Reasoning about Probabilistic Programs

Oregon PL Summer School 2021

Justin Hsu UW-Madison Cornell University

Day 1: Introducing Probabilistic Programs

- Motivations and key questions
- Mathematical preliminaries

Day 2: First-Order Programs 1

- Probabilistic While language, monadic semantics
- Weakest pre-expectation calculus

Day 3: First-Order Programs 2

- Probabilistic While language, transformer semantics
- Probabilistic separation logic

Day 4: Higher-Order Programs

- Type system: probability monad
- Type system: probabilistic PCF

Atomic Formulas

Equalities

► e = e' holds in s iff all variables $FV(e, e') \subseteq dom(s)$, and e is equal to e' with probability 1 in s

Atomic Formulas

Equalities

► e = e' holds in s iff all variables $FV(e, e') \subseteq dom(s)$, and e is equal to e' with probability 1 in s

Distribution laws

- [e] holds in s iff all variables in $FV(e) \subseteq \operatorname{dom}(s)$
- ▶ Unif_S[e] holds in s iff $FV(e) \subseteq dom(s)$, and e is uniformly distributed on S (e.g., $S = \mathbb{B}$ is fair coin flip)

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Suppose μ has two variables x, y, indep. fair coin flips

$$\mu([x \mapsto tt, y \mapsto tt]) = 1/4 \qquad \mu([x \mapsto tt, y \mapsto ff]) = 1/4 \mu([x \mapsto ff, y \mapsto tt]) = 1/4 \qquad \mu([x \mapsto ff, y \mapsto ff]) = 1/4$$

Then: μ satisfies $\mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y]$. Why?

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Then: μ satisfies $\mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y]$. Why?

• We can decompose $\mu = \mu_x \otimes \mu_y$, where:

$$\mu_x([x \mapsto tt]) \triangleq 1/2 \qquad \mu_x([x \mapsto ff]) \triangleq 1/2 \mu_y([y \mapsto tt]) \triangleq 1/2 \qquad \mu_y([y \mapsto ff]) \triangleq 1/2$$

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Then: μ satisfies $\mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y]$. Why?

• We can decompose $\mu = \mu_x \otimes \mu_y$, where:

$$\mu_x([x \mapsto tt]) \triangleq 1/2 \qquad \mu_x([x \mapsto ff]) \triangleq 1/2 \mu_y([y \mapsto tt]) \triangleq 1/2 \qquad \mu_y([y \mapsto ff]) \triangleq 1/2$$

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Then: μ satisfies $\mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y]$. Why?

• We can decompose $\mu = \mu_x \otimes \mu_y$, where:

$$\mu_x([x \mapsto tt]) \triangleq 1/2 \qquad \mu_x([x \mapsto ff]) \triangleq 1/2 \mu_y([y \mapsto tt]) \triangleq 1/2 \qquad \mu_y([y \mapsto ff]) \triangleq 1/2$$

• Next,
$$\mu_x \models \mathbf{Unif}_{\mathbb{B}}[x]$$
 and $\mu_y \models \mathbf{Unif}_{\mathbb{B}}[y]$

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Then: μ satisfies $\operatorname{Unif}_{\mathbb{B}}[x] * \operatorname{Unif}_{\mathbb{B}}[y]$. Why?

• We can decompose $\mu = \mu_x \otimes \mu_y$, where:

 $\mu_x([x \mapsto tt]) \triangleq 1/2 \qquad \mu_x([x \mapsto ff]) \triangleq 1/2$ $\mu_y([y \mapsto tt]) \triangleq 1/2 \qquad \mu_y([y \mapsto ff]) \triangleq 1/2$

So, $\mu \sqsubseteq \mu_x \circ \mu_y$

• Next, $\mu_x \models \mathbf{Unif}_{\mathbb{B}}[x]$ and $\mu_y \models \mathbf{Unif}_{\mathbb{B}}[y]$

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Then: μ satisfies $\operatorname{Unif}_{\mathbb{B}}[x] * \operatorname{Unif}_{\mathbb{B}}[y]$. Why?

• We can decompose $\mu = \mu_x \otimes \mu_y$, where:

 $\mu_x([x \mapsto tt]) \triangleq 1/2 \qquad \mu_x([x \mapsto ff]) \triangleq 1/2$ $\mu_y([y \mapsto tt]) \triangleq 1/2 \qquad \mu_y([y \mapsto ff]) \triangleq 1/2$

• Next,
$$\mu_x \models \mathbf{Unif}_{\mathbb{B}}[x]$$
 and $\mu_y \models \mathbf{Unif}_{\mathbb{B}}[y]$

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Then: μ satisfies $\operatorname{Unif}_{\mathbb{B}}[x] * \operatorname{Unif}_{\mathbb{B}}[y]$. Why?

 \blacktriangleright We can decompose $\mu = \mu_x \otimes \mu_y$, where:

$$\mu_x([x \mapsto tt]) \triangleq 1/2 \qquad \mu_x([x \mapsto ff]) \triangleq 1/2 \mu_y([y \mapsto tt]) \triangleq 1/2 \qquad \mu_y([y \mapsto ff]) \triangleq 1/2$$

- Next, $\mu_x \models \mathbf{Unif}_{\mathbb{B}}[x]$ and $\mu_y \models \mathbf{Unif}_{\mathbb{B}}[y]$
- So by definition, $\mu \models \mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y]$

Suppose μ has two variables x, y, indep. fair coin flips

$$\begin{split} \mu([x\mapsto tt,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto tt,y\mapsto ff]) = 1/4 \\ \mu([x\mapsto ff,y\mapsto tt]) &= 1/4 \qquad \mu([x\mapsto ff,y\mapsto ff]) = 1/4 \end{split}$$

Then: μ satisfies $\operatorname{Unif}_{\mathbb{B}}[x] * \operatorname{Unif}_{\mathbb{B}}[y]$. Why?

 \blacktriangleright We can decompose $\mu = \mu_x \otimes \mu_y$, where:

$$\mu_x([x \mapsto tt]) \triangleq 1/2 \qquad \mu_x([x \mapsto ff]) \triangleq 1/2 \mu_y([y \mapsto tt]) \triangleq 1/2 \qquad \mu_y([y \mapsto ff]) \triangleq 1/2$$

- Next, $\mu_x \models \mathbf{Unif}_{\mathbb{B}}[x]$ and $\mu_y \models \mathbf{Unif}_{\mathbb{B}}[y]$
- ► So by definition, $\mu \models \mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y]$

Equality and distributions

$$\blacktriangleright \ x = y \land \mathbf{Unif}_{\mathbb{B}}[x] \to \mathbf{Unif}_{\mathbb{B}}[y]$$

Equality and distributions

$$\blacktriangleright \ x = y \land \mathbf{Unif}_{\mathbb{B}}[x] \to \mathbf{Unif}_{\mathbb{B}}[y]$$

Uniformity and products

$$\blacktriangleright \ \mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y] \to \mathbf{Unif}_{\mathbb{B} \times \mathbb{B}}[x, y]$$

Equality and distributions

$$\blacktriangleright \ x = y \land \mathbf{Unif}_{\mathbb{B}}[x] \to \mathbf{Unif}_{\mathbb{B}}[y]$$

Uniformity and products

 $\blacktriangleright \ \mathbf{Unif}_{\mathbb{B}}[x] * \mathbf{Unif}_{\mathbb{B}}[y] \to \mathbf{Unif}_{\mathbb{B} \times \mathbb{B}}[x, y]$

Uniformity and exclusive-or (\oplus)

 $\blacktriangleright \ \mathbf{Unif}_{\mathbb{B}}[x] * [y] \land z = x \oplus y \to \mathbf{Unif}_{\mathbb{B}}[z] * [y]$

A Probabilistic Separation Logic

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program $\{P\} \; c \; \{Q\}$

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program $\{P\} \ c \ \{Q\}$

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program $\{P\} \ c \ \{Q\}$

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Perfectly fits the transformer semantics for PWHILE

Under transformer semantics:

- P describes: a distribution over memories (input)
- Q describes: a distribution over memories (output)

Under monadic semantics: mismatch!

- ► *P* describes: a distribution over memories
- But input to program: a single memory

How do we prove these judgments?

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

How do we prove these judgments?

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Proving validity directly is difficult

- Must unfold definition of $[\![c]\!]$ as a function
- ► Then prove property of function by working with definition

How do we prove these judgments?

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Proving validity directly is difficult

- Must unfold definition of $[\![c]\!]$ as a function
- ► Then prove property of function by working with definition

Things that would make proving judgments easier:

- Compositionality: prove property of bigger program by combining proofs of properties of sub-programs
- Avoid unfolding definition of program semantics

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

$$rac{\{P_1\}\ c_1\ \{Q_1\}\ \cdots\ \{P_n\}\ c_n\ \{Q_n\}}{\{P\}\ c\ \{Q\}}$$
 RuleName

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

$$rac{\{P_1\}\ c_1\ \{Q_1\}\ \cdots\ \{P_n\}\ c_n\ \{Q_n\}}{\{P\}\ c\ \{Q\}}$$
 RuleName

Proof rules mean:

- To prove $\{P\} c \{Q\}$
- We just have to prove $\{P_1\} c_1 \{Q_1\}, \ldots, \{P_n\} c_n \{Q_n\}$

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

$$rac{\{P_1\} \ c_1 \ \{Q_1\} \ \cdots \ \{P_n\} \ c_n \ \{Q_n\}}{\{P\} \ c \ \{Q\}}$$
 RuleName

Proof rules mean:

- To prove $\{P\} c \{Q\}$
- We just have to prove $\{P_1\} c_1 \{Q_1\}, \ldots, \{P_n\} c_n \{Q_n\}$

Why do proof rules help?

- Programs c_1, \ldots, c_n are smaller/simpler than c
- If c can't be broken down, no premises (n = 0)

The Proof System of PSL

Basic Rules

Basic Proof Rules in PSL: Assignment

Assignment Rule

$$\frac{x \notin FV(e)}{\{\top\} x \leftarrow e \{x = e\}} \operatorname{Assn}$$

Basic Proof Rules in PSL: Assignment

Assignment Rule

$$\frac{x \notin FV(e)}{\{\top\} x \leftarrow e \; \{x = e\}} \; \mathrm{Assn}$$

How to read this rule?

From any initial distribution, running $x \leftarrow e$ will lead to a distribution where x equals e with probability 1 (assuming x doesn't appear in e).

Basic Proof Rules in PSL: Sampling

Sampling Rule

 $\frac{1}{\{\top\} x \notin \mathbf{Flip} \{\mathbf{Unif}_{\mathbb{B}}[x]\}} \operatorname{Samp}$

Basic Proof Rules in PSL: Sampling

Sampling Rule

$$\overline{\{\top\} x \not\in \mathbf{Flip} \{\mathbf{Unif}_{\mathbb{B}}[x]\}} \text{ Samp}$$

How to read this rule?

From any initial distribution, running $x \triangleq \mathbf{Flip}$ will lead to a distribution where x is a uniformly distributed Boolean.

Basic Proof Rules in PSL: Sequencing

Sequencing Rule

$$rac{\{P\}\ c_1\ \{Q\}\ \ \{Q\}\ c_2\ \{R\}}{\{P\}\ c_1\ ;\ c_2\ \{R\}}$$
 Seq

Basic Proof Rules in PSL: Sequencing

Sequencing Rule

$$rac{\{P\} \, c_1 \, \{Q\} \qquad \{Q\} \, c_2 \, \{R\}}{\{P\} \, c_1 \, ; \, c_2 \, \{R\}}$$
 Seq

How to read this rule?

- ► If: from any distribution satisfying *P*, running *c*₁ leads to a distribution satisfying *R*
- ► If: from any distribution satisfying *R*, running *c*₂ leads to a distribution satisfying *Q*
- Then: from any distribution satisfying P, running c₁; c₂ leads to a distribution satisfying Q

The Proof System of PSL Conditional Rule

Conditional Rule: first try

Does this rule work?

$$\frac{\{e = tt \land P\} \ c \ \{Q\} \qquad \{e = ff \land P\} \ c' \ \{Q\}}{\{P\} \text{ if } e \text{ then } c \text{ else } c' \ \{Q\}} \text{ Cond?}$$

Take *P* to be $\mathbf{Unif}_{\mathbb{B}}[e]$ and *Q* to be \perp :

 $\frac{\{e = tt \land \mathbf{Unif}_{\mathbb{B}}[e]\} \ c \ \{\bot\}}{\{\mathbf{Unif}_{\mathbb{B}}[e]\} \ if \ e \ \text{then} \ c \ \text{else} \ c' \ \{\bot\}} \ \mathsf{Cond?}$

Take P to be $\mathbf{Unif}_{\mathbb{B}}[e]$ and Q to be \bot :

 $\frac{\{e = tt \land \mathbf{Unif}_{\mathbb{B}}[e]\} c \{\bot\}}{\{\mathbf{Unif}_{\mathbb{B}}[e]\} \text{ if } e \text{ then } c \text{ else } c' \{\bot\}} \text{ Cond?}$

Premises are valid...

There is no distribution satisfying $e = tt \wedge \mathbf{Unif}_{\mathbb{B}}[e]$ or $e = ff \wedge \mathbf{Unif}_{\mathbb{B}}[e]$, so pre-conditions are \bot and the premises are trivially valid.

Take P to be $\mathbf{Unif}_{\mathbb{B}}[e]$ and Q to be \bot :

 $\frac{\{e = tt \land \mathbf{Unif}_{\mathbb{B}}[e]\} c \{\bot\}}{\{\mathbf{Unif}_{\mathbb{B}}[e]\} \text{ if } e \text{ then } c \text{ else } c' \{\bot\}} \text{ Cond?}$

Premises are valid...

There is no distribution satisfying $e = tt \wedge \mathbf{Unif}_{\mathbb{B}}[e]$ or $e = ff \wedge \mathbf{Unif}_{\mathbb{B}}[e]$, so pre-conditions are \bot and the premises are trivially valid.

But the conclusion is not!

It is not the case that if $\mathbf{Unif}_{\mathbb{B}}[e]$ in the input distribution, then running if e then c else c' will lead to an impossible output distribution!

What went wrong?

The broken rule

$$\frac{\{e = tt \land P\} \ c \ \{Q\} \qquad \{e = ff \land P\} \ c' \ \{Q\}}{\{P\} \text{ if } e \text{ then } c \text{ else } c' \ \{Q\}} \text{ COND?}$$

What went wrong?

The broken rule

$$\frac{\{e = tt \land P\} \ c \ \{Q\} \qquad \{e = ff \land P\} \ c' \ \{Q\}}{\{P\} \text{ if } e \text{ then } c \text{ else } c' \ \{Q\}} \text{ Cond?}$$

The problem: conditioning

- We assume: P holds in input distribution μ
- Inputs to branches: μ conditioned on e = tt and e = ff
- But: P might not hold on conditional distributions!

Conditional Rule: second try

Does this rule work?

$$\frac{\{e = tt * P\} c \{Q\} \qquad \{e = ff * P\} c' \{Q\}}{\{[e] * P\} \text{ if } e \text{ then } c \text{ else } c' \{Q\}} \text{ COND??}$$

Conditional Rule: second try

Does this rule work?

$$\frac{\{e = tt * P\} c \{Q\} \qquad \{e = ff * P\} c' \{Q\}}{\{[e] * P\} \text{ if } e \text{ then } c \text{ else } c' \{Q\}} \text{ COND??}$$

Previous counterexample fails

If we take P to be $\mathbf{Unif}_{\mathbb{B}}[e]$, then $[e] * \mathbf{Unif}_{\mathbb{B}}[e]$ is false, and the conclusion is trivially valid.

Consider this proof

$$\frac{\{e = tt * \top\} x \leftarrow e \{[x] * [e]\} \qquad \{e = ff * P\} x \leftarrow e \{[x] * [e]\}}{\{[e] * \top\} \text{ if } e \text{ then } x \leftarrow e \text{ else } x \leftarrow e \{[x] * [e]\}} \text{ Cond?}$$

Consider this proof

$$\frac{\{e = tt * \top\} x \leftarrow e \{[x] * [e]\} \qquad \{e = ff * P\} x \leftarrow e \{[x] * [e]\}}{\{[e] * \top\} \text{ if } e \text{ then } x \leftarrow e \text{ else } x \leftarrow e \{[x] * [e]\}} \text{ COND?}$$

Premises are valid...

In the output of each branch, x and e are independent since e is deterministic.

Consider this proof

$$\frac{\{e = tt * \top\} x \leftarrow e \{[x] * [e]\} \qquad \{e = ff * P\} x \leftarrow e \{[x] * [e]\}}{\{[e] * \top\} \text{ if } e \text{ then } x \leftarrow e \text{ else } x \leftarrow e \{[x] * [e]\}} \text{ Cond?}$$

Premises are valid...

In the output of each branch, x and e are independent since e is deterministic.

But the conclusion is not!

In the output of the conditional, x and e are clearly not always independent: they are equal, and they might be randomized!

What went wrong?

The broken rule

$$\frac{\{e = tt * P\} c \{Q\} \qquad \{e = ff * P\} c' \{Q\}}{\{[e] * P\} \text{ if } e \text{ then } c \text{ else } c' \{Q\}} \text{ COND??}$$

What went wrong?

The broken rule

$$\frac{\{e = tt * P\} c \{Q\} \qquad \{e = ff * P\} c' \{Q\}}{\{[e] * P\} \text{ if } e \text{ then } c \text{ else } c' \{Q\}} \text{ Cond??}$$

The problem: mixing

- Suppose: *Q* holds in the outputs of both branches
- The output of the conditional is a convex combination of the branch outputs
- But: Q might not hold in the convex combination!

Conditional Rule in PSL

Fixed rule

$$\begin{cases} e = tt * P \} c \{Q\} \\ \{e = ff * P \} c' \{Q\} \\ \\ \hline Q \text{ is closed under mixtures (CM)} \\ \hline \{[e] * P\} \text{ if } e \text{ then } c \text{ else } c' \{Q\} \end{cases}$$

Conditional Rule in PSL

Fixed rule

$$\begin{cases} e = tt * P \} c \{Q\} \\ \{e = ff * P \} c' \{Q\} \\ \\ Q \text{ is closed under mixtures (CM)} \\ \hline \{[e] * P\} \text{ if } e \text{ then } c \text{ else } c' \{Q\} \end{cases}$$
COND

Pre-conditions

- \blacktriangleright Inputs to branches derived from conditioning on e
- ► Independence ensures that *P* holds after conditioning

Conditional Rule in PSL

Fixed rule

$$\begin{cases} e = tt * P \} c \{Q\} \\ \{e = ff * P \} c' \{Q\} \\ \\ Q \text{ is closed under mixtures (CM)} \\ \hline \{[e] * P\} \text{ if } e \text{ then } c \text{ else } c' \{Q\} \end{cases}$$
COND

Pre-conditions

- \blacktriangleright Inputs to branches derived from conditioning on e
- ► Independence ensures that *P* holds after conditioning

Post-conditions

- Not all post-conditions Q can be soundly combined
- "Closed under mixtures" needed for soundness

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies: If $\mu_1 \models Q$ and $\mu_2 \models Q$, then $\mu_1 \oplus_p \mu_2 \models Q$ for any $p \in [0,1]$.

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:

If $\mu_1 \models Q$ and $\mu_2 \models Q$, then $\mu_1 \oplus_p \mu_2 \models Q$ for any $p \in [0,1]$.

Examples of CM assertions

 $\blacktriangleright x = e$

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:

If $\mu_1 \models Q$ and $\mu_2 \models Q$, then $\mu_1 \oplus_p \mu_2 \models Q$ for any $p \in [0, 1]$.

Examples of CM assertions

$$\blacktriangleright x = e$$

▶ **Unif**_{\mathbb{B}}[x]

Examples of non-CM assertions

Example: using the conditional rule

Consider the program:

if x then $z \leftarrow \neg y$ else $z \leftarrow y$

If x is true, negate y and store in z. Otherwise store y into z.

Example: using the conditional rule

Consider the program:

if x then $z \leftarrow \neg y$ else $z \leftarrow y$

If x is true, negate y and store in z. Otherwise store y into z.

Using the conditional rule:

 $\begin{aligned} & \{x = tt * \mathbf{Unif}_{\mathbb{B}}[y]\} \ z \leftarrow \neg y \ \{\mathbf{Unif}_{\mathbb{B}}[z]\} \\ & \{x = ff * \mathbf{Unif}_{\mathbb{B}}[y]\} \ z \leftarrow y \ \{\mathbf{Unif}_{\mathbb{B}}[z]\} \\ & \mathbf{Unif}_{\mathbb{B}}[z] \ \text{is closed under mixtures (CM)} \\ \hline & \{[x] * \mathbf{Unif}_{\mathbb{B}}[y]\} \ \text{if } x \ \text{then } z \leftarrow \neg y \ \text{else } z \leftarrow y \ \{\mathbf{Unif}_{\mathbb{B}}[z]\} \end{aligned}$

The Proof System of PSL

Frame Rule

Properties about unmodified heaps are preserved

 $\frac{\{P\} \ c \ \overline{\{Q\}} \ c \ \operatorname{doesn't} \ \operatorname{modify} \ FV(R)}{\{P*R\} \ c \ \{Q*R\}} \ \operatorname{Frame}$

Properties about unmodified heaps are preserved

$$\frac{\{P\}\;c\;\{Q\}}{\{P*R\}\;c\;\{Q*R\}}\;\operatorname{Frame}$$

So-called "local reasoning" in SL

- \blacktriangleright Only need to reason about part of heap used by c
- ▶ Note: doesn't hold if * replaced by ∧, due to aliasing!

Why is the Frame rule important?

Why is the Frame rule important?

In SL: simplify reasoning

- Program c may only modify a small part of the heap
- Rest of heap may be complicated (linked lists, trees, etc.)
- Automatically preserve any assertion about rest of heap, as long as rest of heap is separate from what c touches

Why is the Frame rule important?

In SL: simplify reasoning

- Program c may only modify a small part of the heap
- Rest of heap may be complicated (linked lists, trees, etc.)
- Automatically preserve any assertion about rest of heap, as long as rest of heap is separate from what c touches

In PSL: preserve independence

- \blacktriangleright Assume: in input, variable x is independent of what c uses
- ► Conclude: in output, *x* is independent of what *c* touches

The rule

$$\begin{array}{ll} \left\{P\right\} c \left\{Q\right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{P \ast R\right\} c \left\{Q \ast R\right\} \end{array} \text{ Frame} \end{array}$$

Side conditions

The rule

$$\begin{array}{ll} \left\{P\right\} c \left\{Q\right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{P \ast R\right\} c \left\{Q \ast R\right\} \end{array} \text{ Frame} \end{array}$$

Side conditions

1. Variables in R are not modified

The rule

$$\begin{array}{ll} \left\{P\right\} c \left\{Q\right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{P \ast R\right\} c \left\{Q \ast R\right\} \end{array} \text{ Frame} \end{array}$$

Side conditions

- 1. Variables in R are not modified
- 2. *P* describes all variables that might be read

The rule

 $\begin{array}{ll} \{P\} \ c \ \{Q\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \{P \ast R\} \ c \ \{Q \ast R\} \end{array} \text{ Frame} \end{array}$

Side conditions

- 1. Variables in R are not modified
- 2. *P* describes all variables that might be read
- 3. Everything in Q is freshly written, or in P

The rule

 $\begin{array}{ll} \left\{ P \right\} c \left\{ Q \right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{ P \ast R \right\} c \left\{ Q \ast R \right\} \end{array} \text{ Frame} \end{array}$

Side conditions

- 1. Variables in R are not modified
- 2. *P* describes all variables that might be read
- 3. Everything in Q is freshly written, or in P

Variables in the Q were independent of R, or are newly independent of R Example: Deriving a Better Sampling Rule Original sampling rule:

$$\overline{\{\top\} x \not\in \mathbf{Flip} \{ \mathbf{Unif}_{\mathbb{B}}[x] \}}$$
 Same

Frame rule:

$$\begin{array}{ll} \left\{P\right\} c \left\{Q\right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{P \ast R\right\} c \left\{Q \ast R\right\} \end{array} \text{ Frame} \end{array}$$

Example: Deriving a Better Sampling Rule Original sampling rule:

$$\overline{\{\top\} x \not\in \mathbf{Flip} \{ \mathbf{Unif}_{\mathbb{B}}[x] \}}$$
 Same

Frame rule:

$$\begin{array}{ll} \left\{P\right\} c \left\{Q\right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{P \ast R\right\} c \left\{Q \ast R\right\} \end{array} \text{ Frame} \end{array}$$

Can derive:

$$\frac{x \notin FV(R)}{\{R\} x \overset{\text{\tiny{\$}}}{\leftarrow} \mathbf{Flip} \{\mathbf{Unif}_{\mathbb{B}}[x] * R\}} \operatorname{Samp}^{*}$$

Example: Deriving a Better Sampling Rule Original sampling rule:

$$\overline{\{\top\} x \not\in \mathbf{Flip} \{ \mathbf{Unif}_{\mathbb{B}}[x] \}}$$
 Same

Frame rule:

$$\begin{array}{ll} \left\{P\right\} c \left\{Q\right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to [RV(c)] & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{P \ast R\right\} c \left\{Q \ast R\right\} \end{array} \text{ Frame} \end{array}$$

Can derive:

 $\frac{x \notin FV(R)}{\{R\} x \stackrel{\text{\tiny{(1)}}}{=} \mathbf{Flip} \{\mathbf{Unif}_{\mathbb{B}}[x] * R\}} \mathsf{Samp}^{\star}$

Intuitively: fresh random sample is independent of everything

A Probabilistic Separation Logic

Soundness Theorem

Proof rules can only show valid judgments

Theorem

If $\{P\} c \{Q\}$ is derivable via the proof rules, then $\{P\} c \{Q\}$ is a valid judgment: for all initial distributions μ , if $\mu \models P$ then $\llbracket c \rrbracket \mu \models Q$.

Key property for soundness: restriction

Let P be any formula of probabilistic BI, and suppose that $s \models P$. Then there exists $s' \sqsubseteq s$ such that $s' \models P$ and $\operatorname{dom}(s') = \operatorname{dom}(s) \cap FV(P)$.

Intuition

- The only variables that "matter" for P are FV(P)
- ► Tricky for implications; proof "glues" distributions

Verifying an Example

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- ▶ Input: a message $m \in \mathbb{B}$
- Output: a ciphertext $c \in \mathbb{B}$
- ► Idea: encrypt by taking xor with a uniformly random key *k*

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- ▶ Input: a message $m \in \mathbb{B}$
- Output: a ciphertext $c \in \mathbb{B}$
- Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

$$\begin{array}{c} k \notin \mathbf{Flip};\\ c \leftarrow k \oplus m \end{array}$$

How to Formalize Security?

How to Formalize Security?

Method 1: Uniformity

- \blacktriangleright Show that c is uniformly distributed
- Always the same, no matter what the message m is

How to Formalize Security?

Method 1: Uniformity

- Show that c is uniformly distributed
- \blacktriangleright Always the same, no matter what the message m is

Method 2: Input-output independence

- Assume that m is drawn from some (unknown) distribution
- Show that c and m are independent

 $k \not \coloneqq \mathbf{Flip} ^\circ_{\!\!\!\!\!\!\!\!\!\!}$

 $c \leftarrow k \oplus m$

 $\{ [m] \}$ $k \stackrel{\text{$\scriptstyle\$}}{\leftarrow} \mathbf{Flip}_{9}^{\circ}$

assumption

 $c \leftarrow k \oplus m$

 $\{[m]\}\$ $k \overset{\text{s}}{\leftarrow} \mathbf{Flip};$ $\{[m] * \mathbf{Unif}_{\mathbb{B}}[k]\}\$ $c \leftarrow k \oplus m$

assumption

[SAMP*]

 $\{[m]\}$ assumption $k \stackrel{\hspace{0.1em}{\scriptstyle{\otimes}}}{} Flip \stackrel{\hspace{0.1em}{\scriptstyle{\otimes}}}{} \\ \{[m] * Unif_{\mathbb{B}}[k]\}$ [SAMP*] $c \leftarrow k \oplus m$ $\{[m] * Unif_{\mathbb{B}}[k] \land c = k \oplus m\}$ [ASSN*]

 $\{[m]\}$ assumption $k \stackrel{\hspace{0.1cm} \bullet}{=} \mathbf{Flip}_{;}^{\circ}$ $\{[m] \ast \mathbf{Unif}_{\mathbb{B}}[k]\}$ [SAMP*] $c \leftarrow k \oplus m$ $\{[m] \ast \mathbf{Unif}_{\mathbb{B}}[k] \land c = k \oplus m\}$ [ASSN*] $\{[m] \ast \mathbf{Unif}_{\mathbb{B}}[c]\}$ XOR axiom

PSL: references and further reading

The original paper on probabilistic semantics Kozen. Semantics of Probabilistic Programs. FOCS 1980.

Unifying survey on Bunched Implications

Docherty. Bunched Logics: A Uniform Approach. PhD Thesis (UCL), 2019.

A Probabilistic Separation Logic (POPL20)

- Extensions to PSL: deterministic variables, loops, etc.
- Many examples from cryptography, security of ORAM
- https://arxiv.org/abs/1907.10708

A Bunched Logic for Conditional Independence (LICS21)

- ► A BI-style logic called DIBI for conditional independence
- A separation logic (CPSL) based on DIBI
- https://arxiv.org/abs/2008.09231

Reasoning about Probabilistic Programs

Higher-Order Languages

So far: reasoning about PWHILE programs

First part

- Monadic semantics: $(c) : \mathcal{M} \to \text{Distr}(\mathcal{M})$
- Verification method: weakest pre-expectations (wpe)

Second part

- ► Transformer semantics: $\llbracket c \rrbracket$: $\text{Distr}(\mathcal{M}) \rightarrow \text{Distr}(\mathcal{M})$
- Verification method: probabilistic separation logic (PSL)

Today: probabilistic higher-order programs

What's missing from PWHILE?

- ► First-order programs only
- That is: can't pass functions to other functions

This is OPLSS: where are the functions?

- How about probabilistic functional languages?
- What do the type systems look like?

With a Probability Monad:

A Simple Functional Language

Operations on distributions: unit

The simplest possible distribution

Dirac distribution: Probability 1 of producing a particular element, and probability 0 of producing anything else.

Distribution unit

Let $a \in A$. Then $unit(a) \in Distr(A)$ is defined to be:

$$unit(a)(x) = \begin{cases} 1 & : x = a \\ 0 & : \text{ otherwise} \end{cases}$$

Why "unit"? The unit ("return") of the distribution monad.

Operations on distributions: bind

Sequence two sampling instructions together

Draw a sample x, then draw a sample from a distribution f(x) depending on x. Transformation map f is randomized: function $A \rightarrow \text{Distr}(B)$.

Distribution bind

Let $\mu \in \text{Distr}(A)$ and $f : A \to \text{Distr}(B)$. Then $bind(\mu, f) \in \text{Distr}(B)$ is defined to be:

$$bind(\mu, f)(b) \triangleq \sum_{a \in A} \mu(a) \cdot f(a)(b)$$

Language: probabilistic monadic lambda calculus Language grammar: core

 $\mathcal{E} \ni e \coloneqq x \in \mathcal{X} \mid \lambda \mathcal{X}. \mathcal{E} \mid \mathcal{E} \mathcal{E} \mid \text{fix } \mathcal{X}. \lambda \mathcal{X}. \mathcal{E} \quad \text{(lambda calc.)}$

Language: probabilistic monadic lambda calculus Language grammar: core

 $\mathcal{E} \ni e \coloneqq x \in \mathcal{X} \mid \lambda \mathcal{X}. \mathcal{E} \mid \mathcal{E} \mathcal{E} \mid \mathsf{fix} \mathcal{X}. \lambda \mathcal{X}. \mathcal{E}$ (lambda calc.)

Language grammar: base types

$$\begin{split} \mathcal{E} \ni e &:= \cdots \mid b \in \mathbb{B} \mid \text{if } \mathcal{E} \text{ then } \mathcal{E} \text{ else } \mathcal{E} & \text{(booleans)} \\ &\mid n \in \mathbb{N} \mid \mathsf{add}(\mathcal{E}, \mathcal{E}) & \text{(numbers)} \end{split}$$

Language: probabilistic monadic lambda calculus Language grammar: core

 $\mathcal{E} \ni e \coloneqq x \in \mathcal{X} \mid \lambda \mathcal{X}. \mathcal{E} \mid \mathcal{E} \mathcal{E} \mid fix \mathcal{X}. \lambda \mathcal{X}. \mathcal{E}$ (lambda calc.)

Language grammar: base types

$$\begin{split} \mathcal{E} \ni e &:= \cdots \mid b \in \mathbb{B} \mid \text{if } \mathcal{E} \text{ then } \mathcal{E} \text{ else } \mathcal{E} & \text{(booleans)} \\ &\mid n \in \mathbb{N} \mid \mathsf{add}(\mathcal{E}, \mathcal{E}) & \text{(numbers)} \end{split}$$

Language grammar: probabilistic part

$$\begin{split} \mathcal{E} \ni e \coloneqq \cdots \mid \mathbf{Flip} \mid \mathbf{Roll} & (\mathsf{distributions}) \\ \mid \mathsf{return}(\mathcal{E}) & (\mathsf{unit}) \\ \mid \mathsf{sample} \ \mathcal{X} = \mathcal{E} \ \mathsf{in} \ \mathcal{E} & (\mathsf{bind}) \end{split}$$

Example programs

Sum of two dice rolls

sample x =**Roll** in sample y =**Roll** in return(add(x, y)) Example programs

Sum of two dice rolls

sample x =**Roll** in sample y =**Roll** in return(add(x, y))

Geometric distribution

(fix geo. λn . sample $stop = \mathbf{Flip}$ in if stop then return(n) else $geo \operatorname{add}(n, 1) = 0$

Operational semantics: setup

One-step reduction

The one-step relation $\rightarrow : CE \rightarrow SDistr(CE)$ maps closed expressions to sub-distributions on closed expressions. Read:

$$e \to \mu$$

as "e steps to sub-distribution μ on expressions in one step".

Operational semantics: setup

One-step reduction

The one-step relation $\rightarrow : CE \rightarrow SDistr(CE)$ maps closed expressions to sub-distributions on closed expressions. Read:

$$e \to \mu$$

as "e steps to sub-distribution μ on expressions in one step".

Multi-step reduction

For every $n \in \mathbb{N}$, the multi-step relation $\Rightarrow_n : C\mathcal{E} \to \text{SDistr}(C\mathcal{E})$ maps closed expressions to sub-distributions on closed expressions. Read:

$$e \Rightarrow_n \mu$$

as "e steps to sub-distribution μ on values in exactly n steps".

Operational semantics: non-probabilistic part

Standard call-by-value semantics

$$\begin{split} &(\lambda x.\ e)\ v \to unit(e[v/x])\\ \text{if }tt\ \text{then }e\ \text{else }e' \to unit(e)\\ \text{if }ff\ \text{then }e\ \text{else }e' \to unit(e')\\ &(\text{fix }f.\ \lambda x.\ e)\ v \to unit(e[(\text{fix }f.\ \lambda x.\ e)/f][v/x])\\ &\text{add}(n,n') \to unit(n+n') \end{split}$$

Operational semantics: primitive distributions

Notation

We write $\{v_1 : p_1, \ldots, v_n : p_n\}$ or $\{v_i : p_i\}_{i \in I}$ for the distribution that produces v_i with probability p_i .

Step to distributions on values

Flip → {tt: 1/2, ff: 1/2} **Roll** → {1: 1/6, ..., 6: 1/6}

Operational semantics: unit and bind

Unit

$$\frac{e \to e'}{\operatorname{return}(e) \to \operatorname{return}(e')}$$

Bind

$$\frac{e \to \{v_i: p_i\}_{i \in I}}{\text{sample } x = e \text{ in } e' \to \sum_{i \in I} p_i \cdot e'[v_i/x]}$$

A Simple Probabilistic Type System

Types in our language

 $\begin{aligned} \mathcal{T} \ni \tau &\coloneqq \mathbb{B} \mid \mathbb{N} \\ &\mid \mathcal{T} \to \mathcal{T} \\ &\mid \bigcirc \mathcal{T} \end{aligned}$

(base types) (functions) (distributions)

Typing judgment basics

The main judgment

Let $e \in \mathcal{E}$, $\tau \in \mathcal{T}$, and Γ be a finite list of bindings $x_1 : \tau_1, \ldots, x_n : \tau_n$. Then the typing judgment is:

 $\Gamma \vdash e : \tau$

Reading

If we substitute closed values v_1, \ldots, v_n for variables x_1, \ldots, x_n in e, then the result either reduces to unit(v) if τ is non-probabilistic, or reduces to a sub-distribution over closed values if τ is probabilistic (of the form $\bigcirc \tau$).

Typing rules: variables and functions

Exactly the same as in lambda calculus

$$rac{x: au\in\Gamma}{\Gammadash x: au}$$
 Var

$$\frac{\Gamma, x: \tau \vdash e: \tau}{\Gamma \vdash \lambda x. \ e: \tau \to \tau'} \text{ Lam}$$

$$\frac{\Gamma \vdash e : \tau \to \tau'}{\Gamma \vdash e' : \tau} \text{ App }$$

$$\frac{\Gamma, f: \tau \to \tau' \vdash \lambda x. \; e: \tau \to \tau'}{\Gamma \vdash \mathsf{fix} \; f. \; \lambda x. \; e: \tau \to \tau'} \; \mathsf{Fix}$$

Typing rules: booleans and integers

Hopefully not too surprising

$$b = tt, ff$$

 $\Gamma \vdash b : \mathbb{B}$ Bool $\frac{n \in \mathbb{N}}{\Gamma \vdash n : \mathbb{N}}$ Nat

$$\frac{\Gamma \vdash e : \mathbb{N}}{\Gamma \vdash e' : \mathbb{N}} \\ \frac{\Gamma \vdash e' : \mathbb{N}}{\Gamma \vdash \mathsf{add}(e, e') : \mathbb{N}} \text{ Add}$$

Typing rules: primitive distributions

Assign distribution types

 $\overline{\Gamma\vdash \mathbf{Flip}:\bigcirc \mathbb{B}} \ ^{\mathsf{FLIP}}$

 $\overline{\Gamma \vdash \mathbf{Roll}: \bigcirc \mathbb{N}} \ ^{\mathsf{ROLL}}$

Typing rules: unit and bind

Unit

$$rac{\Gammadash e: au}{\Gammadash$$
 return $(e):\bigcirc au$ Return

Bind

$$\frac{\Gamma \vdash e: \bigcirc \tau \qquad \Gamma, x: \tau \vdash e': \bigcirc \tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': \bigcirc \tau'} \ \mathsf{SAMPLE}$$

What property do we want the types to ensure?

Non-probabilistic types

If $e \in C\mathcal{E}$ has non-probabilistic type τ , then e should reduce to unit(v) with $v \in C\mathcal{V}$ of type τ , or loop forever.

Probabilistic types

If $e \in C\mathcal{E}$ has probabilistic type $\bigcirc \tau$, then e should reduce to $\mu \in \text{SDistr}(C\mathcal{V})$ where every element in the support of μ has type τ .

Monadic Type Systems:

A Closer Look

What else can we do with a monadic type system?

So far: describe type of a distribution

If a program e has type $\bigcirc \mathbb{N}$, then:

- ► It evaluates to a sub-distribution over N: samples drawn from the distribution will always be natural numbers.
- ► It never gets stuck (runtime error) during evaluation.

But what other properties can we handle?

- Produces a uniform distribution
- Produces a distribution that has probability 1/4 of returning an even number

$$\frac{\Gamma \vdash e: \bigcirc \tau \qquad \Gamma, x: \tau \vdash e': \bigcirc \tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': \bigcirc \tau'} \ \mathsf{SAMPLE}$$

$$\frac{\Gamma \vdash e: \bigcirc \tau \qquad \Gamma, x: \tau \vdash e': \bigcirc \tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': \bigcirc \tau'} \ \mathsf{SAMPLE}$$

Let's unpack this rule 1. e is a distribution over τ

$$\frac{\Gamma \vdash e: \bigcirc \tau \qquad \Gamma, x: \tau \vdash e': \bigcirc \tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': \bigcirc \tau'} \ \mathsf{SAMPLE}$$

Let's unpack this rule

- 1. e is a distribution over τ
- 2. Given a sample x: au , e' produces a distribution over au'

$$\frac{\Gamma \vdash e: \bigcirc \tau \qquad \Gamma, x: \tau \vdash e': \bigcirc \tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': \bigcirc \tau'} \ \mathsf{SAMPLE}$$

Let's unpack this rule

- 1. $e~{\rm is}$ a distribution over τ
- 2. Given a sample $x:\tau\text{, }e^\prime\text{ produces}$ a distribution over τ^\prime
- 3. Sampling from e and plugging into $e'\!\!:$ distribution over τ'

$$\frac{\Gamma \vdash e: P\tau \qquad \Gamma, x: \tau \vdash e': Q\tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': Q\tau'} \ \mathsf{SAMPLEGEN}$$

$$\frac{\Gamma \vdash e: P\tau \qquad \Gamma, x: \tau \vdash e': Q\tau'}{\Gamma \vdash \mathsf{sample}\; x = e \; \mathsf{in}\; e': Q\tau'} \; \mathsf{SAMPLEGEN}$$

Let's change the meaning of the distribution type 1. e is a distribution over τ satisfying P

$$rac{\Gammadasherman e : P au \qquad \Gamma, x: audasherman e': Q au'}{\Gammadash$$
 sample $x=e$ in $e': Q au'$ SAMPLEGEN

Let's change the meaning of the distribution type

- 1. e is a distribution over au satisfying P
- 2. Given a sample $x:\tau$, e' produces a distribution over τ' satisfying Q

$$rac{\Gammadasherman e : P au ~~ \Gamma, x: audasherman e': Q au'}{\Gammadash$$
 sample $x=e$ in $e': Q au'$ SAMPLEGE

Let's change the meaning of the distribution type

- 1. e is a distribution over au satisfying P
- 2. Given a sample $x:\tau$, e' produces a distribution over τ' satisfying Q
- 3. Sampling from e and plugging into e' produces a distribution over τ' satisfying Q

$$rac{\Gammadasherman e : P au ~~ \Gamma, x: audasherma e': Q au'}{\Gammadash$$
 sample $x=e$ in $e': Q au'$ SAMPLEGEN

Let's change the meaning of the distribution type

- 1. e is a distribution over au satisfying P
- 2. Given a sample $x:\tau$, e' produces a distribution over τ' satisfying Q
- 3. Sampling from e and plugging into e' produces a distribution over τ' satisfying Q

$$rac{\Gammadasherman e : P au \qquad \Gamma, x: audasherman e': Q au'}{\Gammadash$$
 sample $x=e$ in $e': Q au'$ SAMPLEGEN

Let's change the meaning of the distribution type

- 1. e is a distribution over au satisfying P
- 2. Given a sample $x:\tau$, e' produces a distribution over τ' satisfying Q
- 3. Sampling from e and plugging into e' produces a distribution over τ' satisfying Q

For what distribution properties *Q* is this rule OK? Does this remind you of something we have seen already?

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:

If $\mu_1 \models Q$ and $\mu_2 \models Q$, then $\mu_1 \oplus_p \mu_2 \models Q$ for any $p \in [0, 1]$.

Examples of CM assertions

$$\blacktriangleright x = e$$

▶ **Unif**_{\mathbb{B}}[x]

Examples of non-CM assertions

$$\frac{\Gamma \vdash e: P\tau \qquad \Gamma, x: \tau \vdash e': Q\tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': Q\tau'} \ \mathsf{SAMPLEGEN}$$

$$\frac{\Gamma \vdash e: P\tau \qquad \Gamma, x: \tau \vdash e': Q\tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': Q\tau'} \ \mathsf{SAMPLEGEN}$$

The property Q must be closed under mixtures (CM) 1. We have a bunch of distributions over τ' satisfying Q

$$\frac{\Gamma \vdash e: P\tau \qquad \Gamma, x: \tau \vdash e': Q\tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': Q\tau'} \ \mathsf{SAMPLEGEN}$$

The property Q must be closed under mixtures (CM)

- 1. We have a bunch of distributions over au' satisfying Q
- 2. We are blending these distributions together

$$\frac{\Gamma \vdash e: P\tau \qquad \Gamma, x: \tau \vdash e': Q\tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': Q\tau'} \ \mathsf{SAMPLEGEN}$$

The property Q must be closed under mixtures (CM)

- 1. We have a bunch of distributions over au' satisfying Q
- 2. We are blending these distributions together
- 3. We want the resulting distribution to also satisfy Q

Example: monadic types for uniformity

Type of uniform distributions $U\tau$

Meaning: when τ is a finite type (e.g., \mathbb{B}), a program e has type $U\tau$ if it evaluates to the uniform distribution over τ without encountering any runtime errors.

Then the sampling rule is sound:

$$\frac{\Gamma \vdash e: \bigcirc \tau \qquad \Gamma, x: \tau \vdash e': U\tau'}{\Gamma \vdash \mathsf{sample} \ x = e \ \mathsf{in} \ e': U\tau'} \ \mathsf{SAMPLEUNIF}$$

Monadic Type Systems:

Generalizing to Graded Monads

From monads to graded monads

Instead of one monad, have a family of monads

- ▶ M is a monoid with a pre-order (e.g., $(\mathbb{R}, 0, +, \leq)$)
- $\blacktriangleright \ \, {\rm Each \ monadic \ type \ has \ an \ index \ } \alpha \in M$

From monads to graded monads

Instead of one monad, have a family of monads

- ▶ M is a monoid with a pre-order (e.g., $(\mathbb{R}, 0, +, \leq)$)
- Each monadic type has an index $\alpha \in M$

Intuition

- Graded monads: different kinds of the same monad
- Smaller index: less information/weaker guarantee
- Index carries additional information "on the side"
- Indexes combine through the bind rule

Changes to the type system

New types

$$\mathcal{T} \ni \tau \coloneqq \cdots \mid \bigcirc_{\alpha} \tau \qquad (\alpha \in M)$$

New typing rules

$$\begin{split} \frac{\Gamma \vdash e:\tau}{\Gamma \vdash \mathsf{return}(e):\bigcirc_0 \tau} & \mathsf{GReturn} \\ \frac{\Gamma \vdash e:\bigcirc_\alpha \tau \qquad \Gamma, x:\tau \vdash e':\bigcirc_\beta \tau'}{\Gamma \vdash \mathsf{sample}\ x = e \text{ in } e':\bigcirc_{\alpha+\beta} \tau'} & \mathsf{GSample} \\ \frac{\Gamma \vdash e:\bigcirc_\alpha \qquad \alpha \leq \beta}{\Gamma \vdash e:\bigcirc_\beta} & \mathsf{GSubty} \end{split}$$

Monadic types: references and further readings

Original papers on probabilistic monadic types

- Ramsey and Pfeffer. Stochastic lambda calculus and monads of probability distributions. POPL 2002.
- Park, Pfenning, and Thrun. A Probabilistic Language based upon Sampling Functions. POPL 2005.

Differential privacy typing

- ► Key ingredients: (bounded) linear types and a monad
- Reed and Pierce. Distance makes the types grow stronger: a calculus for differential privacy. ICFP 2010.

HOARE²: probabilistic relational properties by typing

- ► Key ingredients: Refinement types and a graded monad.
- Higher-Order Approximate Relational Refinement Types for Mechanism Design and Differential Privacy. POPL 2015.

Beyond Monadic Types:

Two Representative Systems

Monadic type systems: the good and the bad

The good

- Clean separation between deterministic and randomized
- Always treat variables as values, not distributions

The bad

- Class of properties is limited
- ► All properties everywhere must be CM (cf. PSL)

Main features

- Makes τ and $\bigcirc \tau$ the same: no more monad!
- ► Call-by-value: sample when passing arguments to fn.

What kinds of properties can be expressed in types?

- ► No monad type, but let-binding rule is similar to SAMPLE
- Seems to need the CM condition

 PCF_\oplus : Reading the typing judgment

Judgments look like

$$x_1: au_1,\ldots,x_n: au_ndash e: au$$

Reading

For any well-typed closing substitution of values v_1, \ldots, v_n for $x_1, \ldots x_n$, the expression e evaluates to distribution over τ .

PPCF

Main features

- Makes τ and $\bigcirc \tau$ the same: no more monad!
- Call-by-name: functions can take distributions
- Let-binding construct used to force sampling

What kinds of properties can be expressed in types?

- Function calls don't force sampling
- Let-binding, if-then-else, all force sampling

PPCF: Reading the typing judgment

Judgments look like

$$x_1: \tau_1, \ldots, x_n: \tau_n \vdash e: \tau$$

Reading

For any well-typed closing substitution of distributions μ_1, \ldots, μ_n for μ_1, \ldots, μ_n , the expression e evaluates to some distribution over τ .

But note that μ_1, \ldots, μ_n are entirely separate distributions: draws from μ_1, \ldots, μ_n are always independent.

Many technical extensions

Richer distributions

- Continuous distributions
- Distributions over function spaces

Richer types

► Recursive types, linear types, ...

Richer language features

Most notably: conditioning constructs ("observe"/"score")

Higher-order programs: references and readings

Semantics

- Saheb-Djahromi. CPO's of Measures for Non-determinism. 1979.
- Jones and Plotkin. A Probabilistic Powerdomain of Evaluations. 1989.
- Heunen, Kammar, Staton, Yang. A Convenient Category for Higher-Order Probability Theory. 2017.

Type systems

- ▶ PCF_⊕: Dal Lago (https://doi.org/10.1017/9781108770750.005)
- PPCF: Erhard, Pagani, Tasson. Measurable Cones and Stable, Measurable Functions. 2018.
- Darais, Sweet, Liu, Hicks. A language for probabilistically oblivious computation. POPL 2020.

Reasoning about Probabilistic Programs

Wrapping up

Day 1: Introducing Probabilistic Programs

- Motivations and key questions
- Mathematical preliminaries

Day 2: First-Order Programs 1

- Probabilistic While language, monadic semantics
- Weakest pre-expectation calculus

Day 3: First-Order Programs 2

- Probabilistic While language, transformer semantics
- Probabilistic separation logic

Day 4: Higher-Order Programs

- Type system: probability monad
- Type system: probabilistic PCF

Main takeaways

There are multiple semantics for probabilistic programs

- ► We saw: monadic semantics, and transformer semantics
- Choice of semantics influences what verification is possible

Standard verification methods, to probabilistic programs

- Weakest pre-conditions to weakest pre-expectations
- Separation logic to Probabilistic separation logic
- ► Type systems, monads, ...

Verification currently better for imperative programs

- ► Wide variety of Hoare logics proving interesting properties
- ► Type systems for probabilistic programs: active research

Where to go next

More semantics

Lots of recent research on categorical semantics (e.g., QBS)

Learn about conditioning

Mostly implementation (hard), but recently verification too

Verifying specific properties

Expected running time, probabilistic termination, ...

Interesting applications

► Cryptography, differential privacy, machine learning, ...

Read: Foundations of Probabilistic Programming

• Open-access book, 15 chapters by leading researchers

https://doi.org/10.1017/9781108770750

Reasoning about Probabilistic Programs

Oregon PL Summer School 2021

Justin Hsu UW-Madison Cornell University