
Game semantics and friends

Pierre-Louis Curien (CNRS – Université Paris Cité – Inria)

OPLSS 2022, Eugene, OR, 20-23/6/2022

Main source for the course: my

Notes on game semantics (2006), available from curien.galene.org/papers

and bibliography therein

Some dual pairs in the world of programming

• memory cell (or location or register) versus its actual contents
or value; in object-oriented style, record field names versus their
values, method names versus their actual definition.

• input and output, or (in the language of proof theory) hypothe-
ses and conclusions;

• sending and receiving messages (in process calculi);

• a program and its context (the libraries of your program en-
vironment – or the larger program of which the program under
focus is a subpart, or a module); the programmer and the com-
puter; two programs that call each other;

• call-by-name (CBN) and call-by-value (CBV).

1

Proofs as strategies

Proofs can be given a dialogue-game interpretation:a formula

is tested through a dialogue between an opponent who doubts

some formulas, and the player who justifies his proof step-by-step

by exhibiting the rules he has used.

t1+SSt2 = S(t1+St2)

t1+St2 = S(t1+t2)

S(t1+St2) = SS(t1+t2)

t1+SSt2 = SS(t1+t2)

2

Untyped λ-calculus

The syntax of the untyped λ-calculus (λ-calculus for short) is

given by:

M ::= x ||MM || λx.M,

where x is called a variable, M1M2 is called an application, and

λx.M is called an abstraction.

β-reduction:

(λx.M)N →M [x← N]

M →M ′

MN →M ′N

N → N ′

MN →MN ′
M →M ′

λx.M → λx.M ′

3

Normal forms in the λ-calculus

Any λ-term has exactly one of the following two forms:

• head normal form (n ≥ 1, p ≥ 1):

λx1 · · ·xn.xM1 · · ·Mp

• head redex (n ≥ 0, p ≥ 1):

λx1 · · ·xn.(λx.M)M1 · · ·Mp

Note that a normal form can be only of the first form, and

recursively so.

4

Böhm trees

ω(M)=

{
Ω ifM = λx1 · · ·xn.(λx.P)M1 · · ·Mp

λx1 · · ·xn.xω(M1) · · ·ω(Mp) ifM = λx1 · · ·xn.xM1 · · ·Mp ,

Ω ≤M
M1 ≤ N1 · · ·Mp ≤ Np

λx1 · · ·xn.xM1 · · ·Mp ≤ λx1 · · ·xn.xN1 · · ·Np

Then the Böhm tree of a term is the (possibly infinite) least

upper bound of all ω(N), for all N such that M →∗ N .

The Böhm tree of a normalisable term is its normal form.

5

Böhm trees as strategies

M1 . . .

N1 . . . Np

λy1 · · · yp.y . . . Mn

λx1 · · ·xn.x

λx1 · · ·xn.xM1 . . . (λy1 · · · yp.yN1 . . . Np) . . .Mn

6

Simply typed λ-calculus

σ ::= C || σ → σ (C base type)

Thus every type write s uniquely as σ1→ · · · → σn→ C.

x : σ ∈ Γ

Γ ` x : σ

Γ, x : σ `M : τ

Γ ` λx : σ.M : σ → τ

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ

Böhm trees associated to simply typable terms are finite (see
Silvia’s lectures!).

7

η-long Böhm trees

We restrict ourselves to the simply typed setting, and impose

that

• each occurrence of a variable must appear in a context where

it is applied to all its arguments,

• and in each sequence of abstractions λ~x.M the number of pa-

rameters x1, . . . , xn is exactly the number of arguments N1, . . . , Nn

which the term λ~x.M can accept according to its type.

8

Executing Böhm trees (the abstract machine)

Terms M ::= (λ~x.W) Environments e ::= nil || B•e
Code W ::= y ~M Frames B ::= 〈~z ← ~M〉[e].

We split M in this way even if ~x is empty: in this case we write

M = (W) and W = y ~N . We also call W a body.

(K) (x ~M)[e]→W [〈~z ← ~M〉[e]•ei]

where

 e = B0• · · · •Bn Bi = 〈~xi← ~Ni〉[ei]
x = xij Nij = (λ~z.W)

9

Executing Böhm trees (illustration)

2′ u(λx.u(λy.x)) 〈u 2← (λr.r(r(z)))〉[] = ρ0

3′ r(r(z)) 〈r 3← (λx.u(λy.x))〉[ρ0] = ρ1

4′ u(λy.x) 〈x← (r(z))〉[ρ1]•(ρ0 = 〈u 4← (λr.r(r(z)))〉[]) = ρ2

5′ r(r(z)) 〈r 5← (λy.x)〉[ρ2] = ρ3

6′ x 〈y ← (r(z))〉[ρ3]•(ρ2 = 〈x 6← (r(z))〉[ρ1]•ρ0) = ρ4

7′ r(z) 〈〉[ρ4]•(ρ1 = 〈r 7← (λx.u(λy.x))〉[ρ0]) = ρ5

8′ u(λy.x) 〈x← (z)〉[ρ5]•(ρ0 = 〈u 8← (λr.r(r(z)))〉[]) = ρ6

9′ r(r(z)) 〈r 9← (λy.x)〉[ρ6] = ρ7

10′ x 〈y ← (r(z))〉[ρ7]•(ρ6 = 〈x 10← (z)〉[ρ5]•ρ0) = ρ8
11′ z 〈〉[ρ8]•ρ5

10

The language PCF

PCF is simply typed λ-calculus, with the following constants

n : Nat (n ∈ ω)
T, F : Bool
succ, pred : Nat→ Nat
zero? : Nat→ Bool
if then else : Bool→ Nat→ Nat→ Nat
if then else : Bool→ Bool→ Bool→ Bool

Ω : σ for all σ
Y : (σ → σ)→ σ for all σ

11

Operational semantics of PCF

(λx.M)N →M [x← N] YM →M(YM)
zero?(0)→ T zero?(n+ 1)→ F
succ(n)→ n+ 1 pred(n+ 1)→ n
if T then N else P → N if F then N else P → P

M →M ′

MN →M ′N
M →M ′

if M then N else P → if M ′ then N else P

M →M ′

f(M)→ f(M ′)
(for f ∈ {succ, pred, zero?})

12

PCF Böhm trees

M ::= λ~x : ~σ.W W ::= v || case yM1 · · ·Mn [v1 →W1, . . . , vk →Wk]

v : C

Γ ` v : C

Γ•y = σ1 → · · · → σn → C v1, . . . , vk : C
Γ `M1 : σ1 · · · Γ `Mn : σn Γ `W1 : C1 · · · Γ `Wk : C1

Γ ` case yM1 · · ·Mn [v1 →W1, . . . , vk →Wk] : C1

Γ, ~x : ~σ `W : C

Γ ` (λ~x : ~σ.W) : ~σ → C

13

PCF Böhm trees as strategies

M1 · · · Mp v1 →W1 · · · vk →Wk

λ~x.case y

14

HO games

Game semantics arose as such in the early 1990’s from parallel

works of

• Abramsky, Jagadeesan, Malacaria (AJM)

• Hyland and Ong (HO)

A fore-runner was sequential algorithms (Berry-Curien) (late

1970’s).

In this course, we focus on HO.

15

Entering the arena!

We start with the simplest kind of data type. The arena nat for

natural numbers has the following moves: one (initial) O move

denoted q, and a P move n for each natural number n.

{
{ε}
{ε, qn}

{
⊥
n

16

Product of arenas

The arena nat × nat is made of two disjoints copies of nat.
{ε}
{ε, q1m1}
{ε, q2n2}
{ε, q1m1, q2n2}


(⊥,⊥)
(m,⊥)
(⊥, n)
(m,n)

17

Function types (nat1 →natε)

qεq1

{
013ε
316ε

λx. case x

{
0→ 3
3→ 6

Note the inversion of polarity for nat1. Also, qε ` q1.

Interaction with {q10} converges, interaction with {q12} diverges.

18

Plays and (deterministic) strategies

The tree qεq1

{
013ε
114ε

can equivalently be descirbed by the set of

its even-length branches, which are called plays:

{ε, qεq1, qεq1013ε, qεq1114ε}

A strategy is a set of even-length plays. Note that plays start

with O and alternate between O and P.

Here we deal with deterministic strategies σ:

if pv, pw ∈ σ, then v = w.

The player knows how to react to each opponent’s move: “my

head variable is”.
19

Just a paraphrase of syntax?

Mathematics is full of useful equivalent presentations: descriptive

/ analytical geometry, matrices / linear maps, etc...

Sign of good syntax: Böhm trees!

In fact, the correspondence is an injection: games offer a wider

picture (cf. IA).

20

Stuttering

λx. case x [4→ case x [3→ 2]] as strategy contains qεq141q1312ε.

Stuttering strategies do not exist in the earlier model of sequen-

tial algorithms of PCF (Berry-Curien, late 1970).

21

A higher-order type

(nat11 →nat1)→natε

h = λf. case f(3)[4→ 7,6→ 9]

As a strategy:

λf. case f


(3)
4→ 7
6→ 9

qεq1


q11311
417ε
619ε

22

Pointers

Kierstead1 = λf.case f(λx.case f(λy.case x))

Kierstead2 = λf.case f(λx.case f(λy.case y))

qεq1



q11q1


q11q111

 T111T11
F111F11

T1T11
F1F11

T1Tε
F1Fε

(type ((bool111→bool11)→ bool1)→ boolε)

23

Kierstead1 = qε[q1,
0←↩]



q11[q1,
1←↩]


q11[q111,

1←↩]

 T111[T11,
1←↩]

F111[F11,
1←↩]

T1[T11,
1←↩]

F1[F11,
1←↩]

T1[Tε,
1←↩]

F1[Fε,
1←↩]

Kierstead2 = qε[q1,
0←↩]



q11[q1,
1←↩]


q11[q111,

0←↩]

 T111[T11,
1←↩]

F111[F11,
1←↩]

T1[T11,
1←↩]

F1[F11,
1←↩]

T1[Tε,
1←↩]

F1[Fε,
1←↩]

24

Inserting the implicit pointers in our previous examples

h = λf. case f(3)[4→ 7,6→ 9] λx. case x[0→ 3,3→ 6]

qεq1


q11311
417ε
619ε

q1q11

{
01131
31161

qε[q1,
0←↩]


q11[311,

0←↩]
41[7ε,

1←↩]
61[9ε,

1←↩]

q1[q11,
0←↩]

 011[31,
1←↩]

311[61,
1←↩]

25

Game abstract machine for PCF Böhm trees

• p′ determined from (p− 1) by

{
the strategy for n even
the counter-strategy for n odd

• If p′ points to m, then play p over m′

26

Game abstract machine for PCF Böhm trees

qε[q1,
0←↩]


q11[311,

0←↩]
41[7ε,

1←↩]
61[9ε,

1←↩]

q1[q1,
0←↩]

 011[31,
1←↩]

311[61,
1←↩]

interaction

〈qε, 1〉
2′

[q1,
0←↩]


〈q11, 3〉

3′

[311,
0←↩]

〈61, 5〉
6′

[9ε,
1←↩]

〈q1, 2〉
3′

[q11,
0←↩]

 〈311, 4〉
5′

[61,
1←↩]

27

Executing Kierstead against

λg.case g(case gT [T → T, F → F]) [T → F, F → T]

q1[q11,
0
←↩]


q111[q11,

1
←↩]


q111[F111,

0
←↩]

T11[T111,
1
←↩]

F11[F111,
1
←↩]

T11[F1,
1
←↩]

F11[T1,
1
←↩]

Kierstead1 = qε[q1,
0
←↩]



q11[q1,
1
←↩]


q11[q111,

1
←↩]

{
T111[T11,

1
←↩]

F111[F11,
1
←↩]

T1[T11,
1
←↩]

F1[F11,
1
←↩]

T1[Tε,
1
←↩]

F1[Fε,
1
←↩]

28

〈qε, 1〉[q1,
0←↩]



〈q11, 3〉[q1,
1←↩]

 〈q11, 5〉[q111,
1←↩]

{
〈T111, 15〉[T11,

1←↩]
〈F1, 17〉[F11,

1←↩]

〈q11, 7〉[q1,
1←↩]

 〈q11, 9〉[q111,
1←↩]

{
〈F111, 11〉[F11,

1←↩]
〈T1, 13〉[T11,

1←↩]

〈T1, 19〉[Tε,
1←↩]

〈q1, 2〉[q11,
0←↩]


〈q111, 6〉[q11,

1←↩]

 〈q111, 10〉[F111,
0←↩]

〈T11, 14〉[T111,
1←↩]

〈F11, 18〉[T1,
1←↩]

〈q1, 4〉[q11,
0←↩]

{
〈T11, 16〉[F1,

1←↩]
〈q1, 8〉[q11,

0←↩]
{
〈F11, 12〉[T1,

1←↩]
29

Well-bracketing

This strategy of (nat11×nat12 →nat1)→natε is not the interpre-

tation of a PCF term:

qεq1


q110ε
q121ε
n1(n+ 2)ε

The initial question qε may be answered while q1 and q11 are

still open.

30

Strong (or partial) evaluation

qεq2


62q1

{
418ε
211ε

32q1

{
415ε
116ε

against q141 yields qεq2

{
628ε
325ε

(λxy.case y [6→ case x [. . .], . . .])4 → λy.case y [. . .]

Lazy, stream-like loop of evaluation.

31

On the form of the plays involved in PCF Böhm trees

They are alternating sequences of moves OPO. . . , equipped with

backward pointers from P moves to some previous O move.

Such plays are called views.

General plays (that will feature in a more synthetic definition of

composition of strategies) will also have pointers from the O

moves (to some previous P move).

32

Arenas

An arena A is given by a set of moves M , which have a polarity

O or P (formally, there is function λA : M → {O,P})

and by an enabling relation `, which is the disjoint union of a

subset of M ×M (one writes m ` n) and of M (one writes ` m).

If m ` n, then m and n have opposite polarities, and 6` n. If ` m,

then m is an opponent move.

33

Product of two arenas

Let A and B be arenas. The arena A × B has as moves all m1

such that m is a move of A and all moves n2 such that n is a

move of B. Polarities of these moves are as in A and B. Enabling

is defined as follows:

`A m
` m1

`B n

` n2

m `A a
m1 ` a1

n `B b

n2 ` b2

34

Function space of two arenas

Let A and B be arenas. The arena A → B has as moves all m1

such that m is a move of A, with polarity opposite to that in

A, and all moves n2 such that n is a move of B, with the same

polarity as in B. Enabling is defined as follows:

`B n

` n2

`A m `B n

n2 ` m1

m `A a
m1 ` a1

n `B b

n2 ` b2

35

Plays and strategies

A legal play, or play for short, is a (possibly empty) sequence

of moves of alternating polarity which is such that every occur-

rence of non-initial move is equipped with a pointer to a previous

occurrence of a move justifying it. The set of legal plays over

an arena A is written LA. (Clearly, a play starts with Opponent,

since only opponent moves can be initial.)

A strategy on an arena A is a non-empty set of even-length legal

plays, which is closed under even-length prefixes.

Other conditions, like determinism and innocence, will be added

later.

36

An automaton recognising LA→B

Convention: O and P moves of A (B) are written q, v (q′, v′).

Legal plays are all even-length words read by the following au-

tomaton (initial state OO):

37

Legal interactions

Let A,B,C be three arenas. A legal interaction, or interaction

for short, over these arenas is a sequence u of moves from the

three arenas such that

u �A,B∈ LA→B , u �B,C∈ LB→C , u �A,C∈ LA→C

We write int(A,B,C) for the set of legal interactions over A,B,C.

In this definition, say, u �A,B denotes the subsequence of u con-

sisting only of the moves of A,B. One takes care of maintaining

the moves of A,B,C all distinct by tagging them if needed.

38

An automaton recognising legal interactions

39

Composition of strategies

Let A,B,C be three arenas, and let σ (resp. τ) be a strategy

of A → B (resp. B → C). The following defines a strategy of

A→ C, called the composition of σ and τ :

τ ◦ σ = {v | ∃u ∈ int(A,B,C) v = u �A,C, u �A,B∈ σ, v �B,C∈ τ} .

(we say that u is a witness of v).

In the vocabulary of concurrency theory:

(|| composition) + hiding

40

Associativity of composition

If u ∈ int(A,C,D) and v ∈ int(A,B,C) are such that u �A,C=

v �A,C, then there is a unique w ∈ int(A,B,C,D) such that

w �A,C,D= u and w �A,B,C= v.

If σ, τ, υ are strategies of A→ B,B → C, and C → D, respectively,

then υ ◦ (τ ◦ σ) = (υ ◦ τ) ◦ σ.

41

Identity strategy

We define

id ′ = {u ∈ LA→A | v �1= v �2 for all even prefixes v of u}

We define id ′′ as the smallest set of plays closed under the fol-

lowing rules:

ε ∈ id ′′
v ∈ id ′′, a O move

va2a1 ∈ id ′′
v ∈ id ′′, a P move

va1a2 ∈ id ′′

We have id ′ = id ′′ (id for short), and id is a strategy.

42

The identity strategy is an identity

Let A,B,C be three arenas and let u ∈ int(A,B,C). Then u

is a sequence of blocks of the form mb1 . . . bkn where m is an O

(A→ C) move, the bi’s are B moves, and n is a P (A→ C) move.

Moreover, if u is a witness for τ ◦ σ (i.e., u �A,B∈ σ, u �B,C∈ τ),

and if u = u′mb1 . . . bkn where mb1 . . . bkn is as above, then u′ is

also a witness.

We have always id ◦ σ = σ and σ ◦ id = σ.

43

Determinism, innocence

A strategy σ is called deterministic when

smn1, smn2 ∈ σ ⇒ n1 = n2

The P view psq of a play s is defined as follows:

pεq = ε
psnq = psq n (n P move)
psmq = m (m initial)
psns′mq = psnqm (m O move,m points to n)

A deterministic strategy is called innocent if

s ∈ σ ⇔ psq ∈ σ

Arenas and strategies form a category. It contains as subcate-
gories the categories of arenas and deterministic strategies, and
of arenas and innocent strategies (idem for well-bracketed).

44

Innocence, logically

In a view, O, unlike P, has to play in the immediate subtype:

λx. . . . λy.xM1M2

• P = head variable x : A1 → A2 → B can be bound far away

• O = initial move of M1 (or M2) has to be in type A1 (or A2)

45

Fat versus meager

In the official HO semantics, the meaning of a PCF Böhm tree

(or term) is made of all plays whose view is in (the transcription

of the) tree (as strategy), as stressed in this course. We call

the resulting set of plays the fat version. In contrast, we call our

preferred version, consisting of views only, the meager version.

Theorem. The composition defined on the fat versions through

(|| composition) + hiding is the fat version of the composition

of the meager versions via the game abstract machine.

46

Illustrating (|| composition) + hiding

The (unique) legal interaction witnessing the interaction

qε[q1,
0←↩]


q11[311,

0←↩]
41[7ε,

1←↩]
61[9ε,

1←↩]

q1[q11,
0←↩]

 011[31,
1←↩]

311[61,
1←↩]

is

47

(which belongs to the fat version of the strategy on the left)

The key result of Hyland and Ong

The properties characterizing (the injective interpretation of)

PCF Böhm trees are

determinism, innocence and well-bracketing

(For AJM, characterization via history-freeness)

48

A cartesian closed category

We get the canonical currying isos “for free” (the moves are the

same, up to retagging):

(A×B)→ C

A→ (B → C)

Moreover, one can interpret fixpoints (since we were able to read

infinite Böhm trees as strategies).

Therefore, we have a model of PCF.

49

Full abstraction

We write M =obs N iff for all C s.t. C[M] and C[N] are closed

and of base type, we have: C[M] −→? c iff C[N] −→? c.

A model is fully abstract when

[[M]] = [[N]] iff M =obs N

The “if” direction is the difficult one

50

Definable separability

If the model is such that for every distinct f, g of the same type

A (interpreting some syntactic type) there exists a definable h

of type A→ bool such that hf 6= hg, then it is fully abstract.

Compact definability + extensionality imply definable separabil-

ity.

51

Some results and some non-results

Language Model Def. FA

PCF + por Cont Yes Yes
PCF + catch SA ≈ (Ginn/ =op) Yes Yes

PCF PCFBT/ =op Yes Yes

PCF GAJM ,GHO ,PCFBT Yes No
PCF + control Ginn Yes No
Idealized Algol Gwb Yes Yes

52

HO games vs sequential algorithms

Interpret exponential differently:

• HO games are repetitive, bool→bool infinite

• Sequential algorithms have memory, bool→bool infinite

Cf. two exponentials of coherence spaces (multiset and set)

53

Around full abstraction

• Stable model (Berry, reinvented by Girard) 7→ linear
logic.
• Sequential algorithms led ... to the categorical ab-
stract machine, and then to explicit substitutions.
• The full abstraction problem boosted also the study
of logical relations (Sieber, O’Hearn and Ricky, Buc-
ciarelli), and motivated Bucciarelli-Ehrhard’s and Lon-
gley’s extensional accounts of sequentiality.

54

The game semantics program

• references (Abramsky, McCusker, Honda)

• control (Laird)

• subtyping (Chroboczek)

• nondeterminism (Harmer), probabilistic choice (Danos and Harmer)

• call-by-value (Honda and Yoshida)

• concurrency (Ghica and Murawski, Laird)

55

Imperative arenas

• The arena comm: run and done

• The arena var:

read write(n) (n ∈ ω)
OK n (n ∈ ω)

The strategy cell :

write(0) OK read 0
write(0) OK write(2) OK read 2

reads last written value (not innocent)

56

Cell discipline enforced by interaction

[[(x := 0); (x := x+ 1)]] =

runε write(0)1OK1read1


...
n1 write(n+ 1)1 OK1 doneε
...

Interaction play with cell:

runε write(0)1 OK1 read1 01 write(1)1 OK1 doneε

57

Definability through factorization

Every strategy σ : A can be written as (τ cell) for
some innocent strategy τ : var→ A
Other such results:
• catch for non well-bracketing (Laird)
• a dice strategy for nondeterminism / probabilistic
games (Danos, Harmer)
• a form of case for non-rigidity (a condition dual to
well-bracketing) (Danos, Harmer, Laurent)

58

Definable separability

Essentially the same argument for sequential algo-
rithms,and for the IA (non innocent) model

Let σ1, σ2 : A, let m1 . . . m2n ∈ σ1 \ σ2. We define τ : A→ nat as

the minimal strategy that contains

q m1 . . . m2n 0

59

Game semantics for verification

Up to second-order:

• pointers are useless, i.e., can be reconstructed uniquely

(Ghica and McCusker)

• the strategies interpreting second-order IA terms (as

sets of words) are regular languages.

Applications to decidability results. More results have
been obtained for larger fragments (third order: Ong
and others)

60

