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Context
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og. ! if b then
while 5 do . . .
q. p; Verification via
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Languages of traces

Chomsky hierarchy

Some notation

A - finite alphabet
A* - finite words over A recursively enumerable

Empty word - ¢

Language - subset of words o
| C A% context-sensitive

context-free

regular



Kleene Algebra

(0 + 1(01*0)*1)*
{multiples of 3 in binary}
1 0

(ab)*a = a(ba)*
{a, aba, ababa, ...}

ﬁ@
(a+ b)* = a*(ba*)*

{all strings over {a, b}}
Stephen Cole Kleene —>@<a+b

(1909-1994)
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Reqgular expressions

r,r,rii=1|0la€A|r+ry|rry|r’

Language Semantics

L(1) = {€} L(0)=0 L(a) = {a}

L(ry+ry)=L(r)UL(ry) L(rire)=L(r1)-L(ry) L(r*)=L(r)




Exercise

What languages do these expressions describe?

(a+b)(a+b)(a+b)*

a*ba + b*ab

Give a regular expression describing this language?

L={weA | w contains aba at least once}
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Deterministic Finite Automata

b@i : b (S, (0.1)) 0:8 -2 Final states

/ t:- S — SA Transition Function
States (set)
Inductive extension
a ) Notation
t*(s)(e) = s ~ R

t(s)(aw) = t*(t(s)(a))(w) sw =1 (s)(w)
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Deterministic Finite Automata

b©i : b (S, (0.1)) 0:8 -2 Final states

/ t- S — S A Transition Function
States (set)

Inductive extension

1% (s)(e) = s h ¥°:“°“_ o) <
() (aw) =7(t(s)(a))(w) || )

Language accepted by a state
4 )

w e L(s) <= o(syw) =1

\_ J




Exercise - DFA




Exercise - DFA

L(p) ={weA*||w|, is odd}.

L(qy) = {w € A* | w has the subword ba}.

a,b
b
L(qo) ={w € A" | every a in w is followed by a b}.
U
b
a,b
(
b
/ L(qy) ={w e A" | |w|, =3n+2 or |w|, = 3n,n € N}.




Intermezzo: final coalgebra










T €36,

-€1€3

Kleene Algebra

le
Oe

(associativity of +)
(commutativity of +)
(idempotency of +)
(0 is an identity of +)

(associativity of -)
(1 is an identity of -)
(0 is an annihilator of -)

(right distributivity)
(left distributivity)



ok W=

X*X* = X*

Y ¥ =y *%

(X+y)* = (X*y)*x*
X(yX)* = (xy)*x
Xy=yz =>X*y =yz*

Exercise

denesting

sliding
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. * is reflexive transitive closure

Square Matrices over a KA K
- +and; lifted to usual matrices ops

. ¥ jteratively from 2 x 2 " (a+bd*c)*  (a+ bd*c)*bd*

- (d + ca*b)*ca”* (d + ca*b)* |

0O L
QT




Kleene Algebra, examples

Regular languages
+ +isunion
. ; is pointwise concatenation

- * jisiteration Important
for relational

verification

Binary Relations
+ +1iIsunion
. ; isrelational composition
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O L
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Kleene Algebra, examples

- Regular languages
« +isunion
. ; is pointwise concatenation

. * jis iteration Important
for relational

verification

- Binary Relations
+ +1iIsunion
. ; isrelational composition
. * is reflexive transitive closure

Important for
automata
representations

- Square Matrices over a KA K
- +and; lifted to usual matrices ops

. ¥ jteratively from 2 x 2 " (a+bd*c)*  (a+ bd*c)*bd*

- (d +ca*b)*ca* (d +ca*b)*

0O L
Qo




Kleene’s Theorem

Theorem (Kleene’52): Let L be a subset of A*. TFAE:
1. Lis reqular

2. L is accepted by a deterministic finite automaton

Proof
1 => 2 : Syntactic Brzozowski derivatives
2 => 1 : State elimination
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Brzozowski Derivatives

r,r,ry:=1|0la€Al|ri+ry|ryiry|r’
ox(0) = 0 ox(ri+ry) = ox(r1)Vox(ry)
ox(l) = 1 ox(rira) = ox(r1) Aog(ry)
og(a) = 0 ox(r™) = 1



Brzozowski Derivatives

r,r,ry:=1|0la€Al|ri+ry|ryiry|r’

ox(0) = 0 ogp(r1+r2) = ox(r)Voxg(ry)
ox(l) = 1 ox(rira) = ox(r1) Aox(rs)
og(a) = O ox(r") = 1
(Q)a — Q (rl + rZ)a — (rl )a + (rZ)a

B o (r1)q12 if o5(r)=0
), = 0 (r172)q o {(”1 ), +(ry), otherwise

1 ifa=d’ \ _ }

(a)a’ — {Q if a # a, (r )a = TI,r



Are we done?

(a”)”

((@*)*)q = (1a*)(a")’
((La™)(a®)")q = (0a™ +1a™)(a")" + (1a™)(a")’
((0a™ + 1a*)(a®)" + (1a”)(a")"), = ((0a” + 0a™ + 1a”)(a™)" + (1a”)(a")") + ((1a™)(a")"),



Are we done?

(a”)”

((a®)*), = (1a™)(a*)" NOT FINITE!
((1a™)(a®)*), = (0a™ +1a™)(a®)" + (1a™)(a™)"
((0a* +1a™)(a™)" + (1a*)(a*)"), = ((0a™ + 0a™ + 1a™)(a™)* + (1a™)(a™)") + ((1a™)(a™)"),



Are we done?

(a”)”

((@*)"), = (1a*)(a*)" NOT FINITE!
((La™)(a™)"), = (0a™ +1a*)(a*)* + (1a*)(a*)"
((0a* +1a™)(a®)* + (1a*)(a*)*), = ((0a™ + 0a™ + 1a™)(a™)" + (La™)(a™)") + ((1a™)(a™)*),

Theorem (Brzozowski): Let r be a regular expression.
The set of syntactic Brzozowski derivatives is finite if it

taken modulo ACI.




Intermezzo : final coalgebra

R(A) = s QA"

<OfR>tfR) <0L’tL>

2 X (IJE(A))A oy T 72X (VZA*)A




Alternative proof 1=>2
Thompson + epsilon-elim + subset construction



State Elimination



State Elimination

-

.

u*x(v+ yu*x)*



State Elimination
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Deleteg_1




Exercise

Deleteg_1




Lecture 2



Alternative proof 2 => 1
Solving systems of equations

r =T o2
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Alternative proof 2 => 1
Solving systems of equations

r =T o2

" (a+ bd*c)* (a + bd*c)*bd*
- (d + ca*b)*ca”* (d + ca*b)* |

0O L
QT




NFAs

(a+b)*a(a+b)(a+ b)(a+ b)(a+ b)



NFAs

(a+ b)*ala+ b)(a+ b)(a+ b)(a+ b)

a,b

m b a,b a,b a,b




Antimirov Derivatives



Context

Tools and proof techniques for systems equivalence

Methodology:
1. First do it naively

2. Then improve the associated proof method
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x and u are not equivalent




Deterministic finite automata
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Deterministic finite automata
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Correctness

» A relation R is a proof of equivalence (bisimulation) if x R y
entails

> o(x) = oly);
» for all a, ta(x) R t,(y).
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Correctness

> A relation R is a proof of equivalence (bisimulation) if x R y
entails

> o(x) = oly);
» for all a, ta(x) R t,(y).

» Theorem: L(x) = L(y) iff
there exists a bisimulation R with x R y

The previous algorithm attempts to construct a bisimulation
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Complexity

The previous algorithm Is quadratic
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First improvement
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First improvement
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First improvement
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First improvement
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First improvement
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First improvement

One can stop much earlier




First improvement

One can stop much earlier

Complexity: almost linear




Correctness of the improvement

Correctness of HK algorithm, revisited:

» [ he previous relation I1s not a bisimulation - proof of
equivalence

» But can be completed to one using equivalence - transitivity

» Hopcroft and Karp's algorithm ('71) attempts to construct a
bisimulation up to equivalence
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One can do

> X
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Non-Deterministic Automata

One can do
=N
X < Z Y (Xv u)
+ (v, viw)
= (x+y, utv+w)
A—\_
U W < V
~—01
X >Y > 7 > X1V > y+Z

U > V+ W > U+ W >ulvlw©

using bisimulations up to union
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One can do better:

N\

y<—>:312

(]

> X1V

N




Non-Deterministic Automata

One can do better:

N\

y < Z X+y

(]

using(l%simulations up to congruence




Non-Deterministic Automata

One can do even better:

X_ _y<~—12 x+y = uty (1)
=  y+zt+y (2)
y+z

|

C
A~~~

NO
—

this yield to the HKC algorithm [Bonchi, Pous'13]



Intermezzo: conduction up-to with coalgebra









Next time

Lecture 3

Equivalence via axioms

Completeness




