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1 The Law of the Excluded Middle and Reductio ad Absurdum

Yesterday, we saw that one of deMorgan’s laws couldn’t be proven in intuitionistic logic. Intuitionistic logic
is able to prove fewer statements than classical logic because it lacks the law of the excluded middle (or in
Latin, tertium non datur):

TND : prop → prop

TND P = P ∨ ¬P

If we assume the law of the excluded middle, we can prove the last of deMorgan’s laws.

deMorgan′ : TND P → ¬(P ∧Q) ⇐⇒ ¬P ∨ ¬Q
proj1 (deMorgan′ (inj1p)) npq = inj2 (λ q → npq (p, q))

proj1 (deMorgan′ (inj2 np)) npq = inj2 np

proj2 (deMorgan′ ) (inj1np) pq = np (proj1 pq)

proj2 (deMorgan′ ) (inj2 nq) pq = nq (proj2 pq)

In classical logic, we often prove a statement by disproving its negation. This argument is called reductio
ad absurdum. In type theory, this is

RAA : prop → prop

RAA P = ¬¬P → P

It turns out that reductio ad absurdum is equivalent to the law of the excluded middle:

tnd → raa : TND P → RAA P

tnd → raa : (inj1 p) nnp = p

tnd → raa(inj2 np) nnp = case⊥ (nnp np)

nntnd : ¬¬(P ∨ ¬P )

nntnd h = h (inj2 (λp → h (inj1 p)))

raa → tnd : ((P : prop) → RAA P ) → TND Q

raa → tnd : raa = raa nntnd

In classical logic, we can define disjunction as follows:

∨c : prop → prop → prop

P ∨c Q = ¬(¬P ∧ ¬Q)
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From this definition, we can prove the law of the excluded middle:

tnd-neg : P ∨c ¬P
tnd-neg h = proj2 h (proj1 h)

injc1 : P → P ∨c Q

injc1 p h = proj1 h p

casec : RAA P → (P → R) → (Q → R) → (P ∨c Q) → R

casec raa f g x = raa (λnr → x ((λp → nr (f p)), λq → nr (g q)))

Thus, we see that ¬,∧,∨c, T rue, False preserve reductio ad absurdum and hence are classical. We also see
that ∨c can be defined in terms of other connectives, and likewise with ∃ in predicate logic.

2 Inductive Types

Now, we will consider inductive and coinductive types. One example in Agda is the natural numbers:

data N : Set where
zero : N
suc : N → N

We can consider some examples of elements of N:

one : N
one = suc zero

two : N
two = suc one

Agda has the N type built in, and translates Arabic numerals written to be elements of that inductive type.

2.1 Structural Recursion

Now, let’s define some functions on N.

double : N → N
double zero = 0

double (suc n) = suc (suc (double n))

half : N → N
half zero = 0

half (suc zero) = 0

half (suc (suc n)) = suc (half n)
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We can give a combinator for recursion on N:

f : N → M

f zero = m− 0

f(suc n) = m− s (f n)

It-N : M → (M → M) → N → M

It-N m− 0 m− s zero = m− 0

It-N m− 0 m− s (suc n) = m− S (It-N m− 0 m− S n)

Let’s try some catamorphisms:

double-it : N → N
double-it = It-N 0 (λd− n → suc (suc d− n))

half -it-aux : N → N ∗ N – idea: half-it-aux n = half n, half (suc n)

half -it-aux = It-N(0, 0)(λx → (proj2 x), suc (proj1 x))

half -it : N → N
half -it n = proj1 (half -it-aux n)

Addition:

+ : N → N → N
zero+ n = n

suc m+ n = suc (m+ n)

+-it : N → N → N
+-it : It-N(λ n → n)λ m+ n → suc(m+ n)

Multiplication:

∗ : N → N → N
zero ∗ n = 0

sucm ∗ n = m ∗ n+ n

fac : N → N
fac zero = 1

fac (suc n) = (suc n) ∗ fac n

Exercise: derive fac-it just using the iterator.
There are many inductive types; common examples include lists and trees. Here is another example in

Agda:

3



data Ord : Set where
zero : Ord
suc : Ord → Ord
lim : (N → Ord) → Ord

These are the ordinals; the lim constructor gives the limit ordinal.

3 Coinductive Types

We can also consider coinductive types. Here is the type of streams in Agda:

record Stream (A : Set ) : Set where
co induc t i v e
f i e l d

head : A
t a i l : Stream A

An inductive type tells you how you can construct data. A coinductive type tells you how you can consume
data. Next, we define a function on this coinductive type:

:: : A → StreamA → StreamA

head (a :: aa) = a

tail (a :: aa) = aa

from : N → StreamN
head (from n) = n

tail (from n) = from (suc n)

mapS : (A → B) → StreamA → StreamB

head (mapS f as) = f (head as)

tail (mapS f as) = mapS f (tail as)

To define a function into Streams, we need to define how to consume each element the function maps to.

f : M → Stream A

head (f m) = m-h m

tail (f m) = f (m-t m)

CoIt-Stream : (M → A) → (M → M) → M → StreamA

head (CoIt-Streamm-h m-t m) = m-h m

tail (CoIt-Streamm-h m-t m) = CoIt-Stream m- m-t (m-t m)

Exercise: translate from and mapS into using only CoIt-Stream
Next, we define the conatural numbers. A conatural number is something which you can compute a

predecessor of.

data Maybe (A : Set ) : Set where
nothing : Maybe A
ju s t : A → Maybe A

record N∞ : Set where
co induc t i v e
f i e l d
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pred : Maybe N∞

zero∞ : N∞
pred zero∞ = nothing

suc∞ : N∞ → N∞
pred ( suc∞ n) = ju s t n

∞ : N∞
pred ∞ = ju s t ∞

Then, we can define addition on conatural numbers.

+∞ : N∞ → N∞ → N∞
pred (m +∞ n) with pred m
. . . | nothing = pred n
. . . | j u s t m’ = ju s t (m’ +∞ n)

CoIt−N∞ : (M → Maybe M) → M → N∞
pred ( CoIt−N∞ f m) with f m
. . . | nothing = nothing
. . . | j u s t m = ju s t ( CoIt−N∞ f m)

As a challenge, the reader should construct multiplication for coinductive natural numbers.
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