Kleene Algebras and Applications

Alexandra Silva

Course Content

Lecture 1

Kleene algebra
Brzozowski derivatives
Antimirov derivatives
Equivalence via automata

Lecture 3

Equivalence via axioms
Completeness

Lecture 2

Coinduction up-to

Lecture 4

Extensions with tests,
observations, and
concurrency

Lecture 1

Context

whilea & b do
Odp; , while 2 do
while a do) o Fhen
q.’ "
whilea & b do e!se
P N
o od

od

Context

whilea & b do

Odp; , while 2 do

while a do) o Fhen
q’ "
whilea & b do e!se

P N

od °c

od

L;p; E1 =0

Context

whilea & b do
d'?; _ whileado
og. ! if b then
while 5 do . . .
q. p; Verification via
» | .
while 2 & b do o Program Equivalence
p; |
od od
od

I1;p; E1 =0

Languages of traces

Chomsky hierarchy

Some notation

A - finite alphabet
A* - finite words over A recursively enumerable

Empty word - ¢

Language - subset of words o
| C A% context-sensitive

context-free

regular

Kleene Algebra

(0 + 1(01*0)*1)*
{multiples of 3 in binary}
1 0

(ab)*a = a(ba)*
{a, aba, ababa, ...}

ﬁ@
(a+ b)* = a*(ba*)*

{all strings over {a, b}}
Stephen Cole Kleene —>@<a+b

(1909-1994)

Reqgular expressions

rrei=1|0la€A|r +ry|rry |1’

Reqgular expressions

r,r,rii=1|0la€A|r+ry|rry|r’

Language Semantics

L(1) = {€} L(0)=0 L(a) = {a}

L(ry+ry)=L(r)UL(ry) L(rire)=L(r1)-L(ry) L(r*)=L(r)

Exercise

What languages do these expressions describe?

(a+b)(a+b)(a+b)*

a*ba + b*ab

Give a regular expression describing this language?

L={weA | w contains aba at least once}

Deterministic Finite Automata

b@::b (S, (0,t)) 0: 85 — 2 Final states

/ t:- S — SA Transition Function
States (set)

Deterministic Finite Automata

b@i : b (S, (o,t)) 0:5 — 2 Final states

/ t:- S — SA Transition Function
States (set)

Inductive extension
t*(s)(e) = s :

t"(s)(aw) = t"(t(s)(a))(w)

_ N

Deterministic Finite Automata

b@i : b (S, (0.1)) 0:8 -2 Final states

/ t:- S — SA Transition Function
States (set)
Inductive extension
a) Notation
t*(s)(e) = s ~ R

t(s)(aw) = t*(t(s)(a))(w) sw =1 (s)(w)

N J. /

Deterministic Finite Automata

b©i : b (S, (0.1)) 0:8 -2 Final states

/ t- S — S A Transition Function
States (set)

Inductive extension

1% (s)(e) = s h ¥°:“°“_ o) <
() (aw) =7(t(s)(a))(w) ||)

Language accepted by a state
4)

w e L(s) <= o(syw) =1

_ J

Exercise - DFA

Exercise - DFA

L(p) ={weA*||w|, is odd}.

L(qy) = {w € A* | w has the subword ba}.

a,b
b
L(qo) ={w € A" | every a in w is followed by a b}.
U
b
a,b
(
b
/ L(qy) ={w e A" | |w|, =3n+2 or |w|, = 3n,n € N}.

Intermezzo: final coalgebra

T €36,

-€1€3

Kleene Algebra

le
Oe

(associativity of +)
(commutativity of +)
(idempotency of +)
(0 is an identity of +)

(associativity of -)
(1 is an identity of -)
(0 is an annihilator of -)

(right distributivity)
(left distributivity)

ok W=

X*X* = X*

Y ¥ =y *%

(X+y)* = (X*y)*x*
X(yX)* = (xy)*x
Xy=yz =>X*y =yz*

Exercise

denesting

sliding

Kleene Algebra, examples

- Regular languages

« +isunion
. ; is pointwise concatenation
- * jisiteration

Kleene Algebra, examples

Regular languages
- +isunion
. ; is pointwise concatenation
- ¥ jsiteration

Binary Relations
+ +1iIsunion
. ; isrelational composition
. * is reflexive transitive closure

Kleene Algebra, examples

Regular languages
- +isunion
. ; is pointwise concatenation
- ¥ jsiteration

Binary Relations
+ +1iIsunion
. ; isrelational composition
. * is reflexive transitive closure

Square Matrices over a KA K
- +and; lifted to usual matrices ops
. * jteratively from 2 x 2

Kleene Algebra, examples

Regular languages
- +isunion
. ; is pointwise concatenation
- ¥ jsiteration

Binary Relations
+ +1iIsunion
. ; isrelational composition
. * is reflexive transitive closure

Square Matrices over a KA K
- +and; lifted to usual matrices ops

. ¥ jteratively from 2 x 2 " (a+bd*c)* (a+ bd*c)*bd*

- (d + ca*b)*ca”* (d + ca*b)* |

0O L
QT

Kleene Algebra, examples

Regular languages
+ +isunion
. ; is pointwise concatenation

- * jisiteration Important
for relational

verification

Binary Relations
+ +1iIsunion
. ; isrelational composition
. * is reflexive transitive closure

Square Matrices over a KA K
- +and; lifted to usual matrices ops
. * jteratively from 2 x 2

O L

- (a+ bd*c)*

QT

- (d + ca*b)*ca”*

(a + bd*c)*bd*
(d + ca*b)* |

Kleene Algebra, examples

- Regular languages
« +isunion
. ; is pointwise concatenation

. * jis iteration Important
for relational

verification

- Binary Relations
+ +1iIsunion
. ; isrelational composition
. * is reflexive transitive closure

Important for
automata
representations

- Square Matrices over a KA K
- +and; lifted to usual matrices ops

. ¥ jteratively from 2 x 2 " (a+bd*c)* (a+ bd*c)*bd*

- (d +ca*b)*ca* (d +ca*b)*

0O L
Qo

Kleene’s Theorem

Theorem (Kleene’52): Let L be a subset of A*. TFAE:
1. Lis reqular

2. L is accepted by a deterministic finite automaton

Proof
1 => 2 : Syntactic Brzozowski derivatives
2 => 1 : State elimination

Brzozowski Derivatives

r,r,ry:=1|0la€Al|ri+ry|ryiry|r’

Brzozowski Derivatives

r,r,ry:=1|0la€Al|ri+ry|ryiry|r’
ox(0) = 0 ox(ri+ry) = ox(r1)Vox(ry)
ox(l) = 1 ox(rira) = ox(r1) Aog(ry)
og(a) = 0 ox(r™) = 1

Brzozowski Derivatives

r,r,ry:=1|0la€Al|ri+ry|ryiry|r’

ox(0) = 0 ogp(r1+r2) = ox(r)Voxg(ry)
ox(l) = 1 ox(rira) = ox(r1) Aox(rs)
og(a) = O ox(r") = 1
(Q)a — Q (rl + rZ)a — (rl)a + (rZ)a

B o (r1)q12 if o5(r)=0
), = 0 (r172)q o {(”1), +(ry), otherwise

1 ifa=d’ \ _ }

(a)a’ — {Q if a # a, (r)a = TI,r

Are we done?

(a”)”

((@*)*)q = (1a*)(a")’
((La™)(a®)")q = (0a™ +1a™)(a")" + (1a™)(a")’
((0a™ + 1a*)(a®)" + (1a”)(a")"), = ((0a” + 0a™ + 1a”)(a™)" + (1a”)(a")") + ((1a™)(a")"),

Are we done?

(a”)”

((a®)*), = (1a™)(a*)" NOT FINITE!
((1a™)(a®)*), = (0a™ +1a™)(a®)" + (1a™)(a™)"
((0a* +1a™)(a™)" + (1a*)(a*)"), = ((0a™ + 0a™ + 1a™)(a™)* + (1a™)(a™)") + ((1a™)(a™)"),

Are we done?

(a”)”

((@*)"), = (1a*)(a*)" NOT FINITE!
((La™)(a™)"), = (0a™ +1a*)(a*)* + (1a*)(a*)"
((0a* +1a™)(a®)* + (1a*)(a*)*), = ((0a™ + 0a™ + 1a™)(a™)" + (La™)(a™)") + ((1a™)(a™)*),

Theorem (Brzozowski): Let r be a regular expression.
The set of syntactic Brzozowski derivatives is finite if it

taken modulo ACI.

Intermezzo : final coalgebra

R(A) = s QA"

<OfR>tfR) <0L’tL>

2 X (IJE(A))A oy T 72X (VZA*)A

Alternative proof 1=>2
Thompson + epsilon-elim + subset construction

State Elimination

State Elimination

-

.

u*x(v+ yu*x)*

State Elimination

Exercise

Deleteg_1

Exercise

Deleteg_1

Lecture 2

Alternative proof 2 => 1
Solving systems of equations

r =T o2

Alternative proof 2 => 1
Solving systems of equations

r =T o2

Alternative proof 2 => 1
Solving systems of equations

r =T o2

" (a+ bd*c)* (a + bd*c)*bd*
- (d + ca*b)*ca”* (d + ca*b)* |

0O L
QT

NFAs

(a+b)*a(a+b)(a+ b)(a+ b)(a+ b)

NFAs

(a+ b)*ala+ b)(a+ b)(a+ b)(a+ b)

a,b

m b a,b a,b a,b

Antimirov Derivatives

Context

Tools and proof techniques for systems equivalence

Methodology:
1. First do it naively

2. Then improve the associated proof method

Deterministic finite automata

The states x and u are language equivalent

Deterministic finite automata

The states x and u are language equivalent

Deterministic finite automata

The states x and u are language equivalent

Deterministic finite automata

The states x and u are language equivalent

Deterministic finite automata

The states x and u are language equivalent

Deterministic finite automata

The states x and u are language equivalent

Deterministic finite automata

x and u are not equivalent

Deterministic finite automata

x and u are not equivalent

Deterministic finite automata

x and u are not equivalent

Deterministic finite automata

x and u are not equivalent

Deterministic finite automata

x and u are not equivalent

Deterministic finite automata

x and u are not equivalent

Deterministic finite automata

Last example, with two letters

a,b _ a,b _

X >y > Z
a,b

—_— A, —

Deterministic finite automata

Last example, with two letters

a,b o a,b o
X >y > Z
a,b
—_— A, —
~~— @@ W
/ a,b
a

Deterministic finite automata

Last example, with two letters

Deterministic finite automata

Last example, with two letters

Deterministic finite automata

Last example, with two letters

Deterministic finite automata

Last example, with two letters

a,b o a,b o
X >y > Z
a,b
—_— A, —
~~— @@ W
/ a,b
a

Deterministic finite automata

Last example, with two letters

a,b o a,b o
X >y > Z
a,b
—_— A, —
~~— @@ W
/ a,b
a

Deterministic finite automata

Last example, with two letters

a,b o a,b o
X >y > Z
a,b
—_— A, —
~~— @@ W
/ a,b
a

Correctness

» A relation R is a proof of equivalence (bisimulation) if x R y
entails

> o(x) = oly);
» for all a, ta(x) R t,(y).

Correctness

> A relation R is a proof of equivalence (bisimulation) if x R y
entails

> o(x) = oly);
» for all a, ta(x) R t,(y).

» Theorem: L(x) = L(y) iff
there exists a bisimulation R with x R y

Correctness

> A relation R is a proof of equivalence (bisimulation) if x R y
entails

> o(x) = oly);
» for all a, ta(x) R t,(y).

» Theorem: L(x) = L(y) iff
there exists a bisimulation R with x R y

The previous algorithm attempts to construct a bisimulation

Complexity

The previous algorithm Is quadratic

Complexity

The previous algorithm Is quadratic

0 pairs

Complexity

The previous algorithm Is quadratic

1 pairs

Complexity

The previous algorithm Is quadratic

2 pairs

Complexity

The previous algorithm Is quadratic

3 pairs

Complexity

The previous algorithm Is quadratic

4 pairs

Complexity

The previous algorithm Is quadratic

N\
N\

\

\

./ N \.
\
\

\

\

5 pairs

Complexity

The previous algorithm Is quadratic

6 pairs

Complexity

The previous algorithm Is quadratic

[palrs

Complexity

The previous algorithm Is quadratic

N\
N\
N\
N\
N\
N\
\
\
| >.\>. y.

8 palrs

Complexity

The previous algorithm Is quadratic

O pairs

Complexity

The previous algorithm Is quadratic

>

\

T~
<
-

10 pairs

Complexity

The previous algorithm Is quadratic

11 pairs

Complexity

The previous algorithm Is quadratic

> . >

> .
N
N
N
> .

12 pairs

Complexity

The previous algorithm Is quadratic

SEEN
SSER
/

\

13 pairs

Complexity

The previous algorithm Is quadratic

_—

N

> .
>

>

&

—

. >

. > .
=
e
e
e
e
e
e
d
e
e
d
e
. > .

_—

14 pairs

Complexity

The previous algorithm Is quadratic

15 pairs

Complexity

The previous algorithm Is quadratic
$
“9

R X

\' /

16 pairs

Complexity

The previous algorithm Is quadratic

.
@

7
;/v
v

17 pairs

Complexity

The previous algorithm Is quadratic

Val

Pl
o

18 pairs

Complexity

The previous algorithm Is quadratic

N
N
N
N
N
Y Y

SHS

25

RO

19 pairs

Complexity

The previous algorithm Is quadratic

> . > . > .

=,

IS

~~
~~
~~
\. >../> |

S~
~

2
Z¥

20 pairs

Complexity

The previous algorithm Is quadratic

'(
"‘

@
) >

21 pairs

Complexity

The previous algorithm Is quadratic

'(
"‘

@
) >

21 pairs

First improvement

One can stop much earlier

®
(/

%
o
ig‘y
) >

21 pairs

First improvement

One can stop much earlier

i

>SES
LIS

v
ZW

<2

> . > . > .

21 20 pairs

First improvement

One can stop much earlier

Val

XK
SR

LD

21 19 pairs

First improvement

One can stop much earlier

Val

i
%

21 13 pairs

First improvement

One can stop much earlier

Val

7
%

21 17 pairs

First improvement

One can stop much earlier

—
S
2"

i
| s;

\' /

21 16 pairs

First improvement

One can stop much earlier
\ >
\ <X

21 15 pairs

<>

First improvement

One can stop much earlier
>

AN

<

> . >

<>

;
Val

21 14 pairs

First improvement

One can stop much earlier

N X
!

Val

> .

21 13 pairs

First improvement

One can stop much earlier

SR

> . >

\'

21 12 pairs

First improvement

One can stop much earlier

21 11 pairs

First improvement

One can stop much earlier
> .

>

21 10 pairs

First improvement

One can stop much earlier

21 9 pairs

First improvement

One can stop much earlier

First improvement

One can stop much earlier

Complexity: almost linear

Correctness of the improvement

Correctness of HK algorithm, revisited:

» [he previous relation I1s not a bisimulation - proof of
equivalence

» But can be completed to one using equivalence - transitivity

» Hopcroft and Karp's algorithm ('71) attempts to construct a
bisimulation up to equivalence

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

U > vV+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

U > V+ W > U+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

U > V+ W > U+w > UU+V-+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

U > V+ W > U+w >ulvlw<>

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

U > V+ W > U+w >ulvlw<>

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

U > V+ W > U+w >ulvlw<>

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X < Z y

U > V+ W > U+w >ulvlw<>

Non-Deterministic Automata

One can do

> X

P4

U > V+ W > U+ W > J+ V-

Non-Deterministic Automata

One can do

> X

P4

U > V+ W > U+ W > J+ V-

Non-Deterministic Automata

One can do
=N
X < Z Y (Xv u)
+ (v, viw)
= (x+y, utv+w)
A—_
U W < V
~—01
X >Y > 7 > X1V > y+Z

U > V+ W > U+ W >ulvlw©

using bisimulations up to union

Non-Deterministic Automata

One can do better:

N\

y<—>:312

(]

Non-Deterministic Automata

One can do better:

N\

y<—>:312

(]

> X1V

N

Non-Deterministic Automata

One can do better:

N\

y<—>:312

(]

> X1V

N

Non-Deterministic Automata

One can do better:

N\

y < Z X+y

(]

using(l%simulations up to congruence

Non-Deterministic Automata

One can do even better:

X_ _y<~—12 x+y = uty (1)
= y+zt+y (2)
y+z

|

C
A~~~

NO
—

this yield to the HKC algorithm [Bonchi, Pous'13]

Intermezzo: conduction up-to with coalgebra

Next time

Lecture 3

Equivalence via axioms

Completeness

