
Justin Hsu
UW–Madison

Cornell University

Reasoning about Probabilistic Programs
Oregon PL Summer School ����

Day �: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day �: First-Order Programs �
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day �: First-Order Programs �
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day �: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF

Atomic Formulas

Equalities
I e = e

Õ holds in s i� all variables FV (e, e
Õ) ™ dom(s), and e

is equal to e
Õ with probability 1 in s

Distribution laws
I [e] holds in s i� all variables in FV (e) ™ dom(s)
I UnifS [e] holds in s i� FV (e) ™ dom(s), and e is uniformly
distributed on S (e.g., S = B is fair coin flip)

Atomic Formulas

Equalities
I e = e

Õ holds in s i� all variables FV (e, e
Õ) ™ dom(s), and e

is equal to e
Õ with probability 1 in s

Distribution laws
I [e] holds in s i� all variables in FV (e) ™ dom(s)
I UnifS [e] holds in s i� FV (e) ™ dom(s), and e is uniformly
distributed on S (e.g., S = B is fair coin flip)

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?

I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]

I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]

I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]

I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ú UnifB[y]

Example: Distribution Assertions

Suppose µ has two variables x, y, indep. fair coin flips

µ([x ‘æ tt, y ‘æ tt]) = 1/4 µ([x ‘æ tt, y ‘æ �]) = 1/4
µ([x ‘æ � , y ‘æ tt]) = 1/4 µ([x ‘æ � , y ‘æ �]) = 1/4

Then: µ satisfies UnifB[x] ú UnifB[y]. Why?
I We can decompose µ = µx ¢ µy , where:

µx([x ‘æ tt]) , 1/2 µx([x ‘æ �]) , 1/2
µy([y ‘æ tt]) , 1/2 µy([y ‘æ �]) , 1/2

So, µ ı µx ¶ µy

I Next, µx |= UnifB[x] and µy |= UnifB[y]
I So by definition, µ |= UnifB[x] ú UnifB[y]

Example Axioms

Equality and distributions
I x = y · UnifB[x] æ UnifB[y]

Uniformity and products
I UnifB[x] ú UnifB[y] æ UnifB◊B[x, y]

Uniformity and exclusive-or (ü)
I UnifB[x] ú [y] · z = x ü y æ UnifB[z] ú [y]

Example Axioms

Equality and distributions
I x = y · UnifB[x] æ UnifB[y]

Uniformity and products
I UnifB[x] ú UnifB[y] æ UnifB◊B[x, y]

Uniformity and exclusive-or (ü)
I UnifB[x] ú [y] · z = x ü y æ UnifB[z] ú [y]

Example Axioms

Equality and distributions
I x = y · UnifB[x] æ UnifB[y]

Uniformity and products
I UnifB[x] ú UnifB[y] æ UnifB◊B[x, y]

Uniformity and exclusive-or (ü)
I UnifB[x] ú [y] · z = x ü y æ UnifB[z] ú [y]

Example Axioms

Equality and distributions
I x = y · UnifB[x] æ UnifB[y]

Uniformity and products
I UnifB[x] ú UnifB[y] æ UnifB◊B[x, y]

Uniformity and exclusive-or (ü)
I UnifB[x] ú [y] · z = x ü y æ UnifB[z] ú [y]

A Probabilistic Separation Logic

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

{P} c {Q}

Validity
For all input states s œ Distr(M(X)) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

{P} c {Q}

Validity
For all input states s œ Distr(M(X)) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

{P} c {Q}

Validity
For all input states s œ Distr(M(X)) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.

Perfectly fits the transformer semantics for �W����

Under transformer semantics:
I P describes: a distribution over memories (input)
I Q describes: a distribution over memories (output)

Under monadic semantics: mismatch!
I P describes: a distribution over memories
I But input to program: a single memory

How do we prove these judgments?

Validity
For all input states s œ Distr(M(X)) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.

Proving validity directly is di�cult
I Must unfold definition of JcK as a function
I Then prove property of function by working with definition

Things that would make proving judgments easier:
I Compositionality: prove property of bigger program by
combining proofs of properties of sub-programs

I Avoid unfolding definition of program semantics

How do we prove these judgments?

Validity
For all input states s œ Distr(M(X)) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.

Proving validity directly is di�cult
I Must unfold definition of JcK as a function
I Then prove property of function by working with definition

Things that would make proving judgments easier:
I Compositionality: prove property of bigger program by
combining proofs of properties of sub-programs

I Avoid unfolding definition of program semantics

How do we prove these judgments?

Validity
For all input states s œ Distr(M(X)) satisfying the
pre-condition s |= P , the output state JcKs satisfies the
post-condition JcKs |= Q.

Proving validity directly is di�cult
I Must unfold definition of JcK as a function
I Then prove property of function by working with definition

Things that would make proving judgments easier:
I Compositionality: prove property of bigger program by
combining proofs of properties of sub-programs

I Avoid unfolding definition of program semantics

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

{P1} c1 {Q1} · · · {Pn} cn {Qn}
{P} c {Q}

R���N���

Proof rules mean:
I To prove {P} c {Q}
I We just have to prove {P1} c1 {Q1}, . . . , {Pn} cn {Qn}

Why do proof rules help?
I Programs c1, . . . , cn are smaller/simpler than c

I If c can’t be broken down, no premises (n = 0)

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

{P1} c1 {Q1} · · · {Pn} cn {Qn}
{P} c {Q}

R���N���

Proof rules mean:
I To prove {P} c {Q}
I We just have to prove {P1} c1 {Q1}, . . . , {Pn} cn {Qn}

Why do proof rules help?
I Programs c1, . . . , cn are smaller/simpler than c

I If c can’t be broken down, no premises (n = 0)

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

{P1} c1 {Q1} · · · {Pn} cn {Qn}
{P} c {Q}

R���N���

Proof rules mean:
I To prove {P} c {Q}
I We just have to prove {P1} c1 {Q1}, . . . , {Pn} cn {Qn}

Why do proof rules help?
I Programs c1, . . . , cn are smaller/simpler than c

I If c can’t be broken down, no premises (n = 0)

The Proof System of PSL
Basic Rules

Basic Proof Rules in PSL: Assignment

Assignment Rule

x /œ FV (e)
{€} x Ω e {x = e}

A���

How to read this rule?
From any initial distribution, running x Ω e will lead to a
distribution where x equals e with probability 1 (assuming x

doesn’t appear in e).

Basic Proof Rules in PSL: Assignment

Assignment Rule

x /œ FV (e)
{€} x Ω e {x = e}

A���

How to read this rule?
From any initial distribution, running x Ω e will lead to a
distribution where x equals e with probability 1 (assuming x

doesn’t appear in e).

Basic Proof Rules in PSL: Sampling

Sampling Rule

{€} x $Ω Flip {UnifB[x]}
S���

How to read this rule?
From any initial distribution, running x $Ω Flip will lead to a
distribution where x is a uniformly distributed Boolean.

Basic Proof Rules in PSL: Sampling

Sampling Rule

{€} x $Ω Flip {UnifB[x]}
S���

How to read this rule?
From any initial distribution, running x $Ω Flip will lead to a
distribution where x is a uniformly distributed Boolean.

Basic Proof Rules in PSL: Sequencing

Sequencing Rule

{P} c1 {Q} {Q} c2 {R}
{P} c1 ; c2 {R}

S��

How to read this rule?
I If: from any distribution satisfying P , running c1 leads to a
distribution satisfying R

I If: from any distribution satisfying R, running c2 leads to a
distribution satisfying Q

I Then: from any distribution satisfying P , running c1 ; c2
leads to a distribution satisfying Q

Basic Proof Rules in PSL: Sequencing

Sequencing Rule

{P} c1 {Q} {Q} c2 {R}
{P} c1 ; c2 {R}

S��

How to read this rule?
I If: from any distribution satisfying P , running c1 leads to a
distribution satisfying R

I If: from any distribution satisfying R, running c2 leads to a
distribution satisfying Q

I Then: from any distribution satisfying P , running c1 ; c2
leads to a distribution satisfying Q

The Proof System of PSL
Conditional Rule

Conditional Rule: first try

Does this rule work?

{e = tt · P} c {Q} {e = � · P} c
Õ {Q}

{P} if e then c else c
Õ {Q}

C���?

Rule C���? is not sound!

Take P to be UnifB[e] and Q to be ‹:

{e = tt · UnifB[e]} c {‹} {e = � · UnifB[e]} c
Õ {‹}

{UnifB[e]} if e then c else c
Õ {‹}

C���?

Premises are valid...
There is no distribution satisfying e = tt · UnifB[e] or
e = � · UnifB[e], so pre-conditions are ‹ and the premises are
trivially valid.

But the conclusion is not!
It is not the case that if UnifB[e] in the input distribution, then
running if e then c else c

Õ will lead to an impossible output
distribution!

Rule C���? is not sound!

Take P to be UnifB[e] and Q to be ‹:

{e = tt · UnifB[e]} c {‹} {e = � · UnifB[e]} c
Õ {‹}

{UnifB[e]} if e then c else c
Õ {‹}

C���?

Premises are valid...
There is no distribution satisfying e = tt · UnifB[e] or
e = � · UnifB[e], so pre-conditions are ‹ and the premises are
trivially valid.

But the conclusion is not!
It is not the case that if UnifB[e] in the input distribution, then
running if e then c else c

Õ will lead to an impossible output
distribution!

Rule C���? is not sound!

Take P to be UnifB[e] and Q to be ‹:

{e = tt · UnifB[e]} c {‹} {e = � · UnifB[e]} c
Õ {‹}

{UnifB[e]} if e then c else c
Õ {‹}

C���?

Premises are valid...
There is no distribution satisfying e = tt · UnifB[e] or
e = � · UnifB[e], so pre-conditions are ‹ and the premises are
trivially valid.

But the conclusion is not!
It is not the case that if UnifB[e] in the input distribution, then
running if e then c else c

Õ will lead to an impossible output
distribution!

Rule C���? is not sound!

Take P to be UnifB[e] and Q to be ‹:

{e = tt · UnifB[e]} c {‹} {e = � · UnifB[e]} c
Õ {‹}

{UnifB[e]} if e then c else c
Õ {‹}

C���?

Premises are valid...
There is no distribution satisfying e = tt · UnifB[e] or
e = � · UnifB[e], so pre-conditions are ‹ and the premises are
trivially valid.

But the conclusion is not!
It is not the case that if UnifB[e] in the input distribution, then
running if e then c else c

Õ will lead to an impossible output
distribution!

What went wrong?

The broken rule

{e = tt · P} c {Q} {e = � · P} c
Õ {Q}

{P} if e then c else c
Õ {Q}

C���?

The problem: conditioning
I We assume: P holds in input distribution µ

I Inputs to branches: µ conditioned on e = tt and e = �
I But: P might not hold on conditional distributions!

What went wrong?

The broken rule

{e = tt · P} c {Q} {e = � · P} c
Õ {Q}

{P} if e then c else c
Õ {Q}

C���?

The problem: conditioning
I We assume: P holds in input distribution µ

I Inputs to branches: µ conditioned on e = tt and e = �
I But: P might not hold on conditional distributions!

Conditional Rule: second try

Does this rule work?

{e = tt ú P} c {Q} {e = � ú P} c
Õ {Q}

{[e] ú P} if e then c else c
Õ {Q}

C���??

Previous counterexample fails
If we take P to be UnifB[e], then [e] ú UnifB[e] is false, and the
conclusion is trivially valid.

Conditional Rule: second try

Does this rule work?

{e = tt ú P} c {Q} {e = � ú P} c
Õ {Q}

{[e] ú P} if e then c else c
Õ {Q}

C���??

Previous counterexample fails
If we take P to be UnifB[e], then [e] ú UnifB[e] is false, and the
conclusion is trivially valid.

But rule C���?? is still not sound!

Consider this proof

{e = tt ú €} x Ω e {[x] ú [e]} {e = � ú P} x Ω e {[x] ú [e]}
{[e] ú €} if e then x Ω e else x Ω e {[x] ú [e]}

C���??

Premises are valid...
In the output of each branch, x and e are independent since e

is deterministic.

But the conclusion is not!
In the output of the conditional, x and e are clearly not always
independent: they are equal, and they might be randomized!

But rule C���?? is still not sound!

Consider this proof

{e = tt ú €} x Ω e {[x] ú [e]} {e = � ú P} x Ω e {[x] ú [e]}
{[e] ú €} if e then x Ω e else x Ω e {[x] ú [e]}

C���??

Premises are valid...
In the output of each branch, x and e are independent since e

is deterministic.

But the conclusion is not!
In the output of the conditional, x and e are clearly not always
independent: they are equal, and they might be randomized!

But rule C���?? is still not sound!

Consider this proof

{e = tt ú €} x Ω e {[x] ú [e]} {e = � ú P} x Ω e {[x] ú [e]}
{[e] ú €} if e then x Ω e else x Ω e {[x] ú [e]}

C���??

Premises are valid...
In the output of each branch, x and e are independent since e

is deterministic.

But the conclusion is not!
In the output of the conditional, x and e are clearly not always
independent: they are equal, and they might be randomized!

But rule C���?? is still not sound!

Consider this proof

{e = tt ú €} x Ω e {[x] ú [e]} {e = � ú P} x Ω e {[x] ú [e]}
{[e] ú €} if e then x Ω e else x Ω e {[x] ú [e]}

C���??

Premises are valid...
In the output of each branch, x and e are independent since e

is deterministic.

But the conclusion is not!
In the output of the conditional, x and e are clearly not always
independent: they are equal, and they might be randomized!

What went wrong?

The broken rule

{e = tt ú P} c {Q} {e = � ú P} c
Õ {Q}

{[e] ú P} if e then c else c
Õ {Q}

C���??

The problem: mixing
I Suppose: Q holds in the outputs of both branches
I The output of the conditional is a convex combination of
the branch outputs

I But: Q might not hold in the convex combination!

What went wrong?

The broken rule

{e = tt ú P} c {Q} {e = � ú P} c
Õ {Q}

{[e] ú P} if e then c else c
Õ {Q}

C���??

The problem: mixing
I Suppose: Q holds in the outputs of both branches
I The output of the conditional is a convex combination of
the branch outputs

I But: Q might not hold in the convex combination!

Conditional Rule in PSL

Fixed rule

{e = tt ú P} c {Q}
{e = � ú P} c

Õ {Q}
Q is closed under mixtures (CM)

{[e] ú P} if e then c else c
Õ {Q}

C���

Pre-conditions
I Inputs to branches derived from conditioning on e

I Independence ensures that P holds after conditioning

Post-conditions
I Not all post-conditions Q can be soundly combined
I “Closed under mixtures” needed for soundness

Conditional Rule in PSL

Fixed rule

{e = tt ú P} c {Q}
{e = � ú P} c

Õ {Q}
Q is closed under mixtures (CM)

{[e] ú P} if e then c else c
Õ {Q}

C���

Pre-conditions
I Inputs to branches derived from conditioning on e

I Independence ensures that P holds after conditioning

Post-conditions
I Not all post-conditions Q can be soundly combined
I “Closed under mixtures” needed for soundness

Conditional Rule in PSL

Fixed rule

{e = tt ú P} c {Q}
{e = � ú P} c

Õ {Q}
Q is closed under mixtures (CM)

{[e] ú P} if e then c else c
Õ {Q}

C���

Pre-conditions
I Inputs to branches derived from conditioning on e

I Independence ensures that P holds after conditioning

Post-conditions
I Not all post-conditions Q can be soundly combined
I “Closed under mixtures” needed for soundness

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:
If µ1 |= Q and µ2 |= Q, then µ1 üp µ2 |= Q for any p œ [0, 1].

Examples of CM assertions
I x = e

I UnifB[x]

Examples of non-CM assertions
I [x] ú [y]
I x = 1 ‚ x = 2

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:
If µ1 |= Q and µ2 |= Q, then µ1 üp µ2 |= Q for any p œ [0, 1].

Examples of CM assertions
I x = e

I UnifB[x]

Examples of non-CM assertions
I [x] ú [y]
I x = 1 ‚ x = 2

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:
If µ1 |= Q and µ2 |= Q, then µ1 üp µ2 |= Q for any p œ [0, 1].

Examples of CM assertions
I x = e

I UnifB[x]

Examples of non-CM assertions
I [x] ú [y]
I x = 1 ‚ x = 2

Example: using the conditional rule

Consider the program:

if x then z Ω ¬y else z Ω y

If x is true, negate y and store in z. Otherwise store y into z.

Using the conditional rule:

{x = tt ú UnifB[y]} z Ω ¬y {UnifB[z]}
{x = � ú UnifB[y]} z Ω y {UnifB[z]}

UnifB[z] is closed under mixtures (CM)
{[x] ú UnifB[y]} if x then z Ω ¬y else z Ω y {UnifB[z]}

C���

Example: using the conditional rule

Consider the program:

if x then z Ω ¬y else z Ω y

If x is true, negate y and store in z. Otherwise store y into z.

Using the conditional rule:

{x = tt ú UnifB[y]} z Ω ¬y {UnifB[z]}
{x = � ú UnifB[y]} z Ω y {UnifB[z]}

UnifB[z] is closed under mixtures (CM)
{[x] ú UnifB[y]} if x then z Ω ¬y else z Ω y {UnifB[z]}

C���

The Proof System of PSL
Frame Rule

The Frame Rule in SL

Properties about unmodified heaps are preserved

{P} c {Q} c doesn’t modify FV (R)
{P ú R} c {Q ú R}

F����

So-called “local reasoning” in SL
I Only need to reason about part of heap used by c

I Note: doesn’t hold if ú replaced by ·, due to aliasing!

The Frame Rule in SL

Properties about unmodified heaps are preserved

{P} c {Q} c doesn’t modify FV (R)
{P ú R} c {Q ú R}

F����

So-called “local reasoning” in SL
I Only need to reason about part of heap used by c

I Note: doesn’t hold if ú replaced by ·, due to aliasing!

Why is the Frame rule important?

In SL: simplify reasoning
I Program c may only modify a small part of the heap
I Rest of heap may be complicated (linked lists, trees, etc.)
I Automatically preserve any assertion about rest of heap,
as long as rest of heap is separate from what c touches

In PSL: preserve independence
I Assume: in input, variable x is independent of what c uses
I Conclude: in output, x is independent of what c touches

Why is the Frame rule important?

In SL: simplify reasoning
I Program c may only modify a small part of the heap
I Rest of heap may be complicated (linked lists, trees, etc.)
I Automatically preserve any assertion about rest of heap,
as long as rest of heap is separate from what c touches

In PSL: preserve independence
I Assume: in input, variable x is independent of what c uses
I Conclude: in output, x is independent of what c touches

Why is the Frame rule important?

In SL: simplify reasoning
I Program c may only modify a small part of the heap
I Rest of heap may be complicated (linked lists, trees, etc.)
I Automatically preserve any assertion about rest of heap,
as long as rest of heap is separate from what c touches

In PSL: preserve independence
I Assume: in input, variable x is independent of what c uses
I Conclude: in output, x is independent of what c touches

The Frame Rule in PSL
The rule

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Side conditions

�. Variables in R are not modified
�. P describes all variables that might be read
�. Everything in Q is freshly written, or in P

Variables in the Q were independent of R,
or are newly independent of R

The Frame Rule in PSL
The rule

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Side conditions
�. Variables in R are not modified

�. P describes all variables that might be read
�. Everything in Q is freshly written, or in P

Variables in the Q were independent of R,
or are newly independent of R

The Frame Rule in PSL
The rule

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Side conditions
�. Variables in R are not modified
�. P describes all variables that might be read

�. Everything in Q is freshly written, or in P

Variables in the Q were independent of R,
or are newly independent of R

The Frame Rule in PSL
The rule

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Side conditions
�. Variables in R are not modified
�. P describes all variables that might be read
�. Everything in Q is freshly written, or in P

Variables in the Q were independent of R,
or are newly independent of R

The Frame Rule in PSL
The rule

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Side conditions
�. Variables in R are not modified
�. P describes all variables that might be read
�. Everything in Q is freshly written, or in P

Variables in the Q were independent of R,
or are newly independent of R

Example: Deriving a Better Sampling Rule
Original sampling rule:

{€} x $Ω Flip {UnifB[x]}
S���

Frame rule:

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Can derive:

x /œ FV (R)
{R} x $Ω Flip {UnifB[x] ú R}

S���*

Intuitively: fresh random sample is independent of everything

Example: Deriving a Better Sampling Rule
Original sampling rule:

{€} x $Ω Flip {UnifB[x]}
S���

Frame rule:

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Can derive:

x /œ FV (R)
{R} x $Ω Flip {UnifB[x] ú R}

S���*

Intuitively: fresh random sample is independent of everything

Example: Deriving a Better Sampling Rule
Original sampling rule:

{€} x $Ω Flip {UnifB[x]}
S���

Frame rule:

{P} c {Q} FV (R) fl MV (c) = ÿ
|= P æ [RV (c)] FV (Q) ™ RV (c) fi WV (c)

{P ú R} c {Q ú R}
F����

Can derive:

x /œ FV (R)
{R} x $Ω Flip {UnifB[x] ú R}

S���*

Intuitively: fresh random sample is independent of everything

A Probabilistic Separation Logic
Soundness Theorem

Proof rules can only show valid judgments

Theorem
If {P} c {Q} is derivable via the proof rules, then {P} c {Q} is
a valid judgment: for all initial distributions µ, if µ |= P then
JcKµ |= Q.

Key property for soundness: restriction
Let P be any formula of probabilistic BI, and suppose that
s |= P . Then there exists s

Õ ı s such that s
Õ |= P and

dom(sÕ) = dom(s) fl FV (P).

Intuition
I The only variables that “matter” for P are FV (P)
I Tricky for implications; proof “glues” distributions

Verifying an Example

One-Time-Pad (OTP)

Possibly the simplest encryption scheme
I Input: a message m œ B
I Output: a ciphertext c œ B
I Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

k $Ω Flip#
c Ω k ü m

One-Time-Pad (OTP)

Possibly the simplest encryption scheme
I Input: a message m œ B
I Output: a ciphertext c œ B
I Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

k $Ω Flip#
c Ω k ü m

How to Formalize Security?

Method �: Uniformity
I Show that c is uniformly distributed
I Always the same, no matter what the message m is

Method �: Input-output independence
I Assume that m is drawn from some (unknown) distribution
I Show that c and m are independent

How to Formalize Security?

Method �: Uniformity
I Show that c is uniformly distributed
I Always the same, no matter what the message m is

Method �: Input-output independence
I Assume that m is drawn from some (unknown) distribution
I Show that c and m are independent

How to Formalize Security?

Method �: Uniformity
I Show that c is uniformly distributed
I Always the same, no matter what the message m is

Method �: Input-output independence
I Assume that m is drawn from some (unknown) distribution
I Show that c and m are independent

Proving Input-Output Independence for OTP in PSL

{[m]} assumption

k $Ω Flip#

{[m] ú UnifB[k]} [S���*]

c Ω k ü m

{[m] ú UnifB[k] · c = k ü m} [A���*]

{[m] ú UnifB[c]} XOR axiom

Proving Input-Output Independence for OTP in PSL

{[m]} assumption

k $Ω Flip#

{[m] ú UnifB[k]} [S���*]

c Ω k ü m

{[m] ú UnifB[k] · c = k ü m} [A���*]

{[m] ú UnifB[c]} XOR axiom

Proving Input-Output Independence for OTP in PSL

{[m]} assumption

k $Ω Flip#
{[m] ú UnifB[k]} [S���*]

c Ω k ü m

{[m] ú UnifB[k] · c = k ü m} [A���*]

{[m] ú UnifB[c]} XOR axiom

Proving Input-Output Independence for OTP in PSL

{[m]} assumption

k $Ω Flip#
{[m] ú UnifB[k]} [S���*]

c Ω k ü m

{[m] ú UnifB[k] · c = k ü m} [A���*]

{[m] ú UnifB[c]} XOR axiom

Proving Input-Output Independence for OTP in PSL

{[m]} assumption

k $Ω Flip#
{[m] ú UnifB[k]} [S���*]

c Ω k ü m

{[m] ú UnifB[k] · c = k ü m} [A���*]

{[m] ú UnifB[c]} XOR axiom

PSL: references and further reading
The original paper on probabilistic semantics
Kozen. Semantics of Probabilistic Programs. FOCS ����.

Unifying survey on Bunched Implications
Docherty. Bunched Logics: A Uniform Approach. PhD Thesis
(UCL), ����.

A Probabilistic Separation Logic (POPL��)
I Extensions to PSL: deterministic variables, loops, etc.
I Many examples from cryptography, security of ORAM
I https://arxiv.org/abs/1907.10708

A Bunched Logic for Conditional Independence (LICS��)
I A BI-style logic called DIBI for conditional independence
I A separation logic (CPSL) based on DIBI
I https://arxiv.org/abs/2008.09231

https://arxiv.org/abs/1907.10708
https://arxiv.org/abs/2008.09231

Reasoning about Probabilistic Programs
Higher-Order Languages

So far: reasoning about �W���� programs

First part
I Monadic semantics: LcM : M æ Distr(M)
I Verification method: weakest pre-expectations (wpe)

Second part
I Transformer semantics: JcK : Distr(M) æ Distr(M)
I Verification method: probabilistic separation logic (PSL)

Today: probabilistic higher-order programs

What’s missing from �W����?
I First-order programs only
I That is: can’t pass functions to other functions

This is OPLSS: where are the functions?
I How about probabilistic functional languages?
I What do the type systems look like?

With a Probability Monad:
A Simple Functional Language

Operations on distributions: unit

The simplest possible distribution
Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a œ A. Then unit(a) œ Distr(A) is defined to be:

unit(a)(x) =
I

1 : x = a

0 : otherwise

Why “unit”? The unit (“return”) of the distribution monad.

Operations on distributions: bind

Sequence two sampling instructions together
Draw a sample x, then draw a sample from a distribution f(x)
depending on x. Transformation map f is randomized: function
A æ Distr(B).

Distribution bind
Let µ œ Distr(A) and f : A æ Distr(B). Then
bind(µ, f) œ Distr(B) is defined to be:

bind(µ, f)(b) ,
ÿ

aœA

µ(a) · f(a)(b)

Language: probabilistic monadic lambda calculus
Language grammar: core

E – e := x œ X | ⁄X . E | E E | fix X . ⁄X . E (lambda calc.)

Language grammar: base types

E – e := · · · | b œ B | if E then E else E (booleans)
| n œ N | add(E , E) (numbers)

Language grammar: probabilistic part

E – e := · · · | Flip | Roll (distributions)
| return(E) (unit)
| sample X = E in E (bind)

Language: probabilistic monadic lambda calculus
Language grammar: core

E – e := x œ X | ⁄X . E | E E | fix X . ⁄X . E (lambda calc.)

Language grammar: base types

E – e := · · · | b œ B | if E then E else E (booleans)
| n œ N | add(E , E) (numbers)

Language grammar: probabilistic part

E – e := · · · | Flip | Roll (distributions)
| return(E) (unit)
| sample X = E in E (bind)

Language: probabilistic monadic lambda calculus
Language grammar: core

E – e := x œ X | ⁄X . E | E E | fix X . ⁄X . E (lambda calc.)

Language grammar: base types

E – e := · · · | b œ B | if E then E else E (booleans)
| n œ N | add(E , E) (numbers)

Language grammar: probabilistic part

E – e := · · · | Flip | Roll (distributions)
| return(E) (unit)
| sample X = E in E (bind)

Example programs

Sum of two dice rolls

sample x = Roll in
sample y = Roll in
return(add(x, y))

Geometric distribution

(fix geo. ⁄n.

sample stop = Flip in
if stop then return(n) else geo add(n, 1)) 0

Example programs

Sum of two dice rolls

sample x = Roll in
sample y = Roll in
return(add(x, y))

Geometric distribution

(fix geo. ⁄n.

sample stop = Flip in
if stop then return(n) else geo add(n, 1)) 0

Operational semantics: setup

One-step reduction
The one-step relation æ : CE æ SDistr(CE) maps closed
expressions to sub-distributions on closed expressions. Read:

e æ µ

as “e steps to sub-distribution µ on expressions in one step”.

Multi-step reduction
For every n œ N, the multi-step relation ∆n : CE æ SDistr(CE)
maps closed expressions to sub-distributions on closed
expressions. Read:

e ∆n µ

as “e steps to sub-distribution µ on values in exactly n steps”.

Operational semantics: setup

One-step reduction
The one-step relation æ : CE æ SDistr(CE) maps closed
expressions to sub-distributions on closed expressions. Read:

e æ µ

as “e steps to sub-distribution µ on expressions in one step”.

Multi-step reduction
For every n œ N, the multi-step relation ∆n : CE æ SDistr(CE)
maps closed expressions to sub-distributions on closed
expressions. Read:

e ∆n µ

as “e steps to sub-distribution µ on values in exactly n steps”.

Operational semantics: non-probabilistic part

Standard call-by-value semantics

(⁄x. e) v æ unit(e[v/x])
if tt then e else e

Õ æ unit(e)
if � then e else e

Õ æ unit(eÕ)
(fix f. ⁄x. e) v æ unit(e[(fix f. ⁄x. e)/f][v/x])

add(n, n
Õ) æ unit(n + n

Õ)
. . .

Operational semantics: primitive distributions

Notation
We write {v1 : p1, . . . , vn : pn} or {vi : pi}iœI for the distribution
that produces vi with probability pi.

Step to distributions on values

Flip æ {tt : 1/2, � : 1/2}
Roll æ {1 : 1/6, . . . , 6 : 1/6}

Operational semantics: unit and bind

Unit

e æ e
Õ

return(e) æ return(eÕ)

Bind

e æ {vi : pi}iœI

sample x = e in e
Õ æ

ÿ

iœI

pi · e
Õ[vi/x]

A Simple Probabilistic Type System

Types in our language

T – · := B | N (base types)
| T æ T (functions)
| •T (distributions)

Typing judgment basics

The main judgment
Let e œ E , · œ T , and � be a finite list of of bindings
x1 : ·1, . . . , xn : ·n. Then the typing judgment is:

� „ e : ·

Reading
If we substitute closed values v1, . . . , vn for variables x1, . . . , xn

in e, then the result either reduces to unit(v) if · is
non-probabilistic, or reduces to a sub-distribution over closed
values if · is probabilistic (of the form •·).

Typing rules: variables and functions

Exactly the same as in lambda calculus

x : · œ �
� „ x : ·

V��
�, x : · „ e : ·

Õ

� „ ⁄x. e : · æ ·
Õ L��

� „ e : · æ ·
Õ

� „ e
Õ : ·

� „ e e
Õ : ·

Õ A��
�, f : · æ ·

Õ „ ⁄x. e : · æ ·
Õ

� „ fix f. ⁄x. e : · æ ·
Õ F��

Typing rules: booleans and integers

Hopefully not too surprising

b = tt, �
� „ b : B

B���
n œ N

� „ n : N
N��

� „ e : N
� „ e

Õ : N
� „ add(e, e

Õ) : N
A��

Typing rules: primitive distributions

Assign distribution types

� „ Flip : •B
���

� „ Roll : •N
����

Typing rules: unit and bind

Unit

� „ e : ·

� „ return(e) : •·
R�����

Bind

� „ e : •· �, x : · „ e
Õ : •·

Õ

� „ sample x = e in e
Õ : •·

Õ S�����

What property do we want the types to ensure?

Non-probabilistic types
If e œ CE has non-probabilistic type · , then e should reduce to
unit(v) with v œ CV of type · , or loop forever.

Probabilistic types
If e œ CE has probabilistic type •· , then e should reduce to
µ œ SDistr(CV) where every element in the support of µ has
type · .

Monadic Type Systems:
A Closer Look

What else can we do with a monadic type system?

So far: describe type of a distribution
If a program e has type •N, then:
I It evaluates to a sub-distribution over N: samples drawn
from the distribution will always be natural numbers.

I It never gets stuck (runtime error) during evaluation.

But what other properties can we handle?
I Produces a uniform distribution
I Produces a distribution that has probability 1/4 of
returning an even number

I . . .

The key typing rule: S�����

� „ e : •· �, x : · „ e
Õ : •·

Õ

� „ sample x = e in e
Õ : •·

Õ S�����

Let’s unpack this rule

�. e is a distribution over ·

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

�. Sampling from e and plugging into e
Õ: distribution over ·

Õ

The key typing rule: S�����

� „ e : •· �, x : · „ e
Õ : •·

Õ

� „ sample x = e in e
Õ : •·

Õ S�����

Let’s unpack this rule
�. e is a distribution over ·

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

�. Sampling from e and plugging into e
Õ: distribution over ·

Õ

The key typing rule: S�����

� „ e : •· �, x : · „ e
Õ : •·

Õ

� „ sample x = e in e
Õ : •·

Õ S�����

Let’s unpack this rule
�. e is a distribution over ·

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

�. Sampling from e and plugging into e
Õ: distribution over ·

Õ

The key typing rule: S�����

� „ e : •· �, x : · „ e
Õ : •·

Õ

� „ sample x = e in e
Õ : •·

Õ S�����

Let’s unpack this rule
�. e is a distribution over ·

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

�. Sampling from e and plugging into e
Õ: distribution over ·

Õ

Generalizing the rule

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

Let’s change the meaning of the distribution type

�. e is a distribution over · satisfying P

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

satisfying Q

�. Sampling from e and plugging into e
Õ produces a

distribution over ·
Õ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?

Generalizing the rule

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

Let’s change the meaning of the distribution type
�. e is a distribution over · satisfying P

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

satisfying Q

�. Sampling from e and plugging into e
Õ produces a

distribution over ·
Õ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?

Generalizing the rule

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

Let’s change the meaning of the distribution type
�. e is a distribution over · satisfying P

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

satisfying Q

�. Sampling from e and plugging into e
Õ produces a

distribution over ·
Õ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?

Generalizing the rule

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

Let’s change the meaning of the distribution type
�. e is a distribution over · satisfying P

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

satisfying Q

�. Sampling from e and plugging into e
Õ produces a

distribution over ·
Õ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?

Generalizing the rule

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

Let’s change the meaning of the distribution type
�. e is a distribution over · satisfying P

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

satisfying Q

�. Sampling from e and plugging into e
Õ produces a

distribution over ·
Õ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?

Generalizing the rule

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

Let’s change the meaning of the distribution type
�. e is a distribution over · satisfying P

�. Given a sample x : · , eÕ produces a distribution over ·
Õ

satisfying Q

�. Sampling from e and plugging into e
Õ produces a

distribution over ·
Õ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?

CM properties: Closed under Mixtures

An assertion Q is CM if it satisfies:
If µ1 |= Q and µ2 |= Q, then µ1 üp µ2 |= Q for any p œ [0, 1].

Examples of CM assertions
I x = e

I UnifB[x]

Examples of non-CM assertions
I [x] ú [y]
I x = 1 ‚ x = 2

The main requirement: closed under mixtures (CM)

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

The property Q must be closed under mixtures (CM)

�. We have a bunch of distributions over ·
Õ satisfying Q

�. We are blending these distributions together
�. We want the resulting distribution to also satisfy Q

The main requirement: closed under mixtures (CM)

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

The property Q must be closed under mixtures (CM)
�. We have a bunch of distributions over ·

Õ satisfying Q

�. We are blending these distributions together
�. We want the resulting distribution to also satisfy Q

The main requirement: closed under mixtures (CM)

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

The property Q must be closed under mixtures (CM)
�. We have a bunch of distributions over ·

Õ satisfying Q

�. We are blending these distributions together

�. We want the resulting distribution to also satisfy Q

The main requirement: closed under mixtures (CM)

� „ e : P · �, x : · „ e
Õ : Q·

Õ

� „ sample x = e in e
Õ : Q·

Õ S�����G��

The property Q must be closed under mixtures (CM)
�. We have a bunch of distributions over ·

Õ satisfying Q

�. We are blending these distributions together
�. We want the resulting distribution to also satisfy Q

Example: monadic types for uniformity

Type of uniform distributions U·
Meaning: when · is a finite type (e.g., B), a program e has type
U· if it evaluates to the uniform distribution over · without
encountering any runtime errors.

Then the sampling rule is sound:

� „ e : •· �, x : · „ e
Õ : U·

Õ

� „ sample x = e in e
Õ : U·

Õ S�����U���

Monadic Type Systems:
Generalizing to Graded Monads

From monads to graded monads

Instead of one monad, have a family of monads
I M is a monoid with a pre-order (e.g., (R, 0, +, Æ))
I Each monadic type has an index – œ M

Intuition
I Graded monads: di�erent kinds of the same monad
I Smaller index: less information/weaker guarantee
I Index carries additional information “on the side”
I Indexes combine through the bind rule

From monads to graded monads

Instead of one monad, have a family of monads
I M is a monoid with a pre-order (e.g., (R, 0, +, Æ))
I Each monadic type has an index – œ M

Intuition
I Graded monads: di�erent kinds of the same monad
I Smaller index: less information/weaker guarantee
I Index carries additional information “on the side”
I Indexes combine through the bind rule

Changes to the type system
New types

T – · := · · · | •–· (– œ M)

New typing rules

� „ e : ·

� „ return(e) : •0·
GR�����

� „ e : •–· �, x : · „ e
Õ : •—·

Õ

� „ sample x = e in e
Õ : •–+—·

Õ GS�����

� „ e : •– – Æ —

� „ e : •—
GS����

Monadic types: references and further readings
Original papers on probabilistic monadic types
I Ramsey and Pfe�er. Stochastic lambda calculus and
monads of probability distributions. POPL ����.

I Park, Pfenning, and Thrun. A Probabilistic Language based
upon Sampling Functions. POPL ����.

Di�erential privacy typing
I Key ingredients: (bounded) linear types and a monad
I Reed and Pierce. Distance makes the types grow stronger:
a calculus for di�erential privacy. ICFP ����.

H����2: probabilistic relational properties by typing
I Key ingredients: Refinement types and a graded monad.
I Higher-Order Approximate Relational Refinement Types for
Mechanism Design and Di�erential Privacy. POPL ����.

Beyond Monadic Types:
Two Representative Systems

Monadic type systems: the good and the bad

The good
I Clean separation between deterministic and randomized
I Always treat variables as values, not distributions

The bad
I Class of properties is limited
I All properties everywhere must be CM (cf. PSL)

PCFü

Main features
I Makes · and •· the same: no more monad!
I Call-by-value: sample when passing arguments to fn.

What kinds of properties can be expressed in types?
I No monad type, but let-binding rule is similar to S�����
I Seems to need the CM condition

PCFü: Reading the typing judgment

Judgments look like

x1 : ·1, . . . , xn : ·n „ e : ·

Reading
For any well-typed closing substitution of values v1, . . . , vn for
x1, . . . xn, the expression e evaluates to distribution over · .

PPCF

Main features
I Makes · and •· the same: no more monad!
I Call-by-name: functions can take distributions
I Let-binding construct used to force sampling

What kinds of properties can be expressed in types?
I Function calls don’t force sampling
I Let-binding, if-then-else, all force sampling

PPCF: Reading the typing judgment

Judgments look like

x1 : ·1, . . . , xn : ·n „ e : ·

Reading
For any well-typed closing substitution of distributions
µ1, . . . , µn for µ1, . . . µn, the expression e evaluates to some
distribution over · .
But note that µ1, . . . , µn are entirely separate distributions:
draws from µ1, . . . , µn are always independent.

Many technical extensions

Richer distributions
I Continuous distributions
I Distributions over function spaces

Richer types
I Recursive types, linear types, . . .

Richer language features
I Most notably: conditioning constructs (“observe”/“score”)

Higher-order programs: references and readings
Semantics
I Saheb-Djahromi. CPO’s of Measures for Non-determinism.
����.

I Jones and Plotkin. A Probabilistic Powerdomain of
Evaluations. ����.

I Heunen, Kammar, Staton, Yang. A Convenient Category for
Higher-Order Probability Theory. ����.

Type systems
I PCFü: Dal Lago
(https://doi.org/10.1017/9781108770750.005)

I PPCF: Erhard, Pagani, Tasson. Measurable Cones and
Stable, Measurable Functions. ����.

I Darais, Sweet, Liu, Hicks. A language for probabilistically
oblivious computation. POPL ����.

https://doi.org/10.1017/9781108770750.005

Reasoning about Probabilistic Programs
Wrapping up

Day �: Introducing Probabilistic Programs
I Motivations and key questions
I Mathematical preliminaries

Day �: First-Order Programs �
I Probabilistic While language, monadic semantics
I Weakest pre-expectation calculus

Day �: First-Order Programs �
I Probabilistic While language, transformer semantics
I Probabilistic separation logic

Day �: Higher-Order Programs
I Type system: probability monad
I Type system: probabilistic PCF

Main takeaways

There are multiple semantics for probabilistic programs
I We saw: monadic semantics, and transformer semantics
I Choice of semantics influences what verification is possible

Standard verification methods, to probabilistic programs
I Weakest pre-conditions to weakest pre-expectations
I Separation logic to Probabilistic separation logic
I Type systems, monads, . . .

Verification currently better for imperative programs
I Wide variety of Hoare logics proving interesting properties
I Type systems for probabilistic programs: active research

Where to go next
More semantics
I Lots of recent research on categorical semantics (e.g., QBS)

Learn about conditioning
I Mostly implementation (hard), but recently verification too

Verifying specific properties
I Expected running time, probabilistic termination, . . .

Interesting applications
I Cryptography, di�erential privacy, machine learning, . . .

Read: Foundations of Probabilistic Programming
I Open-access book, �� chapters by leading researchers

https://doi.org/10.1017/9781108770750

https://doi.org/10.1017/9781108770750

Justin Hsu
UW–Madison

Cornell University

Reasoning about Probabilistic Programs
Oregon PL Summer School ����

