
From Type Theory to End-to-End Proof of

Realistic Systems - Lecture 1

Adam Chlipala
Notes by Cheng Zhang, Molly Pan, Pratap Singh

June 2022

1 Introduction

Prof Chlipala’s lectures at OPLSS discuss the use of the Coq proof assistant
to build real-world systems with formal proofs of correctness. The type theory
discussed in other OPLSS lectures provides enough of a formalism to give such
correctness proofs for significant real-world programs. Lecture 1 focuses on high-
level software, in particular the Fiat Cryptography project which automatically
generates verified implementations of finite-field arithmetic operations that are
used in modern cryptographic protocols such as TLS.

Current plan for the lectures:

• Today: High-level software—elliptic curve cryptography;

• Next lecture: Low-level software;

• Final lecture: Hardware.

2 Architecture of a verified Coq development

When using a proof assistant to build a verified system, it is important to keep
track of which components are trusted and which are untrusted. The trusted
component here does not mean “trust-worthy”, but means “assumed to be cor-
rect”. In other word, our system can deduce errours result only when the trusted
component goes wrong. Hence we want to minimize the amount of code that
must be trusted (since this is where bugs can enter the system). Typically, we
have a trusted specification for our program that describes what the program
must do; we then write an untrusted program that implements that specifica-
tion. In Coq, we also construct a proof script (written in a high-level tactic
language) which provides guidance to the Coq proof engine on how to generate
a proof term (written in a dependently typed λ-calculus). Importantly, all of
these proof components are untrusted, and so can be as complex as desired.
The only component of the proof system that must be trusted is a typechecker

1

https://github.com/mit-plv/fiat-crypto


for proof terms, which checks that the type of the proof term is the logical for-
mula corresponding to the user-provided specification. Equivalently (by Curry-
Howard), the proof term provides a constructive proof that the program obeys
its specification. See diagram 1.

Figure 1: The trusted and untrusted parts of the Coq proof system.

When designing complex verified systems, we typically encounter a tradeoff
between the trustworthiness of theorems and how easy they are to prove.

In many pieces of software, to improve performance, people would use op-
timization encoding for common operations. This requires us to prove the cor-
rectness of these optimizations. However there are many challenges:

• The performance of proof engine

• Low level implementation might change

We need a proof system that is fast, efficient and implementation-generic.

3 Finite-field arithmetic and its implementation
on processors

One common tool in cryptography is arithmetic modulo a large prime number.
Consider the following:

m = 2255 − 19

T = N mod m

xT · yT = x · y mod m

above defines the operation in T which is the modular arithmetic with a specific
primem = 2255−19. m is a Pseudo-Mersenne Prime which is chosen to optimize
the performance of the multiplication algorithm, as we will show later.

In a 64-bit computer, a large number can be represented as a array of 64-bit
chunks:

n = n1 + 264n2 + 2128n3 + 2256n4 + . . .

2



However, multiplying numbers in this representation is slow, since modular mul-
tiplication is a slow operation.

Alternatively, if we change the base from 264 to 2255: r0 + 2255r1 for some
r0 and r1, we then have:

r0 + 2255r1 mod (2255 − 19)

= r0 + (2255 − 19 + 19)r1 mod (2255 − 19)

= r0 + 19r1 mod (2255 − 19)

= r0 + 19r1 mod m

This implementation can be computed much faster since the numbers being
multiplied are much smaller. This example demonstrates the tradeoff between
ease of reasoning and understanding versus real-world performance.

Currently the commonly chosen integer representations for operations in this
field are:

• 51-bit chunks on a 64-bit systems or,

• alternating 25-bit chunks and 26-bit chunks on a 32-bit systems.

We therefore want a mechanism to reason about these algorithms that is in-
dependent of the integer representation used. (Following code can be found in
https://github.com/mit-plv/fiat-crypto in /src/demo.v)

The integer is represented as a list of integers each with a weight:

Definition mul (p q:list (Z*Z)) : list (Z*Z) :=

flat_map (fun t =>

map (fun t’ =>

(fst t * fst t’, (snd t * snd t’)%RT))

q) p.

In previous examples:

n = n1 + 264n2 + 2128n3 + 2256n4 + . . .

The ni are the integers and the 264, 2128, . . . is the weight. This way we can
represent integers independent of their bases.

Here is an example for multiplication in base 10. We omit the tactic scripts
used to generate the proofs; readers are encouraged to step through the proofs
and observe how the proof state changes.

Example base10_2digit_mul (a0:Z) (a1:Z) (b0:Z) (b1:Z) :

{ab| eval ab = eval [(10,a1);(1,a0)] * eval [(10,b1);(1,b0)]}.

We can read the proof goal as follows: let a be the two-digit number with
tens digit a1 and ones digit a0, and let b be the two-digit number with tens
digit b1 and ones digit b0. We then want to find an expression ab such that
evaluating ab always produces the result as evaluating a, evaluating b, then
taking the product of the result.

And here is an example for modular multiplication with 2255 − 19:

3

https://github.com/mit-plv/fiat-crypto


Example base_25_5_mul (f g:tuple Z 10) :

{ fg : tuple Z 10 | (eval w fg) mod (2^255-19)

= (eval w f * eval w g) mod (2^255-19) }.

The result of each proof contains two parts: a term containing the expression
implementing each operation, and a proof that the term satisfies the desired
specification.

4 The Type Theory

Besides the normal dependent function type:

Π Intro
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1.e : Πx:τ1τ2

Π Elim
Γ ⊢ e1 : Πx:τ1 .τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1e2[e2/x] : τ2

We also need a set of equational rules in order to prove the optimized version
will output the same result as the unoptimized version.

Thus, we introduce the rules for definitional equality:

≡ Elim
Γ ⊢ e : τ1 τ1 ≡ τ2

Γ ⊢ e : τ2

reflexitivity

⊢ refl : e ≡ e

β equivalence

(λx : τ.e1)e2 ≡ e1[e2/x]

transitivity
e1 ≡ e2 e2 ≡ e3

e1 ≡ e3

The above rules specify a natural dependent type theory, but unfortunately
it is not well suited to building a proof assistant due to the reliance on the type
equivalence judgement τ1 ≡ τ2. The proof assistant would need to somehow
generate and store all the equivalences used in the proof, which is intractable.

Instead, we can embed a strategy: strat for generating equivalences, which
allows the proof to be represented compactly. The strategy embeds the way the
proof assistant generates type equivalences. We then have the following proof
rules:

≡ Elim
Γ ⊢ e : τ1 τ1 ≡strat τ2

Γ ⊢ e : τ2

reflexitivity

⊢ refl : e ≡ e

β equivalence

(λx : τ.e1)e2 ≡strat e1[e2/x]

transitivity
e1 ≡strat e2 e2 ≡strat e3

e1 ≡strat e3

This design gives fast and deterministic reasoning about type equalities, but the
rewriting strategies must be added to the typechecker, growing the trusted code
base.

4



To produce a small system to prove equalities, we can embed rewriting into
our proof rules. Then, instead of generating a proof tree, we can just generate
the rewrites that get us from one type to another. We have the following rules:

Reflexivity

Γ ⊢ refle : e = e

Rewrite
Γ ⊢ e1 : e2 = e3 Γ ⊢ e4 : τ

Γ ⊢ rewrite(e1, e4)[e3/e2] : τ

This induces a new structure for the proof system that embeds a rewriting
strategy without additional rules in the typechecker. However the downside of
this approach is that rewriting-based proofs are typically slow and too large
to be stored: the system needs to explicitly store each rewriting step used, to
justify that their composition is correct.

We instead use the approach of performing the reduction in the term lan-
guage itself, translating proof goals into terms which can then be reduced by the
usual reduction strategies of the term language. We maintain a set of rewrite
rules that are specialized to the particular system of interest, which (along with
the goals) is passed to a reifier that translates them into abstract syntax trees
of the term language. These ASTs can then be simplified according to the nor-
mal reduction rules. The resulting AST then corresponds to a new proof goal,
which can be recovered by reversing the reification transformation. The system
is illustrated by Figure 2.

Figure 2: Translating and normalizing the “native” goals into terms.

The benefit of this strategy over the explicit rewriting approach is that the
proof term does not have to store explicit applications of each rewrite rule used
in the proof. Instead, the rewriting rules are translated into a normalizer that
is proven to only perform safe reductions on the term. Since we know that
every reduction performed by the normalizer is safe, we know that the overall
computation was safe as well.

5



5 Implementation of Fiat Cryptography

The current version of Fiat Cryptography uses the approach of reifying the
proof goal and performing reductions in the term language. As a result, the
system generates both correct implementations and proofs of correctness for
the cryptographic primitives.

Additionally, Coq provides an Extraction feature that extracts executable
code to languages such as OCaml and Haskell. Fiat Cryptography uses this
to produce a standalone executable that can generate optimized C code for
these cryptographic primitives without needing to run Coq. The performance of
these generated implementations is comparable to the previous hand-optimized
implementations.

6


	Introduction
	Architecture of a verified Coq development
	Finite-field arithmetic and its implementation on processors
	The Type Theory
	Implementation of Fiat Cryptography

