loop?

Can define wpe for loops mathematically, but...
I Defined in terms of a least fixed point
I Hard to compute wpe(while b do c, E) in terms of wpe(c, ≠)

Idea: prove upper and lower bounds on wpe

I Analog of wp: implication becomes inequality
I Don’t aim to compute wpe exactly
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Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on wpe

I Program: while e do c

I Pre-expectation E
Õ, Post-expectation E

I Goal: Check if wpe(while e do c, E) Æ E
Õ

Super-invariant rule
Suppose we have an expectation I (the invariant) satisfying the
super-invariant conditions:
I I Æ E

Õ

I [e] · wpe(c, I) + [¬e] · E Æ I

Then we can conclude the upper-bound:

wpe(while e do c, E) Æ E
Õ
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Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe

I Program: while e do c

I Pre-expectation E
Õ, Post-expectation E

I Goal: Check if E
Õ
wpe(while e do c, E)

Sub-invariant rule
Suppose we have an expectation I (the invariant) satisfying the
sub-invariant conditions and I is bounded in [0, 1]:
I E

Õ Æ I

I I Æ [e] · wpe(c, I) + [¬e] · E

Then we can conclude the lower-bound:

E
Õ Æ wpe(while e do c, E)
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An example: F���

Simulate a fair coin flip from biased coin flips

while x = y do
x $Ω Flip(p);
y $Ω Flip(p);

Goal: show that if x = y initially, then final x is fair coin
In terms of wpe, this follows from proving:

wpe(F���, [x]) = [x = y] · 0.5 + [x ”= y] · [x]

Prove this in two steps:
�. Upper-bound: wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]
�. Lower-bound: wpe(F���, [x]) Ø [x = y] · 0.5 + [x ”= y] · [x]
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F���: proving the upper-bound

Want I satisfying super-invariant conditions:

I Æ [x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]

Take the following invariant:

I , [x = y] · 0.5 + [x ”= y] · [x]
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F���: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]

= [x = y] · wpe(x $Ω Flip(p),
p · I[y ‘æ tt] + (1 ≠ p) · I[y ‘æ � ]) + [x ”= y] · [x]

= [x = y] · (p · p · I[x, y ‘æ tt] + p · (1 ≠ p) · I[x, y ‘æ tt, � ]
+ p · (1 ≠ p) · I[x, y ‘æ � , tt] + (1 ≠ p)2 · I[x, y ‘æ � ]) + [x ”= y] · [x]

= [x = y] · (p · p · 0.5 + p · (1 ≠ p) · 1
+ p · (1 ≠ p) · 0 + (1 ≠ p)2 · 0.5) + [x ”= y] · [x]

= [x = y] + [x ”= y] · [x] Æ I

Thus the super-invariant rule proves the upper-bound:

wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]



F���: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]
= [x = y] · wpe(x $Ω Flip(p),

p · I[y ‘æ tt] + (1 ≠ p) · I[y ‘æ � ]) + [x ”= y] · [x]

= [x = y] · (p · p · I[x, y ‘æ tt] + p · (1 ≠ p) · I[x, y ‘æ tt, � ]
+ p · (1 ≠ p) · I[x, y ‘æ � , tt] + (1 ≠ p)2 · I[x, y ‘æ � ]) + [x ”= y] · [x]

= [x = y] · (p · p · 0.5 + p · (1 ≠ p) · 1
+ p · (1 ≠ p) · 0 + (1 ≠ p)2 · 0.5) + [x ”= y] · [x]

= [x = y] + [x ”= y] · [x] Æ I

Thus the super-invariant rule proves the upper-bound:

wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]



F���: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]
= [x = y] · wpe(x $Ω Flip(p),

p · I[y ‘æ tt] + (1 ≠ p) · I[y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · I[x, y ‘æ tt] + p · (1 ≠ p) · I[x, y ‘æ tt, � ]

+ p · (1 ≠ p) · I[x, y ‘æ � , tt] + (1 ≠ p)2 · I[x, y ‘æ � ]) + [x ”= y] · [x]

= [x = y] · (p · p · 0.5 + p · (1 ≠ p) · 1
+ p · (1 ≠ p) · 0 + (1 ≠ p)2 · 0.5) + [x ”= y] · [x]

= [x = y] + [x ”= y] · [x] Æ I

Thus the super-invariant rule proves the upper-bound:

wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]



F���: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]
= [x = y] · wpe(x $Ω Flip(p),

p · I[y ‘æ tt] + (1 ≠ p) · I[y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · I[x, y ‘æ tt] + p · (1 ≠ p) · I[x, y ‘æ tt, � ]

+ p · (1 ≠ p) · I[x, y ‘æ � , tt] + (1 ≠ p)2 · I[x, y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · 0.5 + p · (1 ≠ p) · 1

+ p · (1 ≠ p) · 0 + (1 ≠ p)2 · 0.5) + [x ”= y] · [x]

= [x = y] + [x ”= y] · [x] Æ I

Thus the super-invariant rule proves the upper-bound:

wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]



F���: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]
= [x = y] · wpe(x $Ω Flip(p),

p · I[y ‘æ tt] + (1 ≠ p) · I[y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · I[x, y ‘æ tt] + p · (1 ≠ p) · I[x, y ‘æ tt, � ]

+ p · (1 ≠ p) · I[x, y ‘æ � , tt] + (1 ≠ p)2 · I[x, y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · 0.5 + p · (1 ≠ p) · 1

+ p · (1 ≠ p) · 0 + (1 ≠ p)2 · 0.5) + [x ”= y] · [x]
= [x = y] + [x ”= y] · [x] Æ I

Thus the super-invariant rule proves the upper-bound:

wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]



F���: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]
= [x = y] · wpe(x $Ω Flip(p),

p · I[y ‘æ tt] + (1 ≠ p) · I[y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · I[x, y ‘æ tt] + p · (1 ≠ p) · I[x, y ‘æ tt, � ]

+ p · (1 ≠ p) · I[x, y ‘æ � , tt] + (1 ≠ p)2 · I[x, y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · 0.5 + p · (1 ≠ p) · 1

+ p · (1 ≠ p) · 0 + (1 ≠ p)2 · 0.5) + [x ”= y] · [x]
= [x = y] + [x ”= y] · [x] Æ I

Thus the super-invariant rule proves the upper-bound:

wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]



F���: checking the super-invariant condition
Apply the wpe calculus rules

[x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]
= [x = y] · wpe(x $Ω Flip(p),

p · I[y ‘æ tt] + (1 ≠ p) · I[y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · I[x, y ‘æ tt] + p · (1 ≠ p) · I[x, y ‘æ tt, � ]

+ p · (1 ≠ p) · I[x, y ‘æ � , tt] + (1 ≠ p)2 · I[x, y ‘æ � ]) + [x ”= y] · [x]
= [x = y] · (p · p · 0.5 + p · (1 ≠ p) · 1

+ p · (1 ≠ p) · 0 + (1 ≠ p)2 · 0.5) + [x ”= y] · [x]
= [x = y] + [x ”= y] · [x] Æ I

Thus the super-invariant rule proves the upper-bound:

wpe(F���, [x]) Æ [x = y] · 0.5 + [x ”= y] · [x]



F���: proving the lower-bound

Want I satisfying sub-invariant conditions:

I Ø [x = y] · wpe(x $Ω Flip(p); y $Ω Flip(p), I) + [x ”= y] · [x]

The same invariant works:

I , [x = y] · 0.5 + [x ”= y] · [x]
And I is bounded in [0, 1].

Thus the sub-invariant rule proves the lower-bound:

wpe(F���, [x]) Ø [x = y] · 0.5 + [x ”= y] · [x]



WPE: references and further reading

Recent survey of the area
Kaminski. Advanced Weakest Precondition Calculi for
Probabilistic Programs. PhD Thesis (RWTH Aachen), ����.
https://moves.rwth-aachen.de/people/kaminski/thesis/

Comprehensive book
McIver and Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, ����.

https://moves.rwth-aachen.de/people/kaminski/thesis/


Related methods: Hoare logics for monadic �W����

Prove judgments of the following form:

{P} c {Q}
I Pre-condition P describes input memory
I Post-condition Q describes output memory distribution

Example systems
I A program logic for union bounds (ICALP��)
I Formal certification of code-based cryptographic proofs (POPL��)
I Probabilistic relational reasoning for di�erential privacy (POPL��)
I A pre-expectation calculus for probabilistic sensitivity (POPL��)



A Second Semantics for �W����
Transformer Semantics



Why a second semantics?

Alternative view of what the program does
I Gives us a new way of understanding the program behavior

Enable new extensions of the language
I Allows extending the language with di�erent features

Support di�erent verification methods
I Can make some properties easier (or harder) to verify
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Semantics of expressions/distributions: unchanged

Recall: program states are memories
Memory m maps each variable to a value:

m œ M = X æ V

Expression semantics: map memory to value

J≠K : E æ M æ V

D-expression semantics: distribution over values

J≠K : DE æ Distr(V)
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Transformer semantics of commands: overview

Last time: monadic semantics

L≠M : C æ M æ Distr(M)
Command: input memory to output distribution over memories.

This time: transformer semantics (Kozen)

J≠K : C æ Distr(M) æ Distr(M)
Command: input distribution over memories to output
distribution over memories.
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Semantics of commands: skip

Intuition
I Input: memory distribution µ

I Output: the same memory distribution µ

Semantics of skip

JskipKµ , µ
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Semantics of commands: assignment

Intuition
I Input: memory distribution µ

I Output: distribution from sampling m from µ, and mapping
to m with x ‘æ v, where v is the original value of e in m.

Semantics of assignment
Let f(m) = m[x ‘æ JeKm]. Then:

Jx Ω eKµ , map(f)(µ)
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Semantics of commands: sampling

Intuition
I Input: memory distribution µ

I Sample m from µ, and sample v from d-expression
I Output: return updated memory, m with x ‘æ v

Semantics of sampling
Let g(m)(v) = m[x ‘æ v]. Then:

Jx $Ω dKµ , bind(µ, ⁄m. map(g(m))(JdK))
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Semantics of commands: sequencing

Intuition
I Input: memory distribution µ

I Transform µ to µ
Õ using first command

I Output: transform µ
Õ to µ

ÕÕ using second command

Semantics of sequencing

Jc1 ; c2Kµ , Jc2K(Jc1Kµ)
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Semantics of commands: conditionals (first try)

Intuition
I Input: memory distribution µ

I ???

Problem: what should input to branches be?
I First branch: distribution where guard holds
I Second branch: distribution where guard doesn’t hold
I But µ may have some probability of both cases
I Can’t case analysis on guard in µ (cf. monadic semantics)
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Operations on distributions: conditioning

Restrict a distribution to a smaller subset
Given a distribution over A, assume that the result is in E ™ A.
Then what probabilities should we assign elements in A?

Distribution conditioning
Let µ œ Distr(A), and E ™ A. Then µ conditioned on E is the
distribution in Distr(A) defined by:

(µ | E)(a) ,
I

µ(a)/µ(E) : a œ E

0 : a /œ E

Idea: probability of a “assuming that” the result must be in E.
Only makes sense if µ(E) is not zero!



Semantics of commands: conditionals (second try)

Intuition
I Input: memory distribution µ

I Condition µ on guard true; transform with first branch
I Condition µ on guard false; transform with second branch
I Output: ???

Problem: how to combine outputs of branches?
I First branch: some output distribution
I Second branch: some other output distribution
I But we want a single output for the if-then-else
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Operations on distributions: convex combination

Blending/mixing two distributions
Say we have distributions µ1, µ2 over the same set. Blending
the distributions: with probability p, draw something from µ1.
Else, draw something from µ2.

Convex combination
Let µ1, µ2 œ Distr(A), and let p œ [0, 1]. Then the convex
combination of µ1 and µ2 is defined by:

µ1 üp µ2(a) , p · µ1(a) + (1 ≠ p) · µ2(a).



Semantics of commands: conditionals

Intuition
I Input: memory distribution µ

I Record probability p of guard true
I Condition µ on guard true; transform with first branch
I Condition µ on guard false; transform with second branch
I Output: take p-convex combination of two results

Semantics of conditionals
Let p = µ(JeK) be the probability the guard is true. Then:

Jif e then c1 else c2Kµ , Jc1K(µ | Je = ttK) üp Jc2K(µ | Je = � K)
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Semantics of commands: loops

Same strategy works as before
I Define sequence of loop approximants µ1, µ2, . . .

I Each µn: outputs terminating after n iterations
I Take limit µn as n æ Œ to define output of loop

Maybe don’t try this at home:
Work out the gory details and define a transformer semantics
for loops.
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Comparing the two semantics:
Monadic versus Transformer



Monadic semantics to transformer semantics

Useful construction
I Given: f : M æ Distr(M)
I Define f

# : Distr(M) æ Distr(M) by “averaging f” over
input distribution:

f
#(µ)(mÕ) ,

ÿ

mœM
µ(m) · f(m)(mÕ)

Relation between semantics
For any �W���� program c and input distribution µ, we have:

LcM#(µ) = JcKµ

Good sanity check: would be strange if monadic semantics
disagrees with transformer semantics when we feed in the
same input distribution.
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Transformer semantics to monadic semantics?

Not so useful fact
I Given: f : Distr(M) æ Distr(M)
I There does not always exist f : M æ Distr(M) such that

f = f
#.

I Transformer semantics supports fancier PPL features

Notable example: conditioning
New command to condition the input distribution on a guard
being true:

Jobserve(e)Kµ , µ | Je = ttK
Not possible to give a monadic semantics to this command.



Transformer semantics to monadic semantics?

Not so useful fact
I Given: f : Distr(M) æ Distr(M)
I There does not always exist f : M æ Distr(M) such that

f = f
#.

I Transformer semantics supports fancier PPL features

Notable example: conditioning
New command to condition the input distribution on a guard
being true:

Jobserve(e)Kµ , µ | Je = ttK
Not possible to give a monadic semantics to this command.



For verification: what is the tradeo�?

Why prefer monadic semantics?
I Memory assertions are simpler than distribution assertions
I Can do case analysis on memory if input is a memory

Why prefer transformer semantics?
I Sometimes, want to assume property of input distribution
I Can enable verifying richer probabilistic properties
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Why prefer monadic semantics?
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Why prefer transformer semantics?
I Sometimes, want to assume property of input distribution
I Can enable verifying richer probabilistic properties



Reasoning about �W���� Programs
Probabilistic Separation Logic



What Is Independence, Intuitively?

Two random variables x and y are
independent if they are uncorrelated:
the value of x gives no information
about the value or distribution of y.



Things that are independent

Fresh random samples
I x is the result of a fair coin flip
I y is the result of another, “fresh” coin flip
I More generally: “separate” sources of randomness

Uncorrelated things
I x is today’s winning lottery number
I y is the closing price of the stock market
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Things that are not independent

Re-used samples
I x is the result of a fair coin flip
I y is the result of the same coin flip

Common cause
I x is today’s ice cream sales
I y is today’s sunglasses sales
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Re-used samples
I x is the result of a fair coin flip
I y is the result of the same coin flip

Common cause
I x is today’s ice cream sales
I y is today’s sunglasses sales



What Is Independence, Formally?

Definition
Two random variables x and y are independent (in some
implicit distribution over x and y) if for all values a and b:

Pr(x = a · y = b) = Pr(x = a) · Pr(y = b)

That is, the distribution over (x, y) is the product of a
distribution over x and a distribution over y.



Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs
I A “fresh” random sample is independent of the state.

Simplifies reasoning about groups of variables
I Complicated: general distribution over many variables
I Simple: product of distributions over each variable

Preserved under common program operations
I Local operations independent of “separate” randomness
I Behaves well under conditioning (prob. control flow)
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Ubiquitous in probabilistic programs
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Simplifies reasoning about groups of variables
I Complicated: general distribution over many variables
I Simple: product of distributions over each variable

Preserved under common program operations
I Local operations independent of “separate” randomness
I Behaves well under conditioning (prob. control flow)



Reasoning about Independence: Challenges

Formal definition isn’t very promising
I Quantification over all values: lots of probabilities!
I Computing exact probabilities: often di�cult

How can we leverage the intuition
behind probabilistic independence?



Main Observation: Independence is Separation

Two variables x and y in a distribution
µ are independent if µ is the product of
two distributions µx and µy with
disjoint domains, containing x and y.

Leverage separation logic to reason about independence
I Pioneered by O’Hearn, Reynolds, and Yang
I Highly developed area of program verification research
I Rich logical theory, automated tools, etc.



Our Approach: Two Ingredients

• Develop a probabilistic
model of the logic BI

• Design a probabilistic
separation logic PSL



Bunched Implications
and Separation Logics



What Goes into a Separation Logic?

�. Programs
I Transform input states to output states
I Done: �W���� with transformer semantics

�. Assertions
I Formulas describe pieces of program states
I Semantics defined by a model of BI (Pym and O’Hearn)

�. Program logic
I Formulas describe programs
I Assertions specify pre- and post-conditions
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Classical Setting: Heaps

Program states (s, h)
I A store s : X æ V , map from variables to values
I A heap h : N Ô V , partial map from addresses to values

Pointer-manipulating programs
I Control flow: sequence, if-then-else, loops
I Read/write addresses in heap
I Allocate/free heap cells



Classical Setting: Heaps

Program states (s, h)
I A store s : X æ V , map from variables to values
I A heap h : N Ô V , partial map from addresses to values

Pointer-manipulating programs
I Control flow: sequence, if-then-else, loops
I Read/write addresses in heap
I Allocate/free heap cells



Assertion Logic: Bunched Implications (BI)

Substructural logic (O’Hearn and Pym)
I Start with regular propositional logic (€, ‹, ·, ‚, æ)
I Add a new conjunction (“star”): P ú Q

I Add a new implication (“magic wand”): P ≠ú Q

Star is a multiplicative conjunction
I P · Q: P and Q hold on the entire state
I P ú Q: P and Q hold on disjoint parts of the entire state
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Resource Semantics of BI (O’Hearn and Pym)
Suppose states form a pre-ordered, partial monoid
I Set S of states, pre-order ı on S

I Partial operation ¶ : S ◊ S Ô S (assoc., comm., . . . )

Inductively define states that satisfy formulas

s |= € always
s |= ‹ never
s |= P · Q i� s |= P and s |= Q

s |= P ú Q i� s1 ¶ s2 ı s with s1 |= P and s2 |= Q

State s can be split into two “disjoint” states,
one satisfying P and one satisfying Q
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Example: Heap Model of BI

Set of states: heaps
I S = N Ô V , partial maps from addresses to values

Monoid operation: combine disjoint heaps
I s1 ¶ s2 is defined to be union i� dom(s1) fl dom(s2) = ÿ

Pre-order: extend/project heaps
I s1 ı s2 i� dom(s1) ™ dom(s2), and s1, s2 agree on dom(s1)
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Propositions for Heaps

Atomic propositions: “points-to”
I x ‘æ v holds in heap s i� x œ dom(s) and s(x) = v

Example axioms (not complete)
I Deterministic: x ‘æ v · y ‘æ w · x = y æ v = w

I Disjoint: x ‘æ v ú y ‘æ w æ x ”= y



The Separation Logic Proper

Programs c from a basic imperative language
I Read from location: x := úe

I Write to location: úe := e
Õ

Program logic judgments

{P} c {Q}

Reading
Executing c on any input state satisfying P leads to an output
state satisfying Q, without invalid reads or writes.
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A Probabilistic Model of BI



States: Distributions over Memories

Memories (not heaps)
I Fix sets X of variables and V of values
I Memories indexed by domains A ™ X : M(A) = A æ V

Program states: randomized memories
I States are distributions over memories with same domain
I Formally: S = {s | s œ Distr(M(A)), A ™ X }
I When s œ Distr(M(A)), write dom(s) for A
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Monoid: “Disjoint” Product Distribution

Intuition
I Two distributions can be combined i� domains are disjoint
I Combine by taking product distribution, union of domains

More formally...
Suppose that s œ Distr(M(A)) and s

Õ œ Distr(M(B)). If A, B

are disjoint, then:

(s ¶ s
Õ)(m fi m

Õ) = s(m) · s
Õ(mÕ)

for m œ M(A) and m
Õ œ M(B). Otherwise, s ¶ s

Õ is undefined.
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Pre-Order: Extension/Projection

Intuition
I Define s ı s

Õ if s “has less information than” s
Õ

I In probabilistic setting: s is a projection of s
Õ

More formally...
Suppose that s œ Distr(M(A)) and s

Õ œ Distr(M(B)). Then
s ı s

Õ i� A ™ B, and for all m œ M(A), we have:

s(m) =
ÿ

mÕœM(B)
s

Õ(m fi m
Õ).

That is, s is obtained from s
Õ by marginalizing variables in B \ A.



Pre-Order: Extension/Projection

Intuition
I Define s ı s

Õ if s “has less information than” s
Õ

I In probabilistic setting: s is a projection of s
Õ

More formally...
Suppose that s œ Distr(M(A)) and s

Õ œ Distr(M(B)). Then
s ı s

Õ i� A ™ B, and for all m œ M(A), we have:

s(m) =
ÿ

mÕœM(B)
s

Õ(m fi m
Õ).

That is, s is obtained from s
Õ by marginalizing variables in B \ A.


