
OPLSS22: Game Semantics

Speaker: Pierre-Louis Curien

June 21, 2022

1 Preliminaries

There are a number of duals in the world of programming, e.g. memory cell
vs. value, input vs. output, sending vs. receiving messages, program and
its context, CBN vs. CBV, etc. Game semantics introduces a dual between
player vs. opponent. Broadly, a player can be understood as a program and the
opponent can be thought of as a (potentially adversarial) environment.

1.1 Programs as strategies

In this context, proofs are imbued with a dialogue-game interpretation where
the player specifies a proof and the opponent challenges some formulas. It is
then the player’s responsibility to justify the subsequent parts of their proof
step-by-step for each of the opponent’s challenges.

An arena, or game, is defined as a set of moves by either player or opponent,
some relational to others. Player and opponent each play in turns, thus gener-
ating a sequence of moves m1 . . .mn which we refer to as a play. A strategy is
defined as a set of plays that can be generated via some rules. Strategies are
given by the notation {ϵ, qn, qnqn, qnqnqn, . . . } where each qn is a move and
each element of the set is a play.

1.2 Untyped lambda calculus

A term of the untyped lambda calculus can be a variable, an abstraction or an
application

M ::= x | λx.M | M M

Every term can be represented in exactly one of the following forms

• Head normal form: For n ≥ 1, p ≥ 1,

λx1 . . . xn.x M1 . . .Mp

where x is called the head variable.

• Head redex form: For n ≥ 0, p ≥ 1,

λx1 . . . xn.(λx.M) M1 . . .Mp

1

2 Böhm trees

From dialogue-game interpretation naturally arise Böhm trees. In particular, the
game begins with the opponent challenging the initial term. To this challenge,
the player must provide a proof, i.e. the corresponding Böhm tree. Continuing,
the opponent may challenge a subterm, so long as its head normal form exists.
The player is then tasked with responding to this challenge. Böhm trees are
defined as follows:

BT (M) =

{
Ω if M = λx1 . . . xn.(λx.M

′)M1 . . .Mp

λx1 . . . xn.xω(M1) . . . ω(Mp) if M = λx1 . . . xn.xM1 . . .Mp

Terms Ω or λx1 . . . xn.xM1 . . .Mp (for n ≥ 0, p ≥ 0) can be ordered using a
prefix ordering:

Ω ≤M

M1 ≤ N1 . . .Mp ≤ Np

λx1 . . . xn.xM1 . . .Mp ≤ λx1 . . . xn.xN1 . . . Np

The Böhm tree of a term is the (possibly infinite) least upper bound of all
ω(N) for all N such that M →∗ N where ω(N) is a normal form. Note that
there exists a Böhm tree for any given λ term.

2.1 η-long Böhm trees

For the moment, we temporarily restrict ourselves to finitely-long Böhm trees,
i.e. η-long Böhm trees. An η-long Böhm tree is a Böhm tree that satisfies two
criteria:

• Each occurrence of a variable must appear in a context where it is applied
to all its arguments.

• In each sequence of abstractions λx⃗.M , the number of parameters x1, . . . , xn

is exactly the number of arguments N1, . . . , Nn which the term x1, . . . , xn

can accept according to its type.

2.2 The language PCF

The seminal work in the area of game semantics brought two models of a
paradigmatic core pure functional language PCF, where types are interpreted
by games and terms by strategies. The complete syntax of PCF is given as
follows:

M ::= x | λx.M |MM | n | T | F | pred | succ | zero? | case M [..., c→M, ...] | Y

PCF is a simple typed λ-calculus with the following constants:

2

n : Nat (n ∈ ω)

T, F : Bool

succ, pred : Nat→ Nat

zero? : Nat→ Bool

if then else : Bool→ Nat→ Nat→ Nat

if then else : Bool→ Bool→ Bool→ Bool

Ω : σ ∀σ
Y : (σ → σ)→ σ ∀σ

2.2.1 PCF Böhm trees

The key difference between PCF Böhm trees and normal Böhm trees is that
terms may be wrapped in case statements over y whose value is a continuation.

M ::= λx⃗ : σ⃗.W

W ::= v | case yM1 . . .Mn [v1 7→W1, . . . , vk 7→Wk]

v : C

Γ ⊢ v : C

Γ, x⃗ : σ⃗ ⊢W : C

Γ ⊢ (λx⃗ : σ⃗.W) : σ⃗ → C

Γ · y = σ1 → . . . σn → C
v1, . . . , vk : C Γ ⊢M1 : σ1 . . .Γ ⊢Mn : σn Γ ⊢W1 : C1 . . .Γ ⊢Wk : C1

Γ ⊢ case yM1 . . .Mn [v1 →W1, . . . , vk →Wk] : C1

3 Abstract machine

Böhm trees are functional values evaluated by applying the rules within a frame-
work of an abstract machine, where the expression regularly associated with the
body of a value is being replaced by a variable called body. Environment is now
a list of stacked frames, a frame a vector or tuple of bindings to variables, while
the head variable can take a value relative to each environment. Every strategy
is an interpretation of the initial program.

• Terms: M ::= (λx⃗.W)

• Code: W ::= yM⃗

• Environments: e ::= nil | B · e

• Frames: B ::= ⟨z⃗ ← M⃗⟩ [e]

3

Observe that the term M is split in this way even if x⃗ is empty, in which
case we write M = (W) and W = yN⃗ while retaining a trace of the λ. We call
W the body. A frame is a list of bindings with terms. An environment is a list
of frames.

Computation proceeds by application of the following rule:

(K) (xM⃗)[e]→W [⟨z⃗ ← M⃗⟩[e] · ei]

where

e = B0 · · · · ·Bn Bi = ⟨x⃗i ← N⃗i⟩[ei]
x = xij Nij = (λz⃗.W)

4 HO Games

Introduced by Hyland and Ong in the early 1990s, HO Games present a deno-
tational semantics for PCF in which each datatype is interpreted as an arena.

4.1 Natural numbers

The arena nat for natural numbers is composed by only one opponent move
called q, that asks the player for a number, and an infinite number of Player
moves that return a natural number, one for each possible output.

For example, a program that just returns the number 3 can be interpreted
as the play q3.

The denotation of an inhabitant of a datatype is a strategy (in the datatype’s
arena). In later lectures we will formalize the notion of a strategy and define
special properties that hold for some strategies (e.g. innocence, determinism).

We diagram the arena nat as follows:{
{ϵ}

{ϵ,qn}

{
⊥
n

The diagram above has two parts: on the left we have the HO game semantics
and on the right we have a traditional Scott denotational semantics. Each line
shows how an inhabitant of nat is represented in each semantics. So the strategy
{ϵ} is the HO game semantic denotation for the undefined value commonly
denoted ⊥ and {ϵ, qn} is the HO game semantic denotation of any n ∈ N.

4.2 Causality between moves

Apart from the set of player and opponent moves, an arena must define an en-
abling relation among moves (i.e., when a move is a valid answer to an opposing
move).

We write m ⊢ m′ to note that the move m enables the use of the move m′.
Since plays consist of a sequence of alternating opponent and player moves, the
moves in an enabling relation must have opposite polarities (i.e., they can’t be
both player or opponent moves).

4

4.3 Product types

The arena for nat × nat is given by two copies of nat, that we will call nat1
and nat2.

The opponent can request the first or second projection from the pair (moves
q1 and q2, respectively) and the player can answer with the request number
(noted m1 or n2). The enablings are inherited from the components of the
product:

q1 ⊢ m1 q2 ⊢ n2

Notice that q1n2 is not a valid play. The initial moves are q1 and q2.
We diagram the arena nat1 × nat2 as follows:{ {ϵ}

{ϵ,q1m1}
{ϵ,q2n2}

{ϵ,q1m1,q2n2}

{
(⊥,⊥)
(m,⊥)
(⊥,n)
(m,n)

4.4 Function types

Apart from the enablings inherited from its components, the arena for a function
type needs qϵ ⊢ q1. The only initial move is qϵ.

We diagram the arena nat1 → natϵ as follows:

qϵq1

{ m11nϵ1
m12nϵ2

...
λx.case x

{ m1 → n1
m2 → n2

...

The sequence qϵq1 at the beginning states that a function looks at its argu-
ment before outputting anything.

As an example, lets look at the following program:

λx.case x { 0 → 3
1 → 4

We can write the Böhm tree as,

qϵq1
{

013ϵ
114ϵ

The play qϵq1013ϵ can be interpreted as follows:

1. The opponent starts by asking about the behaviour of the function.

2. The player asks for an specific input.

3. The opponent asks for the behaviour on input 0.

4. The player returns 3, stating that the function returns 3 on input 0.

References

Pierre-Louis Curien. Notes on game semantics, February 2019. URL
https://curien.galene.org/papers/Game-semantics.pdf.

5

