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1 Pointers

In order to evaluate a strategy we need pointers to mark the number of player

moves to opponent moves. The notation
[
m,

i←↩
]
is used for a P move, where i

is a natural number recording how many O moves one must pass until meeting
the justifier. For example, considering the player’s strategy defined by the high-
order type (nat11 → nat1 → natϵ):

h = λf. case f(3) [4→ 7, 6→ 9]

and opponent’s counter-strategy defined by

λx.case x [0→ 3, 3→ 6]

and their associated Böhm Trees:

qϵq1


q11311

417ϵ

619ϵ

q1q11

{
01131

31161

we can insert explicit pointers as follows:

qϵ[q1,
0←↩]


q11[311,

0←↩]
41[7ϵ,

1←↩]
61[9ϵ,

1←↩]

q1[q11,
0←↩]

{
011[31,

1←↩]
311[61,

1←↩]

From the easy examples (with constants) the pointers can be inferred, blue
colored is associated to Player and red to Opponent moves. As expected the
first pointers for both strategies are set to 0; the pointers from answer move q1
is the one corresponding to the binding λ and q11 is the one corresponding to
the argument 3. The pointers marked with 1 are all to the last questions.
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2 Game abstract machine for PCF Böhm trees

Game abstract machines operate over strategies and counter-strategies fig. 1.
A player’s step 2n′ is determined by the opponent’s last move 2n − 1 in the
strategy. 2n′ points to some earlier step p. The machine then prescribes where
to play the next step 2n in the counter-strategy, namely considering the step p′.

Figure 1: Tree illustrations for strategies and counter-strategies

2.1 Example

Each node of the Böhm tree is given in the form qn

[
qm,

p
←↩

]
. In response to the

opponent’s challenge qn, the player answers qm. We motivate game abstract
machines for PCF Böhm trees via the example in fig. 2.

The first layer of the Böhm tree is qϵ

[
q1,

0←↩
]
. This means that the opponent

presents a challenge qϵ that the player will answer via q1. To this end, we begin in
the node 2′. The opponent challenges with qϵ, and to address this challenge, the
player makes move q1. q1 points to the Böhm tree with corresponding opponent
strategy which is node 3′. Transitioning to node 3′, the opponent challenges
with q1. To this challenge, the player responds with move q11. Continuing, the
abstract machine proceeds to node 4′, then 5′, and lastly 6′. In 6′, the process
terminates as the player has reached an answer to qϵ. In this example, qϵ is
answered by 9, and the opponent move that enabled 9 is 6.
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qϵ

[
q1,

0←↩
]

q11

[
311,

0←↩
]

41

[
7ϵ,

1←↩
]

61

[
9ϵ,

1←↩
]

q1

[
q1,

0←↩
]011

[
31,

0←↩
]

311

[
61,

1←↩
] (interaction)

2′ :⟨qϵ, 1⟩
[
q1,

0←↩
]4′ :⟨q11, 4⟩

[
311,

0←↩
]

6′ :⟨61, 5⟩
[
9ϵ,

1←↩
]

3′ :⟨q1, 2⟩
[
q11,

0←↩
]{

5′ :⟨311, 4⟩
[
61,

1←↩
]

Figure 2: Example of game abstract machine for PCF Böhm trees

3 Kierstead example

Consider the terms

Kierstead1 = λf.casef(λx.casef(λy.casex))

Kierstead2 = λf.casef(λx.casef(λy.casey))

where caseM is shorthand for caseM [T → T, F → F ] for any M . The terms
share the same type, namely

(bool111 → bool11)→ bool1)→ boolϵ

Note that the strategies for the two terms differ only in one pointer. The
following diagram represents the strategies for each term: to see the strategy of
Kierstead1 let a = 1 to see the strategy of Kierstead1 let a = 0. The discrepancy
between the two is highlighted in red:

qϵ[q1,
1←↩]



q11[q1,
1←↩]


q11[q111,

a←↩]

{
T111[T11,

1←↩]
F111[F11,

1←↩]
T1[T11,

1←↩]
F1[F11,

1←↩]
T1[Tϵ,

1←↩]
F1[Fϵ,

1←↩]
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This example shows the importance of pointers; without their inclusion the
two terms would have the same denotation.

Observe also that the strategies diagrammed above have the well-bracketing
property described in the proceeding section.

4 Well-bracketing

The well-bracketing condition states that moves must be answered in order.
The arena that represents the interpretation of PCF only admits strategies that
respect this condition. For example, the following strategy is well-bracketed:

qϵq1

{
013ϵ

114ϵ

On the other hand, the following strategy (which does not correspond to any
PCF Böhm tree) does not satisfy the condition, because qϵ may be answered
before q1 or q11.

qϵq1


q110ϵ

q121ϵ

n1(n+ 2)ϵ

5 Strong (or partial) evaluation

Strong evaluation resembles a lazy or stream-like loop of evaluation. An abstract
machine starts at qϵ and for each λ present in a given term there exists an
intermediate qi in the corresponding Böhm tree that serves as a challenge that
must be answered prior to qϵ.

Consider the term (λx.λy.case y [6→ case x [. . . ] , . . . ]) and a partial eval-
uation of this term to the input 4.

(λx.λy.case y [6 7→ case x [. . . ] , . . . ])4 → λy.case y [. . . ]

The Böhm tree for this partial evaluation is given in fig. 3. The input 4
eliminates the binding λx leaving λy, i.e. a partial evaluation. With this, we
are able to answer the remaining challenge q1 and return 41. Hence the Böhm
tree reduces to the one given in fig. 4. There is still one layer remaining in the
Böhm tree because there is still one λ left to evaluate. The opponent may then
proceed in an analogous manner to eliminate λy.

6 Arenas

An arena A is defined by a set of moves M and an enabling relation. Each move
has a polarity O (opponent move) or P (player move).
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qϵq2


62q1

{
418ϵ

211ϵ

32q1

{
415ϵ

116ϵ

Figure 3: Example Böhm tree for partial evaluation

qϵq2

{
628ϵ

325ϵ

Figure 4: Example Böhm tree for partial evaluation against q141

The enabling relation is composed of enabling rules of the form m ⊢ n (the
move n is enabled by m) and by initial moves ⊢ m (m is an initial move).

The enabling relation has two restrictions:

1. Related moves must have opposing polarity.

2. Only opponent moves can be initial moves.

6.1 Product of arenas

The product of two arenas A and B (noted A × B) has as moves the disjoint
union of the moves of its components: for each movem in A (resp. n in B), there
is a move m1 (resp. n2) in A×B. The polarities of the moves are preserved.

Each enabling in the product arena corresponds to an enabling in one of its
components:

⊢A m

⊢ m1

⊢B n

⊢ n2

m ⊢A a

m1 ⊢ a1

n ⊢B b

n2 ⊢ b2

6.2 Function space of two arenas

The arena A → B of functions between arenas A and B. Like for the product
of arenas, the move set of A→ B is the disjoint union of the moves of A and B,
with the only difference being that the polarity of the moves from A is reversed.

The only initial moves are the ones inherited from arena B. The initial
moves of the A arena are now valid responses to initial moves from B (second
rule below).
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⊢B n

⊢ n2

⊢A m ⊢B n

n2 ⊢ m1

m ⊢A a

m1 ⊢ a1

n ⊢B b

n2 ⊢ b2
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