Reasoning about Probabilistic Programs

Oregon PL Summer School 2021

Justin Hsu UW-Madison Cornell University

Day 1: Introducing Probabilistic Programs

- Motivations and key questions
- Mathematical preliminaries

Day 2: First-Order Programs 1

- Probabilistic While language, monadic semantics
- Weakest pre-expectation calculus

Day 3: First-Order Programs 2

- Probabilistic While language, transformer semantics
- Probabilistic separation logic

Day 4: Higher-Order Programs

- Type system: probability monad
- Type system: probabilistic PCF

Last time: monadic semantics for PWHILE

The PWHILE language

► Core imperative language extended with random sampling

Last time: monadic semantics for PWHILE

The PWHILE language

► Core imperative language extended with random sampling

Monadic semantics

$$(\!(c)\!):\mathcal{M}\to\mathsf{Distr}(\mathcal{M})$$

- ► Input: memory
- Output: distribution over memories

Last time: weakest pre-expectations

Weakest pre-expectation calculus

- ► Given: PWHILE program *c*
- Given: post-expectation $E: \mathcal{M} \to \mathbb{R}^+$
- ► Compute wpe(c, E): maps an input m to c to the expected value of E in the output of c executed on m.

Last time: weakest pre-expectations

Weakest pre-expectation calculus

- Given: PWHILE program c
- Given: post-expectation $E: \mathcal{M} \to \mathbb{R}^+$
- ► Compute wpe(c, E): maps an input m to c to the expected value of E in the output of c executed on m.

What is this useful for?

- "The probability of x = y is 1/2" in the output
- "The expected value of t in the output is n + 42"

How to compute Weakest Pre-expectations easier?

Same idea as for wp: define wpe compositionally

- ► Compute *wpe* of a program from *wpe* of sub-programs
- Break down a complicated computation into simpler parts

How to compute Weakest Pre-expectations easier?

Same idea as for wp: define wpe compositionally

- ► Compute *wpe* of a program from *wpe* of sub-programs
- Break down a complicated computation into simpler parts

Overall framework developed by Morgan and McIver

- ► Work over multiple decades, building on work by Kozen
- Also covered non-deterministic choice (we won't do this)

WPE Calculus: Skip

Intuition

- Program: skip
- ► Post-expectation: *E*
- Average value of E after is just E before

WPE Calculus: Skip

Intuition

- Program: skip
- ► Post-expectation: *E*
- Average value of E after is just E before

WPE for Skip

 $wpe(\mathsf{skip}, E) = E$

WPE Calculus: Assignment

Intuition

- ▶ Program: $x \leftarrow e$
- ► Post-expectation: *E*
- Average value of E after is E with $x \mapsto e$ before

WPE Calculus: Assignment

Intuition

- **Program:** $x \leftarrow e$
- ► Post-expectation: *E*
- Average value of E after is E with $x \mapsto e$ before

WPE for Assignment

$$wpe(x \leftarrow e, E) = E[x \mapsto e]$$

WPE Calculus: Random sampling

Intuition

- Program: $x \notin d$
- ► Post-expectation: *E*
- Average value of E computed from averaging over x

WPE Calculus: Random sampling

Intuition

- Program: $x \notin d$
- ▶ Post-expectation: *E*
- Average value of E computed from averaging over x

WPE for sampling $\mathbf{Flip}(p)$

$$wpe(x \notin \mathbf{Flip}(p), E) = p \cdot E[x \mapsto tt] + (1-p) \cdot E[x \mapsto ff]$$

Try this at home! What is $wpe(x \triangleq \text{Roll}, E)$?

WPE Calculus: Sequencing

Intuition

- Program: c_1 ; c_2
- ► Post-expectation: *E*
- Average value of E after c_2 is $wpe(c_2, E)$ before c_2
- Average value of $wpe(c_2, E)$ before c_1 : another wpe

WPE Calculus: Sequencing

Intuition

- Program: c_1 ; c_2
- ▶ Post-expectation: *E*
- Average value of E after c_2 is $wpe(c_2, E)$ before c_2
- Average value of $wpe(c_2, E)$ before c_1 : another wpe

WPE for Sequencing

 $wpe(c_1; c_2, E) = wpe(c_1, wpe(c_2, E))$

WPE Calculus: Conditionals

Intuition

- **Program:** if *e* then c_1 else c_2
- ► Post-expectation: *E*
- Average value of *E* after is $wpe(c_1, E)$ before if e = tt, else $wpe(c_2, E)$ before if e = ff

WPE Calculus: Conditionals

Intuition

- **• Program:** if *e* then c_1 else c_2
- ▶ Post-expectation: *E*
- ► Average value of E after is wpe(c₁, E) before if e = tt, else wpe(c₂, E) before if e = ff

WPE for Conditionals

 $wpe(\text{if } e \text{ then } c_1 \text{ else } c_2, E) = [e] \cdot wpe(c_1, E) + [\neg e] \cdot wpe(c_2, E)$

Indicator functions play the role of if-then-else.

WPE Calculus: Main soundness theorem

Theorem

Let c be a PWHILE program, E be an expectation, and $m \in \mathcal{M}$ be any input state. If $\mu = (c)m$ is the output memory, then:

$$\mathbb{E}_{m' \sim \mu}[E(m')] = wpe(c, E)(m).$$

WPE Calculus: Main soundness theorem

Theorem

Let c be a PWHILE program, E be an expectation, and $m \in \mathcal{M}$ be any input state. If $\mu = (c)m$ is the output memory, then:

$$\mathbb{E}_{m' \sim \mu}[E(m')] = wpe(c, E)(m).$$

Try this at home!

Prove this for loop-free programs, by induction on the program structure.

Weakest Pre-expectations

for Probabilistic Loops

Can you guess this WPE?

Program:

 $n \leftarrow 100;$ while n > 42 do $n \leftarrow n - 1$

Post-expectation: n

Can you guess this WPE?

Program:

 $n \leftarrow 100;$ while n > 42 do $n \leftarrow n - 1$

Post-expectation: n

Answer Deterministic program, always terminates with n = 42. So wpe(c, n) = 42.

Program:

 $\begin{array}{l} n \leftarrow 100;\\ \text{while } n > 42 \text{ do}\\ dec \triangleq \mathbf{Flip};\\ \text{if } dec \text{ then } n \leftarrow n-1 \end{array}$

Post-expectation: n

Program:

 $\begin{array}{l} n \leftarrow 100;\\ \text{while } n > 42 \text{ do}\\ dec \overset{s}{\leftarrow} \mathbf{Flip};\\ \text{if } dec \text{ then } n \leftarrow n-1 \end{array}$

Post-expectation: n

Answer

Randomized program, but always terminates with n = 42. So wpe(c, n) = 42.

Program:

 $\begin{array}{l} t \leftarrow 0; stop \leftarrow ff;\\ \text{while } \neg stop \text{ do}\\ t \leftarrow t+1;\\ stop \notin \mathbf{Flip}(1/4) \end{array}$

Post-expectation: t

Program:

$$t \leftarrow 0; stop \leftarrow ff;$$

while $\neg stop \text{ do}$
 $t \leftarrow t + 1;$
 $stop \stackrel{\text{s}}{\leftarrow} \mathbf{Flip}(1/4)$

Post-expectation: t

Starting to get more complicated...

Can we give a general method to compute wpe for loops?

What is the WPE of a loop?

Can define wpe for loops mathematically, but...

- Defined in terms of a least fixed point
- ▶ Hard to compute wpe(while b do c, E) in terms of wpe(c, -)

What is the WPE of a loop?

Can define wpe for loops mathematically, but...

- Defined in terms of a least fixed point
- ▶ Hard to compute wpe(while b do c, E) in terms of wpe(c, -)

Idea: prove upper and lower bounds on wpe

- ► Analog of *wp*: implication becomes inequality
- ► Don't aim to compute *wpe* exactly

Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on wpe

- Program: while $e \operatorname{do} c$
- Pre-expectation E', Post-expectation E
- ► Goal: Check if $wpe(while \ e \ do \ c, E) \le E'$

Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on wpe

- Program: while $e \operatorname{do} c$
- Pre-expectation E', Post-expectation E
- ▶ Goal: Check if $wpe(while \ e \ do \ c, E) \le E'$

Super-invariant rule

Suppose we have an expectation I (the invariant) satisfying the super-invariant conditions:

$$\blacktriangleright I \leq E'$$

$$\blacktriangleright \ [e] \cdot wpe(c, I) + [\neg e] \cdot E \le I$$

Making it easier to bound WPE: super-invariant rule

Setup: check upper-bounds on wpe

- Program: while $e \operatorname{do} c$
- Pre-expectation E', Post-expectation E
- ▶ Goal: Check if $wpe(while \ e \ do \ c, E) \le E'$

Super-invariant rule

Suppose we have an expectation I (the invariant) satisfying the super-invariant conditions:

$$\blacktriangleright I \leq E$$

$$\blacktriangleright \ [e] \cdot wpe(c, I) + [\neg e] \cdot E \leq I$$

Then we can conclude the upper-bound:

$$wpe(\mathsf{while}\; e \; \mathsf{do}\; c, E) \leq E'$$

Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe

- Program: while $e \operatorname{do} c$
- Pre-expectation E', Post-expectation E
- Goal: Check if E'wpe(while e do c, E)

Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe

- ▶ **Program:** while *e* do *c*
- Pre-expectation E', Post-expectation E
- Goal: Check if E'wpe(while e do c, E)

Sub-invariant rule

Suppose we have an expectation I (the invariant) satisfying the sub-invariant conditions and I is bounded in [0, 1]:

$$\blacktriangleright E' \leq I$$

$$\blacktriangleright \ I \leq [e] \cdot wpe(c, I) + [\neg e] \cdot E$$

Making it easier to bound WPE: sub-invariant rule

Setup: check lower-bounds on wpe

- ▶ **Program:** while *e* do *c*
- Pre-expectation E', Post-expectation E
- Goal: Check if E'wpe(while e do c, E)

Sub-invariant rule

Suppose we have an expectation I (the invariant) satisfying the sub-invariant conditions and I is bounded in [0, 1]:

$$\blacktriangleright E' \le I$$

$$\blacktriangleright \ I \leq [e] \cdot wpe(c, I) + [\neg e] \cdot E$$

Then we can conclude the lower-bound:

$$E' \leq wpe($$
while $e \text{ do } c, E)$

An example: FAIR

Simulate a fair coin flip from biased coin flips

while $x = y \operatorname{do}$ $x \notin \operatorname{Flip}(p);$ $y \notin \operatorname{Flip}(p);$

An example: FAIR

Simulate a fair coin flip from biased coin flips

while $x = y \operatorname{do}$ $x \notin \operatorname{Flip}(p);$ $y \notin \operatorname{Flip}(p);$

Goal: show that if x = y initially, then final x is fair coin In terms of wpe, this follows from proving:

$$wpe(\mathsf{FAIR},[x]) = [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$$

An example: FAIR

Simulate a fair coin flip from biased coin flips

while $x = y \operatorname{do}$ $x \notin \operatorname{Flip}(p);$ $y \notin \operatorname{Flip}(p);$

Goal: show that if x = y initially, then final x is fair coin In terms of wpe, this follows from proving:

 $wpe(\mathsf{FAIR},[x]) = [x=y] \cdot 0.5 + [x \neq y] \cdot [x]$

Prove this in two steps:

- 1. Upper-bound: $wpe(FAIR, [x]) \leq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$
- 2. Lower-bound: $wpe(FAIR, [x]) \ge [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$

FAIR: proving the upper-bound

Want *I* satisfying super-invariant conditions:

 $I \leq [x = y] \cdot wpe(x \mathrel{\circledast} \mathbf{Flip}(p); y \mathrel{\circledast} \mathbf{Flip}(p), I) + [x \neq y] \cdot [x]$

FAIR: proving the upper-bound

Want *I* satisfying super-invariant conditions:

 $I \leq [x = y] \cdot wpe(x \overset{\hspace{0.1em}\text{\tiny{\sc s}}}{=} \mathbf{Flip}(p); y \overset{\hspace{0.1em}\text{\tiny{\sc s}}}{=} \mathbf{Flip}(p), I) + [x \neq y] \cdot [x]$

Take the following invariant:

$$I \triangleq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$$

 $[x=y]\cdot wpe(x \mathrel{\stackrel{\hspace{0.1em} \scriptscriptstyle \bullet}{\leftarrow}} \mathbf{Flip}(p); y \mathrel{\stackrel{\hspace{0.1em} \scriptscriptstyle \bullet}{\leftarrow}} \mathbf{Flip}(p), I) + [x \neq y] \cdot [x]$

$$\begin{split} & [x = y] \cdot wpe(x \overset{s}{\leftarrow} \mathbf{Flip}(p); y \overset{s}{\leftarrow} \mathbf{Flip}(p), I) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot wpe(x \overset{s}{\leftarrow} \mathbf{Flip}(p), \\ & p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \end{split}$$

$$\begin{split} & [x = y] \cdot wpe(x \triangleq \mathbf{Flip}(p); y \triangleq \mathbf{Flip}(p), I) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot wpe(x \triangleq \mathbf{Flip}(p), \\ & p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1 - p) \cdot I[x, y \mapsto tt, ff] \\ &+ p \cdot (1 - p) \cdot I[x, y \mapsto ff, tt] + (1 - p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x] \end{split}$$

$$\begin{split} & [x=y] \cdot wpe(x \triangleq \mathbf{Flip}(p); y \triangleq \mathbf{Flip}(p), I) + [x \neq y] \cdot [x] \\ &= [x=y] \cdot wpe(x \triangleq \mathbf{Flip}(p), \\ & p \cdot I[y \mapsto tt] + (1-p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x=y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1-p) \cdot I[x, y \mapsto tt, ff] \\ &+ p \cdot (1-p) \cdot I[x, y \mapsto ff, tt] + (1-p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x=y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1-p) \cdot 1 \\ &+ p \cdot (1-p) \cdot 0 + (1-p)^2 \cdot 0.5) + [x \neq y] \cdot [x] \end{split}$$

$$\begin{split} & [x = y] \cdot wpe(x \triangleq \mathbf{Flip}(p); y \triangleq \mathbf{Flip}(p), I) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot wpe(x \triangleq \mathbf{Flip}(p), \\ & p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1 - p) \cdot I[x, y \mapsto tt, ff] \\ &+ p \cdot (1 - p) \cdot I[x, y \mapsto ff, tt] + (1 - p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1 - p) \cdot 1 \\ &+ p \cdot (1 - p) \cdot 0 + (1 - p)^2 \cdot 0.5) + [x \neq y] \cdot [x] \\ &= [x = y] + [x \neq y] \cdot [x] \leq I \end{split}$$

$$\begin{split} & [x=y] \cdot wpe(x \triangleq \mathbf{Flip}(p); y \triangleq \mathbf{Flip}(p), I) + [x \neq y] \cdot [x] \\ &= [x=y] \cdot wpe(x \triangleq \mathbf{Flip}(p), \\ & p \cdot I[y \mapsto tt] + (1-p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x=y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1-p) \cdot I[x, y \mapsto tt, ff] \\ &+ p \cdot (1-p) \cdot I[x, y \mapsto ff, tt] + (1-p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x=y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1-p) \cdot 1 \\ &+ p \cdot (1-p) \cdot 0 + (1-p)^2 \cdot 0.5) + [x \neq y] \cdot [x] \\ &= [x=y] + [x \neq y] \cdot [x] \leq I \end{split}$$

$$\begin{split} & [x = y] \cdot wpe(x \triangleq \mathbf{Flip}(p); y \triangleq \mathbf{Flip}(p), I) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot wpe(x \triangleq \mathbf{Flip}(p), \\ & p \cdot I[y \mapsto tt] + (1 - p) \cdot I[y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot (p \cdot p \cdot I[x, y \mapsto tt] + p \cdot (1 - p) \cdot I[x, y \mapsto tt, ff] \\ &+ p \cdot (1 - p) \cdot I[x, y \mapsto ff, tt] + (1 - p)^2 \cdot I[x, y \mapsto ff]) + [x \neq y] \cdot [x] \\ &= [x = y] \cdot (p \cdot p \cdot 0.5 + p \cdot (1 - p) \cdot 1 \\ &+ p \cdot (1 - p) \cdot 0 + (1 - p)^2 \cdot 0.5) + [x \neq y] \cdot [x] \\ &= [x = y] + [x \neq y] \cdot [x] \leq I \end{split}$$

Thus the super-invariant rule proves the upper-bound:

$$wpe(\mathrm{FAIR},[x]) \leq [x=y] \cdot 0.5 + [x \neq y] \cdot [x]$$

FAIR: proving the lower-bound

Want I satisfying sub-invariant conditions:

 $I \geq [x = y] \cdot wpe(x \not \in \mathbf{Flip}(p); y \not \in \mathbf{Flip}(p), I) + [x \neq y] \cdot [x]$

The same invariant works:

$$I \triangleq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$$

And I is bounded in [0, 1].

Thus the sub-invariant rule proves the lower-bound:

 $wpe(\mathsf{FAIR},[x]) \geq [x = y] \cdot 0.5 + [x \neq y] \cdot [x]$

WPE: references and further reading

Recent survey of the area

Kaminski. Advanced Weakest Precondition Calculi for Probabilistic Programs. PhD Thesis (RWTH Aachen), 2019. https://moves.rwth-aachen.de/people/kaminski/thesis/

Comprehensive book

McIver and Morgan. Abstraction, Refinement and Proof for Probabilistic Systems. Springer, 2004.

Related methods: Hoare logics for monadic PWHILE

Prove judgments of the following form:

$$\{P\} \ c \ \{Q\}$$

► Pre-condition *P* describes input memory

▶ Post-condition Q describes output memory distribution

Example systems

- ► A program logic for union bounds (ICALP16)
- Formal certification of code-based cryptographic proofs (POPLo9)
- Probabilistic relational reasoning for differential privacy (POPL12)
- ► A pre-expectation calculus for probabilistic sensitivity (POPL21)

A Second Semantics for PWHILE Transformer Semantics

Alternative view of what the program does

• Gives us a new way of understanding the program behavior

Alternative view of what the program does

Gives us a new way of understanding the program behavior

Enable new extensions of the language

Allows extending the language with different features

Alternative view of what the program does

Gives us a new way of understanding the program behavior

Enable new extensions of the language

Allows extending the language with different features

Support different verification methods

Can make some properties easier (or harder) to verify

Semantics of expressions/distributions: unchanged

Recall: program states are memories Memory *m* maps each variable to a value:

$$m \in \mathcal{M} = \mathcal{X} \to \mathcal{V}$$

Semantics of expressions/distributions: unchanged

Recall: program states are memories Memory *m* maps each variable to a value:

$$m \in \mathcal{M} = \mathcal{X} \to \mathcal{V}$$

Expression semantics: map memory to value $\llbracket -
rbracket : \mathcal{E} o \mathcal{M} o \mathcal{V}$

Semantics of expressions/distributions: unchanged

Recall: program states are memories Memory *m* maps each variable to a value:

$$m \in \mathcal{M} = \mathcal{X} \to \mathcal{V}$$

Expression semantics: map memory to value $\llbracket - \rrbracket : \mathcal{E} o \mathcal{M} o \mathcal{V}$

D-expression semantics: distribution over values

$$\llbracket - \rrbracket : \mathcal{DE} \to \mathsf{Distr}(\mathcal{V})$$

Transformer semantics of commands: overview

Last time: monadic semantics

$$(\!(-)\!):\mathcal{C}\to\mathcal{M}\to\mathsf{Distr}(\mathcal{M})$$

Command: input memory to output distribution over memories.

Transformer semantics of commands: overview

Last time: monadic semantics

$$(-): \mathcal{C} \to \mathcal{M} \to \mathsf{Distr}(\mathcal{M})$$

Command: input memory to output distribution over memories.

This time: transformer semantics (Kozen)

$$\llbracket - \rrbracket : \mathcal{C} \to \mathsf{Distr}(\mathcal{M}) \to \mathsf{Distr}(\mathcal{M})$$

Command: input distribution over memories to output distribution over memories.

Semantics of commands: skip

Intuition

- Input: memory distribution μ
- $\blacktriangleright\,$ Output: the same memory distribution μ

Semantics of commands: skip

Intuition

- Input: memory distribution μ
- Output: the same memory distribution μ

Semantics of skip

$$\llbracket \mathsf{skip}
rbrace \mu riangle \mu$$

Semantics of commands: assignment

Intuition

- Input: memory distribution μ
- Output: distribution from sampling m from μ , and mapping to m with $x \mapsto v$, where v is the original value of e in m.

Semantics of commands: assignment

Intuition

- Input: memory distribution μ
- Output: distribution from sampling m from μ , and mapping to m with $x \mapsto v$, where v is the original value of e in m.

Semantics of assignment

Let $f(m) = m[x \mapsto \llbracket e \rrbracket m]$. Then:

$$\llbracket x \leftarrow e \rrbracket \mu \triangleq map(f)(\mu)$$

Semantics of commands: sampling

Intuition

- Input: memory distribution μ
- ► Sample m from μ , and sample v from d-expression
- $\blacktriangleright~$ Output: return updated memory, m with $x\mapsto v$

Semantics of commands: sampling

Intuition

- Input: memory distribution μ
- Sample m from μ , and sample v from d-expression
- \blacktriangleright Output: return updated memory, m with $x\mapsto v$

Semantics of sampling

Let $g(m)(v) = m[x \mapsto v]$. Then:

 $\llbracket x \xleftarrow{\hspace{0.15cm}} d \rrbracket \mu \triangleq bind(\mu, \overline{\lambda m. \ map(g(m))(\llbracket d \rrbracket))}$

Semantics of commands: sequencing

Intuition

- Input: memory distribution μ
- Transform μ to μ' using first command
- Output: transform μ' to μ'' using second command

Semantics of commands: sequencing

Intuition

- Input: memory distribution μ
- Transform μ to μ' using first command
- Output: transform μ' to μ'' using second command

Semantics of sequencing

$$\llbracket c_1 ; c_2 \rrbracket \mu \triangleq \llbracket c_2 \rrbracket (\llbracket c_1 \rrbracket \mu)$$

Semantics of commands: conditionals (first try)

Intuition

- Input: memory distribution μ
- ▶ ???

Semantics of commands: conditionals (first try)

Intuition

- Input: memory distribution μ
- ▶ ???

Problem: what should input to branches be?

- ► First branch: distribution where guard holds
- Second branch: distribution where guard doesn't hold
- But μ may have some probability of both cases
- Can't case analysis on guard in μ (cf. monadic semantics)

Operations on distributions: conditioning

Restrict a distribution to a smaller subset

Given a distribution over A, assume that the result is in $E \subseteq A$. Then what probabilities should we assign elements in A?

Distribution conditioning

Let $\mu \in \text{Distr}(A)$, and $E \subseteq A$. Then μ conditioned on E is the distribution in Distr(A) defined by:

$$(\mu \mid E)(a) \triangleq \begin{cases} \mu(a)/\mu(E) & : a \in E \\ 0 & : a \notin E \end{cases}$$

Idea: probability of a "assuming that" the result must be in E. Only makes sense if $\mu(E)$ is not zero!

Semantics of commands: conditionals (second try)

Intuition

- Input: memory distribution μ
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- ► Output: ???

Semantics of commands: conditionals (second try)

Intuition

- Input: memory distribution μ
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- ► Output: ???

Problem: how to combine outputs of branches?

- ► First branch: some output distribution
- Second branch: some other output distribution
- But we want a single output for the if-then-else

Operations on distributions: convex combination

Blending/mixing two distributions

Say we have distributions μ_1, μ_2 over the same set. Blending the distributions: with probability p, draw something from μ_1 . Else, draw something from μ_2 .

Convex combination

Let $\mu_1, \mu_2 \in \text{Distr}(A)$, and let $p \in [0, 1]$. Then the convex combination of μ_1 and μ_2 is defined by:

$$\mu_1 \oplus_p \mu_2(a) \triangleq p \cdot \mu_1(a) + (1-p) \cdot \mu_2(a).$$

Semantics of commands: conditionals

Intuition

- Input: memory distribution μ
- Record probability p of guard true
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- Output: take p-convex combination of two results

Semantics of commands: conditionals

Intuition

- Input: memory distribution μ
- Record probability p of guard true
- Condition μ on guard true; transform with first branch
- Condition μ on guard false; transform with second branch
- Output: take p-convex combination of two results

Semantics of conditionals

Let $p = \mu(\llbracket e \rrbracket)$ be the probability the guard is true. Then:

 $\llbracket \text{if } e \text{ then } c_1 \text{ else } c_2 \rrbracket \mu \triangleq \llbracket c_1 \rrbracket (\mu \mid \llbracket e = tt \rrbracket) \oplus_p \llbracket c_2 \rrbracket (\mu \mid \llbracket e = ff \rrbracket)$

Semantics of commands: loops

Same strategy works as before

- Define sequence of loop approximants μ_1, μ_2, \dots
- Each μ_n : outputs terminating after n iterations
- ▶ Take limit μ_n as $n \to \infty$ to define output of loop

Semantics of commands: loops

Same strategy works as before

- Define sequence of loop approximants μ_1, μ_2, \dots
- Each μ_n : outputs terminating after n iterations
- ▶ Take limit μ_n as $n \to \infty$ to define output of loop

Maybe don't try this at home:

Work out the gory details and define a transformer semantics for loops.

Comparing the two semantics:

Monadic versus Transformer

Monadic semantics to transformer semantics

Useful construction

- Given: $f : \mathcal{M} \to \mathsf{Distr}(\mathcal{M})$
- ▶ Define $f^{\#}$: Distr(\mathcal{M}) → Distr(\mathcal{M}) by "averaging f" over input distribution:

$$f^{\#}(\mu)(m') \triangleq \sum_{m \in \mathcal{M}} \mu(m) \cdot f(m)(m')$$

Monadic semantics to transformer semantics

Useful construction

- Given: $f : \mathcal{M} \to \mathsf{Distr}(\mathcal{M})$
- ▶ Define $f^{\#}$: Distr(\mathcal{M}) → Distr(\mathcal{M}) by "averaging f" over input distribution:

$$f^{\#}(\mu)(m') \triangleq \sum_{m \in \mathcal{M}} \mu(m) \cdot f(m)(m')$$

Relation between semantics

For any PWHILE program c and input distribution μ , we have:

$$(c)^{\#}(\mu) = \llbracket c \rrbracket \mu$$

Good sanity check: would be strange if monadic semantics disagrees with transformer semantics when we feed in the same input distribution.

Transformer semantics to monadic semantics?

Not so useful fact

- Given: \overline{f} : $\text{Distr}(\mathcal{M}) \rightarrow \text{Distr}(\mathcal{M})$
- ▶ There does not always exist $f : \mathcal{M} \to \mathsf{Distr}(\mathcal{M})$ such that $\overline{f} = f^{\#}$.
- ► Transformer semantics supports fancier PPL features

Transformer semantics to monadic semantics?

Not so useful fact

- Given: \overline{f} : Distr $(\mathcal{M}) \rightarrow \text{Distr}(\mathcal{M})$
- ▶ There does not always exist $f : \mathcal{M} \to \text{Distr}(\mathcal{M})$ such that $\overline{f} = f^{\#}$.
- Transformer semantics supports fancier PPL features

Notable example: conditioning

New command to condition the input distribution on a guard being true:

$$\llbracket \mathsf{observe}(e) \rrbracket \mu \triangleq \mu \mid \llbracket e = tt \rrbracket$$

Not possible to give a monadic semantics to this command.

For verification: what is the tradeoff?

Why prefer monadic semantics?

- Memory assertions are simpler than distribution assertions
- ► Can do case analysis on memory if input is a memory

For verification: what is the tradeoff?

Why prefer monadic semantics?

- Memory assertions are simpler than distribution assertions
- Can do case analysis on memory if input is a memory

Why prefer transformer semantics?

- Sometimes, want to assume property of input distribution
- Can enable verifying richer probabilistic properties

Reasoning about PWHILE Programs Probabilistic Separation Logic What Is Independence, Intuitively?

Two random variables x and y are independent if they are uncorrelated: the value of x gives no information about the value or distribution of y.

Things that are independent

Fresh random samples

- \blacktriangleright x is the result of a fair coin flip
- ► *y* is the result of another, "fresh" coin flip
- ► More generally: "separate" sources of randomness

Things that are independent

Fresh random samples

- \blacktriangleright x is the result of a fair coin flip
- ► *y* is the result of another, "fresh" coin flip
- ► More generally: "separate" sources of randomness

Uncorrelated things

- \blacktriangleright x is today's winning lottery number
- \blacktriangleright y is the closing price of the stock market

Things that are not independent

Re-used samples

- \blacktriangleright x is the result of a fair coin flip
- \blacktriangleright y is the result of the same coin flip

Things that are not independent

Re-used samples

- \blacktriangleright x is the result of a fair coin flip
- y is the result of the same coin flip

Common cause

- \blacktriangleright x is today's ice cream sales
- ► y is today's sunglasses sales

What Is Independence, Formally?

Definition

Two random variables x and y are independent (in some implicit distribution over x and y) if for all values a and b:

$$\Pr(x = a \land y = b) = \Pr(x = a) \cdot \Pr(y = b)$$

That is, the distribution over (x, y) is the product of a distribution over x and a distribution over y.

Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

► A "fresh" random sample is independent of the state.

Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

► A "fresh" random sample is independent of the state.

Simplifies reasoning about groups of variables

- Complicated: general distribution over many variables
- Simple: product of distributions over each variable

Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

► A "fresh" random sample is independent of the state.

Simplifies reasoning about groups of variables

- Complicated: general distribution over many variables
- Simple: product of distributions over each variable

Preserved under common program operations

- Local operations independent of "separate" randomness
- Behaves well under conditioning (prob. control flow)

Reasoning about Independence: Challenges

Formal definition isn't very promising

- Quantification over all values: lots of probabilities!
- Computing exact probabilities: often difficult

How can we leverage the intuition behind probabilistic independence?

Main Observation: Independence is Separation

Two variables x and y in a distribution μ are independent if μ is the product of two distributions μ_x and μ_y with disjoint domains, containing x and y.

Leverage separation logic to reason about independence

- Pioneered by O'Hearn, Reynolds, and Yang
- ► Highly developed area of program verification research
- ► Rich logical theory, automated tools, etc.

Our Approach: Two Ingredients

• Develop a probabilistic model of the logic BI

• Design a probabilistic separation logic PSL

Bunched Implications and Separation Logics

1. Programs

- Transform input states to output states
- ► Done: PWHILE with transformer semantics

1. Programs

- Transform input states to output states
- **Done:** PWHILE with transformer semantics

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

1. Programs

- Transform input states to output states
- ► Done: PWHILE with transformer semantics

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

3. Program logic

- Formulas describe programs
- Assertions specify pre- and post-conditions

Classical Setting: Heaps

Program states (s, h)

- A store $s : \mathcal{X} \to \mathcal{V}$, map from variables to values
- A heap $h : \mathbb{N} \rightarrow \mathcal{V}$, partial map from addresses to values

Classical Setting: Heaps

Program states (s, h)

- A store $s : \mathcal{X} \to \mathcal{V}$, map from variables to values
- A heap $h : \mathbb{N} \rightarrow \mathcal{V}$, partial map from addresses to values

Pointer-manipulating programs

- Control flow: sequence, if-then-else, loops
- Read/write addresses in heap
- Allocate/free heap cells

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- Start with regular propositional logic $(\top, \bot, \land, \lor, \rightarrow)$
- Add a new conjunction ("star"): P * Q
- Add a new implication ("magic wand"): $P \twoheadrightarrow Q$

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- Start with regular propositional logic $(\top, \bot, \land, \lor, \rightarrow)$
- ► Add a new conjunction ("star"): *P* * *Q*
- Add a new implication ("magic wand"): $P \twoheadrightarrow Q$

Star is a multiplicative conjunction

- $P \land Q$: *P* and *Q* hold on the entire state
- \blacktriangleright *P* * *Q*: *P* and *Q* hold on disjoint parts of the entire state

Resource Semantics of BI (O'Hearn and Pym) Suppose states form a pre-ordered, partial monoid

- $\blacktriangleright \text{ Set } S \text{ of states, pre-order} \sqsubseteq \text{ on } S$
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

$s\models\top$	always
$s \models \bot$	never

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

$s \models \top$	always
$s\models\bot$	never
$s \models P \land Q$	iff $s \models P$ and $s \models Q$

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

$s \models \top$	always
$s\models\bot$	never
$s \models P \land Q$	$iff \ s \models P \ and \ s \models Q$
$s \models P * Q$	iff $s_1 \circ s_2 \sqsubseteq s$ with $s_1 \models P$ and $s_2 \models Q$

State s can be split into two "disjoint" states, one satisfying P and one satisfying Q

Example: Heap Model of BI

Set of states: heaps

▶ $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Example: Heap Model of BI

Set of states: heaps

▶ $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

▶ $s_1 \circ s_2$ is defined to be union iff dom $(s_1) \cap$ dom $(s_2) = \emptyset$

Example: Heap Model of BI

Set of states: heaps

▶ $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

▶ $s_1 \circ s_2$ is defined to be union iff dom $(s_1) \cap \text{dom}(s_2) = \emptyset$

Pre-order: extend/project heaps

▶ $s_1 \sqsubseteq s_2$ iff dom $(s_1) \subseteq$ dom (s_2) , and s_1, s_2 agree on dom (s_1)

Propositions for Heaps

Atomic propositions: "points-to"

▶ $x \mapsto v$ holds in heap s iff $x \in \text{dom}(s)$ and s(x) = v

Example axioms (not complete)

- Deterministic: $x \mapsto v \land y \mapsto w \land x = y \rightarrow v = w$
- Disjoint: $x \mapsto v * y \mapsto w \to x \neq y$

The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: x := *e
- Write to location: *e := e'

The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: x := *e
- Write to location: *e := e'

Program logic judgments

 $\{P\} \ c \ \{Q\}$

Reading

Executing c on any input state satisfying P leads to an output state satisfying Q, without invalid reads or writes.

A Probabilistic Model of BI

States: Distributions over Memories

States: Distributions over Memories

Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$

States: Distributions over Memories

Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$

Program states: randomized memories

- States are distributions over memories with same domain
- ► Formally: $S = \{s \mid s \in \mathsf{Distr}(\mathcal{M}(A)), A \subseteq \mathcal{X}\}$
- When $s \in \text{Distr}(\mathcal{M}(A))$, write dom(s) for A

Monoid: "Disjoint" Product Distribution

Intuition

- ► Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

Monoid: "Disjoint" Product Distribution

Intuition

- Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

More formally...

Suppose that $s \in \text{Distr}(\mathcal{M}(A))$ and $s' \in \text{Distr}(\mathcal{M}(B))$. If A, B are disjoint, then:

$$(s \circ s')(m \cup m') = s(m) \cdot s'(m')$$

for $m \in \mathcal{M}(A)$ and $m' \in \mathcal{M}(B)$. Otherwise, $s \circ s'$ is undefined.

Pre-Order: Extension/Projection

Intuition

- ▶ Define $s \sqsubseteq s'$ if s "has less information than" s'
- In probabilistic setting: s is a projection of s'

Pre-Order: Extension/Projection

Intuition

- Define $s \sqsubseteq s'$ if s "has less information than" s'
- In probabilistic setting: s is a projection of s'

More formally...

Suppose that $s \in \text{Distr}(\mathcal{M}(A))$ and $s' \in \text{Distr}(\mathcal{M}(B))$. Then $s \sqsubseteq s'$ iff $A \subseteq B$, and for all $m \in \mathcal{M}(A)$, we have:

$$s(m) = \sum_{m' \in \mathcal{M}(B)} s'(m \cup m').$$

That is, s is obtained from s' by marginalizing variables in $B \setminus A$.