
OPLSS 22 Introduction to Type Theory (4)

Cosmo Viola

June 2022

Today, we’re going to talk about dependent types. A dependent type is a function whose codomain is
Set. Polymorphism is a special case of dependent types, where the function takes a type as input; consider
the constructor List : Set → Set. However, dependent types can depend on any value. Consider the type of
vectors, which are lists of a given length:

data Vec (A : Set) : N → Set where
[] : Vec A 0

: : A → Vec A n → Vec A (suc n)

We can define a function that produces vectors of a given length containing all zeros.

ze ro : (n : N) → Vec A n
ze ro s zero = []
z e r o s (suc n) = 0 : : z e r o s n

We can define a function that appends vectors together. The type of the output will depend on the length
of the input vectors.

++v : Vec A m → Vec A n → Vec A (m + n)
[] ++v bs = bs
(a : : as) ++v bs = a : : (as ++v bs)

Because the type of vectors comes bundled with the vector’s length, we can have static array bounds checking,
in contrast to List where we don’t know in advance if we’ll find an element or not.

! ! : L i s t A → N → Maybe A
[] ! ! n = nothing
(a : : as) ! ! z e ro = ju s t a
(a : : as) ! ! suc n = as ! ! n

We use the Maybe type for the output to represent the case where the array index is out of bounds.
Next, we define a family of finite types parameterized by their number of elements. We can use this type

to reimplement our statically checked list access, but without the need for the Maybe type output.

data Fin : N → Set where
zero : Fin (suc n)
suc : Fin n → Fin (suc n)

! ! v : Vec A n → Fin n → A
(a : : as) ! ! v zero = a
(a : : as) ! ! v suc i = as ! ! v i

Next, we will talk about Π-types and Σ-types. Π-types are also called dependent product types, though
they work like functions; an element of a Π-type is a function where the output type depends on the input
to the function. A Σ-type, on the other hand, is a pair where the type of the second element depends on the
type of the first.

1

Π : (A : Set) (B : A→ Set) → Set
Π A B = (x : A) → B x

record Σ (A : Set) (B : A → Set) : Set where
con s t ruc to r ,
f i e l d

pro j 1 : A
pro j 2 : B pro j 1

FlexVec : Set → Set
FlexVec A = Σ N λ n → Vec A n

This type, FlexVec, is equivalent to List.
It turns out that we can define the coproduct using Σ-types.

⊎ : Set → Set → Set
A ⊎ B = Σ Bool AorB

where AorB : Bool → Set
AorB : t rue = A
AorB : f a l s e = B

We can also define products using Π-types.

× ’ = Set → Set → Set
A × ’ B = Π Bool AorB

where AorB : Bool → Set
AorB true = A
AorB f a l s e = B

With Π-types and Σ-types, we can give the propositions as types interpretation for predicate logic. A
predicate will be of the form A → Set and a relation of the form A → B → Set. Then, we need to define
quantifiers.

Fo r a l l : (A : Set) (P : A → Set) → Set
Fo ra l l A P = Π A P

Exi s t s : (A : Set) (P : A → Set) → Set
Ex i s t s A P = Σ A P

Then, we can write propositions using these quantifiers. For instance, we can write the following:

f : (x : N) → Even x ∨ Odd x

isPr ime : N → Set
Σ N i sPr ime

The first of these asserts that all naturals are either even or odd, while the second asserts that there exists
a prime natural.

Here are some tautologies of predicate logic:

∀x ∈ A,P x ∨Q x ⇐⇒ (∀x ∈ A,P x) ∨ (∀x ∈ A,Q x)

∀x ∈ A, (P x → R) ⇐⇒ (∃x ∈ A,P x) → R

We can prove the analogues for Σ and Π types.
Next, we will discuss equality. Here is the type of equality in Agda:

data ≡ : A → A → Set where
r e f l : (a : A) → a ≡ a

2

The only constructor of this equality is reflexivity. Equality is an equivalence relation, so it should also be
symmetric and transitive. We can prove these:

sym : (a b : A) → a ≡ b → b ≡ a
sym r e f l = r e f l

t rans : {a b c : A} → a ≡ b → b ≡ c → a ≡ c
t rans r e f l q = q

cong : (f : A → B) → (a b : A) → a ≡ b → f a ≡ f b
cong f r e f l = r e f l

Notice that the following is not true:

uncong : (f : A → B) → (a b : A) → f a ≡ f b → a ≡ b

Given addition on the natural numbers, we can prove associativity:

+ : N → N → N
zero + n = n
suc m + n = suc (m + n)

as soc : (l + m) + n ≡ l + (m + n)
as soc { zero } {m} {n} = r e f l
a s soc { suc l } {m} {n} = cong suc (as soc { l } {m} {n})

Proof by induction is equivalent to dependent recursion. The eliminator generalizes the iterator to
dependent types.

EN : (M : N → Set) → M zero
→ ((m : N) → M m → M (suc m))
→ (m : N) → M m

EN M m−0 m−s ze ro = m−0
EN M m−0 m−s (suc n) = m−s n (EN M m−0 m−s n)

For fac, you need a recursor.

I t−N : M → (M → M) → N → M
R−N : M → (N → M → M) → N → M

Exercise: R-N is derivable from It-N.

R−N = EN (λ → M)

EN is not derivable from It-N. EN comes from the initiality of N.
Do coinductive types have a coeliminator?

record Stream (A : Set) : Set where
co induc t i v e
f i e l d

head : A
t a i l : Stream A

CoIt−Stream : (M → A) → (M → M) → M → Stream A

pos tu l a t e
CoInd : (R : Stream A → Stream A → Set)

→ ({ as bs : Stream A} → R as bs
→ (head as ≡ head bs)

× (R (t a i l as) (t a i l bs)))
→ {} as bs : Stream A} → R as bs → as ≡ bs

3

Execsise: prove the following using CoInd.

mapS suc (from 0) ≡ from (suc 0)

With refl, we can only prove things equal that are identical. This is a consequence of intensional type theory.
Because we postulated CoInd, the computational behavior (canonicity) of our system has been destroyed.

Now, there are closed natural numbers that are not numerals.

4

