Reasoning about Probabilistic Programs
Oregon PL Summer School 2021

Justin Hsu
UW-Madison
Cornell University

Day 1: Introducing Probabilistic Programs

» Motivations and key questions
» Mathematical preliminaries

Day 2: First-Order Programs 1

» Probabilistic While language, monadic semantics
» Weakest pre-expectation calculus

Day 3: First-Order Programs 2

» Probabilistic While language, transformer semantics
» Probabilistic separation logic

Day 4: Higher-Order Programs

» Type system: probability monad
» Type system: probabilistic PCF

Atomic Formulas

Equalities

» ¢ = ¢ holds in s iff all variables F'V (e, ¢’) C dom(s), and e
is equal to ¢’ with probability 1 in s

Atomic Formulas

Equalities

» ¢ = ¢ holds in s iff all variables F'V (e, ¢’) C dom(s), and e
is equal to ¢’ with probability 1 in s

Distribution laws
» [e] holds in s iff all variables in F'V (e) C dom(s)

» Unifgle] holds in s iff FV(e) C dom(s), and e is uniformly
distributed on S (e.g., S = B is fair coin flip)

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?

» We can decompose i = p, ® fiy, Where:

po(fz 1) 2172 pe(lz — f]) £ 1/2
py(ly =) £1/2 py(ly— f1) =1/2

S0, 1 C pg 0 piy

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?

» We can decompose i = p, ® fiy, Where:

po(fz 1) 2172 pe(lz — f]) £ 1/2
py(ly =) £1/2 py(ly— f1) =1/2

S0, 1 C pg 0 piy

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?

» We can decompose i = p, ® fiy, Where:

pellr o) 2172 alle > F1) 2172
py(ly =) £1/2 py(ly— f1) =1/2

S0, 1 C pg 0 piy
> Next, i, = Unifg[z] and p, = Unify[y]

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?

» We can decompose i = p, ® fiy, Where:

pe(lr o) 2172 palle > F)) 2172
py(ly =) £1/2 py(ly— f1) =1/2

S0, 1 C pg 0 piy
> Next, i, = Unifg[z] and p, = Unify[y]

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?

» We can decompose i = p, ® fiy, Where:

po(lz e tt]) 21/2 po(fr = ff]) 2 1/2
py(ly = tt]) £1/2 py(ly =) = 1/2

S0, 1 C pg 0 piy
> Next, i, = Unifg[z] and p, = Unify[y]

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?
» We can decompose i = p, ® fiy, Where:
po(lz e tt]) 21/2 po(fr = ff]) 2 1/2
plly =) £1/2 py(ly = f1) =1/2
S0, 1 C pg 0 piy

> Next, i, = Unifg[z] and p, = Unify[y]
» So by definition, u = Unifg[z] * Unifpy]

Example: Distribution Assertions

Suppose u has two variables z, y, indep. fair coin flips

[z — tt,y — tt]) = 1/4 w([z — tt,y — ff]) =1/4
ple = ffry—=t) =1/4 iz = ff,y = f]) = 1/4

Then: u satisfies Unifg[z] * Unify[y]. Why?
» We can decompose i = p, ® fiy, Where:
po(lz e tt]) 21/2 po(fr = ff]) 2 1/2
plly =) £1/2 py(ly = f1) =1/2
S0, 1 C pg 0 piy

» Next, i, = Unifg[z] and p, = Unify[y]
» So by definition, x = Unifg[z] * Unifp[y]

Example Axioms

Example Axioms

Equality and distributions
» z =y A Unifg[z] — Unifg[y]

Example Axioms

Equality and distributions
» z =y A Unifg[z] — Unifg[y]

Uniformity and products
» Unifp[z] * Unifp[y] — Unifp.p[z, y]

Example Axioms

Equality and distributions
» z =y A Unifg[z] — Unifg[y]

Uniformity and products
» Unifp[z] * Unifp[y] — Unifp.p[z, y]

Uniformity and exclusive-or ()
» Unifp[z] * [y] A 2 = @ y — Unifp[z] * [y]

A Probabilistic Separation Logic

Program Logic Judgments in PSL

P and @ from probabilistic BI, c a probabilistic program

1P} c{Q}

Program Logic Judgments in PSL

P and @ from probabilistic BI, ¢ a probabilistic program
{P}c{Q}

Validity
For all input states s € Distr(M(X)) satisfying the

pre-condition s = P, the output state [c]s satisfies the
post-condition [c]s = Q.

Program Logic Judgments in PSL

P and @ from probabilistic BI, ¢ a probabilistic program
{P}c{Q}

Validity
For all input states s € Distr(M(X)) satisfying the

pre-condition s = P, the output state [c]s satisfies the
post-condition [c]s = Q.

Perfectly fits the transformer semantics for PWHILE

Under transformer semantics:
» P describes: a distribution over memories (input)
» (describes: a distribution over memories (output)

Under monadic semantics: mismatch!
» P describes: a distribution over memories
» But input to program: a single memory

How do we prove these judgments?

Validity

For all input states s € Distr(M (X)) satisfying the

pre-condition s = P, the output state [c]s satisfies the
post-condition [c]s = Q.

How do we prove these judgments?

Validity

For all input states s € Distr(M (X)) satisfying the

pre-condition s = P, the output state [c]s satisfies the
post-condition [c]s = Q.

Proving validity directly is difficult
» Must unfold definition of [¢] as a function
» Then prove property of function by working with definition

How do we prove these judgments?

Validity

For all input states s € Distr(M (X)) satisfying the

pre-condition s = P, the output state [c]s satisfies the
post-condition [c]s = Q.

Proving validity directly is difficult
» Must unfold definition of [¢] as a function
» Then prove property of function by working with definition

Things that would make proving judgments easier:

» Compositionality: prove property of bigger program by
combining proofs of properties of sub-programs

» Avoid unfolding definition of program semantics

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

{Piye{@t - {Pa}cn {Qn}
{P}c{Q}

RULENAME

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

{Piye{@t - {Pa}cn {Qn}
{P}c{Q}

RULENAME

Proof rules mean:
» To prove {P} c{Q}
» We just have to prove {Pi} c1 {Q1},...,{Pn} cn {Qn}

Solution: define a set of proof rules (a proof system)

Each proof rule look like:

Py {@t - P} e {Qn}
{P}c{Q}

RULENAME

Proof rules mean:
» To prove {P} c{Q}
» We just have to prove {Pi} c1 {Q1},...,{Pn} cn {Qn}

Why do proof rules help?

» Programsci,...,c, are smaller/simpler than ¢
» If c can’t be broken down, no premises (n = 0)

The Proof System of PSL
Basic Rules

Basic Proof Rules in PSL: Assignment

Assignment Rule

x ¢ FV(e)

{Tlx+—e{x=¢} ASSN

Basic Proof Rules in PSL: Assignment

Assignment Rule

x ¢ FV(e)

{Tlx+—e{x=¢} ASSN

How to read this rule?

From any initial distribution, running z < e will lead to a
distribution where z equals e with probability 1 (assuming x
doesn’'t appear in e).

Basic Proof Rules in PSL: Sampling

Sampling Rule

SAMP

{T} z & Flip {Unifg[z|}

Basic Proof Rules in PSL: Sampling

Sampling Rule

SAMP
{T} z & Flip {Unifg[x]}

How to read this rule?
From any initial distribution, running = & Flip will lead to a
distribution where z is a uniformly distributed Boolean.

Basic Proof Rules in PSL: Sequencing

Sequencing Rule

{Pa{Q} {Q}c{R} -
{P}er;e {R}

(0]

Basic Proof Rules in PSL: Sequencing

Sequencing Rule

{Pa{Q} {Q}c{R} -
{P}er;e {R}

(0]

How to read this rule?

» If: from any distribution satisfying P, running c; leads to a
distribution satisfying R

» If: from any distribution satisfying R, running c, leads to a
distribution satisfying Q

» Then: from any distribution satisfying P, running c; ; co
leads to a distribution satisfying @

The Proof System of PSL
Conditional Rule

Conditional Rule: first try

Does this rule work?

{e=ttAP}c{Q} {e=fArP}I{Q}

ConD?
{P} if e then celse ¢ {Q}

Rule COND? is not sound!

Rule ConD? is not sound!

Take P to be Unifgle| and @ to be L:

{e = tt A Unifgle]} ¢ {L} {e = ff A Unifgle]} ¢ {1}

_) COND?
{Unifge]} if e then celse ¢ {L}

Rule COND? is not sound!

Take P to be Unifgle| and @ to be L:

{e = tt A Unifgle]} ¢ {L} {e = ff A Unifgle]} ¢ {1}

_) COND?
{Unifge]} if e then celse ¢ {L}

Premises are valid...

There is no distribution satisfying e = tt A Unifg[e] or

e = ff A Unifge], so pre-conditions are | and the premises are
trivially valid.

Rule COND? is not sound!

Take P to be Unifgle| and @ to be L:

{e = tt A Unifgle]} ¢ {L} {e = ff A Unifgle]} ¢ {1}

CoND?
{Unifg[e]} if e then celse ¢ {1}

Premises are valid...

There is no distribution satisfying e = tt A Unifg[e] or

e = ff A Unifge], so pre-conditions are | and the premises are
trivially valid.

But the conclusion is not!

It is not the case that if Unifg[e] in the input distribution, then
running if e then c else ¢/ will lead to an impossible output
distribution!

What went wrong?

The broken rule

{e=ttAP}c{Q} {e=fArP}{Q}

: : Conp?
{P} if e then celse ¢ {Q}

What went wrong?

The broken rule

{e=ttAP}c{Q} {e=fArP}{Q}

Conp?
{P} if e then celse ¢ {Q}

The problem: conditioning

» We assume: P holds in input distribution
» Inputs to branches: ; conditioned on e = ¢t and e = ff
» But: P might not hold on conditional distributions!

Conditional Rule: second try

Does this rule work?

{e=tt«P}c{Q} {e=f =P} {Q}

COND??
{le] * P} if e then celse ¢ {Q}

Conditional Rule: second try

Does this rule work?

{e=tt«P}c{Q} {e=f =P} {Q}

COND??
{le] * P} if e then celse ¢ {Q}

Previous counterexample fails

If we take P to be Unifgle], then [e] =+ Unifg[e] is false, and the
conclusion is trivially valid.

But rule COND?? is still not sound!

But rule COND?? is still not sound!

Consider this proof

{e=ttxT}rx <+ e{[x] *[e]} {e=ff * P} x < e {[z] x [e]}

{le] * T} if e then x < e else x + e {[x] * [e]} COND?’

But rule COND?? is still not sound!

Consider this proof

{e=ttxT}rx <+ e{[x] *[e]} {e=ff * P} x < e {[z] x [e]}

{le] * T} if e then x < e else x + e {[x] * [e]} COND?’

Premises are valid...
In the output of each branch, z and e are independent since e
is deterministic.

But rule COND?? is still not sound!

Consider this proof

{e=ttxT}rx <+ e{[x] *[e]} {e=ff * P} x < e {[z] x [e]}
{le] * T} if e then z < e else z + e {[z] * [e]}

COND?

Premises are valid...
In the output of each branch, z and e are independent since e
is deterministic.

But the conclusion is not!
In the output of the conditional, = and ¢ are clearly not always
independent: they are equal, and they might be randomized!

What went wrong?

The broken rule

{e=tt«P}c{Q} {e=f =P} {Q}

ConD??
{[e] * P} if e then celse ¢ {Q}

What went wrong?

The broken rule

{e=tt«P}c{Q} {e=f =P} {Q}

COND??
{[e] x P} if e then celse ¢ {Q}

The problem: mixing
» Suppose: @ holds in the outputs of both branches

» The output of the conditional is a convex combination of
the branch outputs

» But: Q might not hold in the convex combination!

Conditional Rule in PSL

Fixed rule

{e=tt * P} c{Q}
{e=ff = P} {Q}

Q is closed under mixtures (CM)

{[e] * P} if e then celse ¢ {Q}

OND

Conditional Rule in PSL

Fixed rule

{e=tt * P} c{Q}
{e=ff = P} {Q}

Q is closed under mixtures (CM)

{[e] * P} if e then celse ¢ {Q} onp

Pre-conditions
» Inputs to branches derived from conditioning on ¢
» Independence ensures that P holds after conditioning

Conditional Rule in PSL

Fixed rule

{e=tt * P} c{Q}
{e=ff = P} {Q}

Q is closed under mixtures (CM)

{[e] * P} if e then celse ¢ {Q} onp

Pre-conditions
» Inputs to branches derived from conditioning on ¢
» Independence ensures that P holds after conditioning

Post-conditions
» Not all post-conditions @ can be soundly combined
» “Closed under mixtures” needed for soundness

CM properties: Closed under Mixtures

An assertion @ is CM if it satisfies:
If 11 = Q and pp = Q, then py &, pe = Q forany p € [0,1].

CM properties: Closed under Mixtures

An assertion @ is CM if it satisfies:
If 11 = Q and pp = Q, then py &, pe = Q forany p € [0,1].
Examples of CM assertions

> 7= @
» Unifp[z]

CM properties: Closed under Mixtures

An assertion @ is CM if it satisfies:
If 11 = Q and pp = Q, then py &, pe = Q forany p € [0,1].
Examples of CM assertions

> 7= @

» Unifp[z]

Examples of non-CM assertions

> [z] * [y]
> r=1Vze=2

Example: using the conditional rule

Consider the program:

if then z « -y else z + y

If 2 is true, negate y and store in z. Otherwise store y into z.

Example: using the conditional rule

Consider the program:

if then z « -y else z + y

If 2 is true, negate y and store in z. Otherwise store y into z.

Using the conditional rule:

{x = tt x Unifg[y|} z < -y {Unifp[z]}
{z = ff * Unifg[y]} z < y {Unifp[z]}
Unifp 2] is closed under mixtures (CM)

CoND
{[z] * Unifg|y]} if z then z + —y else z < y {Unifp[z]|}

The Proof System of PSL
Frame Rule

The Frame Rule in SL

Properties about unmodified heaps are preserved

{P}c{Q} cdoesn’'t modify FV(R)
{P % R} c{Q * R}

FRAME

The Frame Rule in SL

Properties about unmodified heaps are preserved

{P}c{Q} cdoesn’'t modify FV(R)
{P % R} c{Q * R}

FRAME

So-called “local reasoning” in SL

» Only need to reason about part of heap used by ¢
» Note: doesn’t hold if « replaced by A, due to aliasing!

Why is the Frame rule important?

Why is the Frame rule important?

In SL: simplify reasoning
» Program ¢ may only modify a small part of the heap
» Rest of heap may be complicated (linked lists, trees, etc.)

» Automatically preserve any assertion about rest of heap,
as long as rest of heap is separate from what ¢ touches

Why is the Frame rule important?

In SL: simplify reasoning
» Program ¢ may only modify a small part of the heap
» Rest of heap may be complicated (linked lists, trees, etc.)

» Automatically preserve any assertion about rest of heap,
as long as rest of heap is separate from what ¢ touches

In PSL: preserve independence
» Assume: in input, variable x is independent of what ¢ uses
» Conclude: in output, = is independent of what ¢ touches

The Frame Rule in PSL

The rule
{P}c{Q} FV(R)NMV(c)=0
EP—[RV(e)] FV(Q) S RV(c)UWV(c)
{P * R} c{Q * R}

FRAME

Side conditions

The Frame Rule in PSL

The rule
{P}c{Q} FV(R)NMV(c)=0
=P —[RV(c)] FV(Q)CRV(c)UWV(c)
{P * R} c{Q * R}

FRAME

Side conditions
1. Variables in R are not modified

The Frame Rule in PSL

The rule
{P}c{Q} FV(R)NMV(c)=0
EP—[RV(e)] FV(Q) S RV(c)UWV(c)
{P * R} c{Q * R}

FRAME

Side conditions
1. Variables in R are not modified
2. P describes all variables that might be read

The Frame Rule in PSL

The rule
{P}c{Q} FV((R)NMV(c)=0
=P —[RV(c)) FV(Q)CRV(c)UWV(c)
{P * R} c{Q * R}

FRAME

Side conditions
1. Variables in R are not modified
2. P describes all variables that might be read
3. Everything in Q is freshly written, or in P

The Frame Rule in PSL

The rule
{P}c{Q} FV(R)NMV(c)=0
=P —=[RV(c)) FV(Q)C RV(c)UWV(c)
{P * R} c{Q * R}

FRAME

Side conditions
1. Variables in R are not modified
2. P describes all variables that might be read
3. Everything in Q is freshly written, or in P

Variables in the @ were independent of R,
or are newly independent of R

Example: Deriving a Better Sampling Rule
Original sampling rule:

SAMP

{T} 2 & Flip {Unifp[z]}

Frame rule:
{P}c{Q} FV(R)NMV(c)=0
EP—[RV()] FV(Q) CRV()UWV(c)
{P * R} c{Q * R}

FRAME

Example: Deriving a Better Sampling Rule
Original sampling rule:

SAMP

{T} = & Flip {Unifg[x]}

Frame rule:
{P}c{Q} FV(R)NMV(c)=0
EP—[RV()] FV(Q) CRV()UWV(c)
{P * R} c{Q * R}

FRAME

Can derive:

z ¢ FV(R)
{R} = & Flip {Unifp[z] * R}

Example: Deriving a Better Sampling Rule
Original sampling rule:

SAMP

{T} = & Flip {Unifg[x]}

Frame rule:
{P}c{Q} FV(R)NMV(c)=0
EP—[RV()] FV(Q) CRV()UWV(c)
{P * R} c{Q * R}

FRAME

Can derive:

z ¢ FV(R)
{R} = & Flip {Unifp[z] * R}

SAMP*

Intuitively: fresh random sample is independent of everything

A Probabilistic Separation Logic
Soundness Theorem

Proof rules can only show valid judgments

Theorem
If {P} c{Q} is derivable via the proof rules, then { P} ¢ {Q} is
a valid judgment: for all initial distributions y, if u = P then

[elp E @

Key property for soundness: restriction
Let P be any formula of probabilistic Bl, and suppose that
s = P. Then there exists s’ C s such that s = P and
dom(s’) = dom(s) N FV(P).
Intuition

» The only variables that “matter” for P are FV (P)

» Tricky for implications; proof “glues” distributions

Verifying an Example

One-Time-Pad (OTP)

Possibly the simplest encryption scheme
» Input: a message m € B
» Output: a ciphertext c € B
» Idea: encrypt by taking xor with a uniformly random key &

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

» Input: a message m € B
» Output: a ciphertext c € B
» Idea: encrypt by taking xor with a uniformly random key &

The encoding program:
k & Flips
c—kdm

How to Formalize Security?

How to Formalize Security?

Method 1: Uniformity

» Show that c is uniformly distributed
» Always the same, no matter what the message m is

How to Formalize Security?

Method 1: Uniformity

» Show that c is uniformly distributed
» Always the same, no matter what the message m is

Method 2: Input-output independence

» Assume that m is drawn from some (unknown) distribution
» Show that ¢ and m are independent

Proving Input-Output Independence for OTP in PSL

k & Flipg

c—kdm

Proving Input-Output Independence for OTP in PSL

{[m]} assumption

Proving Input-Output Independence for OTP in PSL

{[m]} assumption
k & Flipg
{[m] * Unifg[k]} [Samp*]

c—kdm

Proving Input-Output Independence for OTP in PSL

{[m]} assumption
k & Flipg
{[m] * Unifg[k]} [SamP*]
c<—kdm

{[m] * Unifg[k] Ac=k & m} [ASSN*]

Proving Input-Output Independence for OTP in PSL

{[m]} assumption
k & Flipg
{[m] * Unifg[k]} [SamP*]
c+—kém
{[m] * Unifg[k] Ac =k ®m} [ASSN*]

{[m] * Unifg[c|} XOR axiom

PSL: references and further reading

The original paper on probabilistic semantics
Kozen. Semantics of Probabilistic Programs. FOCS 1980.

Unifying survey on Bunched Implications
Docherty. Bunched Logics: A Uniform Approach. PhD Thesis

(UCL), 2019.
A Probabilistic Separation Logic (POPL20)

» Extensions to PSL: deterministic variables, loops, etc.
» Many examples from cryptography, security of ORAM
» https://arxiv.org/abs/1907.10708

A Bunched Logic for Conditional Independence (LICS21)
» A BI-style logic called DIBI for conditional independence
» A separation logic (CPSL) based on DIBI
» https://arxiv.org/abs/2008.09231

https://arxiv.org/abs/1907.10708
https://arxiv.org/abs/2008.09231

Reasoning about Probabilistic Programs
Higher-Order Languages

So far: reasoning about PWHILE programs

First part

» Monadic semantics: (c) : M — Distr(M)
» Verification method: weakest pre-expectations (wpe)

Second part

» Transformer semantics: [¢] : Distr(M) — Distr(M)
» Verification method: probabilistic separation logic (PSL)

Today: probabilistic higher-order programs

What's missing from PWHILE?

» First-order programs only
» That is: can’t pass functions to other functions

This is OPLSS: where are the functions?
» How about probabilistic functional languages?
» What do the type systems look like?

With a Probability Monad:
A Simple Functional Language

Operations on distributions: unit

The simplest possible distribution

Dirac distribution: Probability 1 of producing a particular
element, and probability 0 of producing anything else.

Distribution unit
Let a € A. Then unit(a) € Distr(A) is defined to be:

0 :otherwise

unit(a)(z) = {1 e

Why “unit”? The unit (“return”) of the distribution monad.

Operations on distributions: bind

Sequence two sampling instructions together

Draw a sample z, then draw a sample from a distribution f(z)
depending on z. Transformation map f is randomized: function
A — Distr(B).

Distribution bind
Let i € Distr(A) and f : A — Distr(B). Then
bind(u, f) € Distr(B) is defined to be:

bind(p, f Z wula
a€A

Language: probabilistic monadic lambda calculus
Language grammar: core

Ede=axcX|ANX.E|EE|fixX.AX. £ (lambda calc.)

Language: probabilistic monadic lambda calculus
Language grammar: core

Ede=axcX|ANX.E|EE|fixX.AX. £ (lambda calc.)

Language grammar: base types

Ed>e=---|beB|if £thenEelse & (booleans)
|n e NJadd(&,€) (numbers)

Language: probabilistic monadic lambda calculus
Language grammar: core

Ede=axcX|ANX.E|EE|fixX.AX. £ (lambda calc.)

Language grammar: base types

Ed>e=---|beB|if £thenEelse & (booleans)
|n e NJadd(&,€) (numbers)

Language grammar: probabilistic part

£3e:=---|Flip | Roll (distributions)
| return(&) (unit)
| sample X = Ein & (bind)

Example programs

Sum of two dice rolls

sample z = Roll in
sample y = Roll in
return(add(x, y))

Example programs

Sum of two dice rolls

sample z = Roll in
sample y = Roll in
return(add(x, y))

Geometric distribution
(fix geo. An.

sample stop = Flip in
if stop then return(n) else geo add(n, 1)) O

Operational semantics: setup

One-step reduction

The one-step relation — : C€ — SDistr(C&) maps closed
expressions to sub-distributions on closed expressions. Read:

e — U

as “e steps to sub-distribution x on expressions in one step”.

Operational semantics: setup

One-step reduction

The one-step relation — : C€ — SDistr(C&) maps closed
expressions to sub-distributions on closed expressions. Read:

e — W
as “e steps to sub-distribution x on expressions in one step”.

Multi-step reduction

For every n € N, the multi-step relation =, : C€ — SDistr(C¢E)
maps closed expressions to sub-distributions on closed
expressions. Read:

e =

as “e steps to sub-distribution x on values in exactly n steps”.

Operational semantics: non-probabilistic part

Standard call-by-value semantics

(Ax. e) v — unit(ev/x])
)

(
if tt then e else ¢’ — unit(e
if ff then e else ' — unit(e’)
(
(

(fix f. Ax. e) v — unit(e[(fix f. A\x. e)/f][v/x])
add(n,n’) — unit(n +n')

Operational semantics: primitive distributions

Notation
We write {v1 : p1,...,vn : pn} OF {v; : p; }ics foOr the distribution

that produces v; with probability p;.
Step to distributions on values

Flip — {tt:1/2,ff : 1/2}
Roll — {1:1/6,...,6:1/6}

Operational semantics: unit and bind

Unit

e— e

return(e) — return(e’)

Bind

e = {vi : pitier

sampler =eine — Zpi - €'[v;/x]
i€l

A Simple Probabilistic Type System

Types in our language

T>7=B|N (base types)
| T =T (functions)
| OT (distributions)

Typing judgment basics

The main judgment

Lete € £, 7 € T, and I be a finite list of of bindings
X1 :Ti,..., Ty : Tp. Then the typing judgment is:

I'Fe: T

Reading

If we substitute closed values vy, ..., v, forvariables z1, ..., z,
in e, then the result either reduces to unit(v) if 7 is
non-probabilistic, or reduces to a sub-distribution over closed
values if 7 is probabilistic (of the form Or).

Typing rules: variables and functions

Exactly the same as in lambda calculus

z:7el Fz:thke:7
———— VAR LM
I = a8 ¢ 7 I'FXz.e:7— 1

Tkte:T— 7

ke :7 O,f:r—7kFXMe:7—7
. APP . — FIX
IF'kFee :7 PHfix f.Adx.e:7— 1

Typing rules: booleans and integers

Hopefully not too surprising

b_ 7ﬁ TLGN
BoolL —— NAT
I'b:B I'kFn:N
I'Fe:N
e : N
ADD

'k add(e,€') : N

Typing rules: primitive distributions

Assign distribution types

—— FLIP ——— ROLL
T+ Flip : OB T+ Roll: ON

Typing rules: unit and bind

Unit

I'kte:7

RETURN
I'F return(e) : O

Bind

'te:Or z:7ke: O

I'samplexz =eine : Or

SAMPLE

What property do we want the types to ensure?

Non-probabilistic types
If e € CE has non-probabilistic type 7, then e should reduce to
unit(v) with v € CV of type 7, or loop forever.

Probabilistic types

If e € CE has probabilistic type O, then e should reduce to
w € SDistr(CV) where every element in the support of i has
type 7.

Monadic Type Systems:
A Closer Look

What else can we do with a monadic type system?

So far: describe type of a distribution
If a program e has type ON, then:

» It evaluates to a sub-distribution over N: samples drawn
from the distribution will always be natural numbers.

» It never gets stuck (runtime error) during evaluation.

But what other properties can we handle?

» Produces a uniform distribution

» Produces a distribution that has probability 1/4 of
returning an even number

> ...

The key typing rule: SAMPLE

I'-e: Ot Cx:7ke : Of

: SAMPLE
I'Fsamplex =eine' : O7

The key typing rule: SAMPLE

I'-e: Ot Cx:7ke : Of

: SAMPLE
I'Fsamplex =eine' : O7

Let’s unpack this rule
1. e is a distribution over 7

The key typing rule: SAMPLE

I'-e: Ot Cx:7ke : Of

I'Fsamplex =eine' : O7

SAMPLE

Let’s unpack this rule

1. eis a distribution over 7
2. Given a sample z : 7, ¢’ produces a distribution over 7/

The key typing rule: SAMPLE

I'-e: Ot Cx:7ke : Of

I'Fsamplex =eine' : O7

SAMPLE

Let’s unpack this rule

1. eis a distribution over 7
2. Given a sample z : 7, ¢’ produces a distribution over 7/
3. Sampling from e and plugging into ¢’: distribution over 7’/

Generalizing the rule

I'e: Pt Tx:7ke Q7

SAMPLEGEN
I'samplexz =eine : Q7

Generalizing the rule

I'e: Pt Tx:7ke Q7

— SAMPLEGEN

I'samplexz =eine : Qr

Let's change the meaning of the distribution type

1. eis a distribution over 7 satisfying P

Generalizing the rule

I'e: Pt Tx:7ke Q7

— SAMPLEGEN

I'samplexz =eine : Qr

Let's change the meaning of the distribution type

1. eis a distribution over 7 satisfying P

2. Given a sample z : 7, ¢’ produces a distribution over 7/
satisfying Q

Generalizing the rule

I'e: Pt Tx:7ke Q7

— SAMPLEGEN

I'Fsamplexz =eine : Qr

Let's change the meaning of the distribution type

1. eis a distribution over 7 satisfying P

2. Given a sample z : 7, ¢’ produces a distribution over 7/
satisfying Q

3. Sampling from e and plugging into ¢’ produces a
distribution over 7’ satisfying Q

Generalizing the rule

I'e: Pt Tx:7ke Q7

— SAMPLEGEN

I'samplexz =eine : Qr

Let's change the meaning of the distribution type

1. eis a distribution over 7 satisfying P

2. Given a sample z : 7, ¢’ produces a distribution over 7/
satisfying Q

3. Sampling from e and plugging into ¢’ produces a
distribution over 7’ satisfying Q

Generalizing the rule

I'e: Pt Tx:7ke Q7

— SAMPLEGEN

I'samplexz =eine : Qr

Let's change the meaning of the distribution type

1. eis a distribution over 7 satisfying P

2. Given a sample z : 7, ¢’ produces a distribution over 7/
satisfying Q

3. Sampling from e and plugging into ¢’ produces a
distribution over 7’ satisfying Q

For what distribution properties Q is this rule OK?
Does this remind you of something we have seen already?

CM properties: Closed under Mixtures

An assertion @ is CM if it satisfies:
If 11 = Q and pp = Q, then py &, pe = Q forany p € [0,1].
Examples of CM assertions

> 7= @

» Unifp[z]

Examples of non-CM assertions

> [z] * [y]
> r=1Vze=2

The main requirement: closed under mixtures (CM)

I'e: Pt Dx:7ke: Q7

['tsamplex =eine : Q7

SAMPLEGEN

The main requirement: closed under mixtures (CM)

I'e: Pt Dx:7ke: Q7

SAMPLEGEN
['tsamplex =eine : Q7

The property Q must be closed under mixtures (CM)

1. We have a bunch of distributions over 7’ satisfying @

The main requirement: closed under mixtures (CM)

I'e: Pt Dx:7ke: Q7

SAMPLEGEN
['tsamplex =eine : Q7

The property Q must be closed under mixtures (CM)

1. We have a bunch of distributions over 7’ satisfying @
2. We are blending these distributions together

The main requirement: closed under mixtures (CM)

I'e: Pt Dx:7ke: Q7

I't-samplex =eine : Q7'

SAMPLEGEN

The property Q must be closed under mixtures (CM)
1. We have a bunch of distributions over 7’ satisfying @
2. We are blending these distributions together
3. We want the resulting distribution to also satisfy Q

Example: monadic types for uniformity

Type of uniform distributions Ut

Meaning: when 7 is a finite type (e.g., B), a program e has type
Ur if it evaluates to the uniform distribution over without
encountering any runtime errors.

Then the sampling rule is sound:

'Fe:Or Frx:7He U7

I'Fsamplez =eine : U7’

SAMPLEUNIF

Monadic Type Systems:

Generalizing to Graded Monads

From monads to graded monads

Instead of one monad, have a family of monads
» M is a monoid with a pre-order (e.g., (R, 0, +, <))
» Each monadic type has an index o« € M

From monads to graded monads

Instead of one monad, have a family of monads
» M is a monoid with a pre-order (e.g., (R, 0, +, <))
» Each monadic type has an index o« € M

Intuition
» Graded monads: different kinds of the same monad
» Smaller index: less information/weaker guarantee
» Index carries additional information “on the side”
» Indexes combine through the bind rule

Changes to the type system
New types

Tor=|Qar (e M)

New typing rules

I'kFe:r

GRETURN
I'F return(e) : Oot

F'ke:Qar Loz:7ke: Qpr
I'+samplex =eine : Oatpr

GSAMPLE

F'ke:a a<p
F'Fe:Op

GSUBTY

Monadic types: references and further readings

Original papers on probabilistic monadic types
» Ramsey and Pfeffer. Stochastic lambda calculus and
monads of probability distributions. POPL 2002.

» Park, Pfenning, and Thrun. A Probabilistic Language based
upon Sampling Functions. POPL 2005.

Differential privacy typing
» Key ingredients: (bounded) linear types and a monad

» Reed and Pierce. Distance makes the types grow stronger:
a calculus for differential privacy. ICFP 2010.

HoARE?: probabilistic relational properties by typing

» Key ingredients: Refinement types and a graded monad.

» Higher-Order Approximate Relational Refinement Types for
Mechanism Design and Differential Privacy. POPL 2015.

Beyond Monadic Types:

Two Representative Systems

Monadic type systems: the good and the bad

The good

» Clean separation between deterministic and randomized
» Always treat variables as values, not distributions

The bad
» Class of properties is limited
» All properties everywhere must be CM (cf. PSL)

PCF,

Main features
» Makes 7 and O the same: no more monad!
» Call-by-value: sample when passing arguments to fn.

What kinds of properties can be expressed in types?

» No monad type, but let-binding rule is similar to SAMPLE
» Seems to need the CM condition

PCF,: Reading the typing judgment

Judgments look like
X1 Tl Ty :Tple:T

Reading

For any well-typed closing substitution of values vy, ..., v, for
x1,...Ty,, the expression e evaluates to distribution over .

PPCF

Main features
» Makes 7 and O the same: no more monad!
» Call-by-name: functions can take distributions
» Let-binding construct used to force sampling

What kinds of properties can be expressed in types?

» Function calls don't force sampling
» Let-binding, if-then-else, all force sampling

PPCF: Reading the typing judgment

Judgments look like

X1 Ty - Ty :Tple:T

Reading

For any well-typed closing substitution of distributions
W1y - i TOF p1, ... pp, the expression e evaluates to some
distribution over .

But note that u1, ..., i, are entirely separate distributions:
draws from pq, ..., u, are always independent.

Many technical extensions

Richer distributions
» Continuous distributions
» Distributions over function spaces

Richer types

» Recursive types, linear types, ...

Richer language features

» Most notably: conditioning constructs (“observe”/“score”

Higher-order programs: references and readings

Semantics
» Saheb-Djahromi. CPQ’s of Measures for Non-determinism.
1979.
» Jones and Plotkin. A Probabilistic Powerdomain of
Evaluations. 1989.

» Heunen, Kammar, Staton, Yang. A Convenient Category for
Higher-Order Probability Theory. 2017.

Type systems
» PCFg: Dal Lago
(https://doi.org/10.1017/9781108770750.005)

» PPCF: Erhard, Pagani, Tasson. Measurable Cones and
Stable, Measurable Functions. 2018.

» Darais, Sweet, Liu, Hicks. A language for probabilistically
oblivious computation. POPL 2020.

https://doi.org/10.1017/9781108770750.005

Reasoning about Probabilistic Programs
Wrapping up

Day 1: Introducing Probabilistic Programs

» Motivations and key questions
» Mathematical preliminaries

Day 2: First-Order Programs 1

» Probabilistic While language, monadic semantics
» Weakest pre-expectation calculus

Day 3: First-Order Programs 2

» Probabilistic While language, transformer semantics
» Probabilistic separation logic

Day 4: Higher-Order Programs

» Type system: probability monad
» Type system: probabilistic PCF

VERECEENENS

There are multiple semantics for probabilistic programs

» We saw: monadic semantics, and transformer semantics
» Choice of semantics influences what verification is possible

Standard verification methods, to probabilistic programs

» Weakest pre-conditions to weakest pre-expectations
» Separation logic to Probabilistic separation logic
» Type systems, monads, ...

Verification currently better for imperative programs

» Wide variety of Hoare logics proving interesting properties
» Type systems for probabilistic programs: active research

Where to go next

More semantics
» Lots of recent research on categorical semantics (e.g., QBS)

Learn about conditioning
» Mostly implementation (hard), but recently verification too

Verifying specific properties

» Expected running time, probabilistic termination, ...

Interesting applications
» Cryptography, differential privacy, machine learning, ...

Read: Foundations of Probabilistic Programming

» Open-access book, 15 chapters by leading researchers

https://doi.org/10.1017/9781108770750

https://doi.org/10.1017/9781108770750

Reasoning about Probabilistic Programs
Oregon PL Summer School 2021

Justin Hsu
UW-Madison
Cornell University

