
OPLSS22: Game Semantics - Lecture 4

Speaker: Pierre-Louis Curien

June 25, 2022

1 Full abstraction

The work on game semantics presented in these lectures was motivated by the
full abstraction problem for PCF. Since full abstraction is a desirable property
for denotational semantics of any language, game semantics is not applicable
only to PCF, but rather is a more general framework that could be applied to
develop a denotational semantics of other languages.

We denote operational equality between two terms M and N by M =op N ,
meaning that for all contexts C such that C [M] and C [N] are closed and of
base type, we have C [M] →∗ c if and only if C [N] →∗ c

We say that a model is fully abstract when denotational equivalence between
terms M and N implies M =op N , and vice versa:

JMK = JNK if and only if M =op N

To prove this, we introduce the notion of computational adequacy. Compu-
tational adequacy, as discovered by Plotkin, is stated in lemma 1.1.

Lemma 1.1. ⊢ P : C, then [|P |] = v if and only if P →∗ v.

The proof of lemma 1.1 follows by constructs of logical relations. Observe
that any model that interprets natural numbers as the corresponding actual
natural numbers (e.g. game model, intermediate model) satisfies computational
adequacy.

Now we have all the ingredients to complete the proof of full abstraction. The
forward direction is immediate. Here, we want to show that if two terms have
the same denotational semantics, then they are operationally equal. Indeed, let
JMK = JNK and let C be a context as above. Then JC[M]K = JC[N]K, and we
can conclude by lemma 1.1

2 Towards a fully abstract PCF

2.1 Inadequacy of Scott semantics

The Scott semantics model for PCF cannot be fully abstract because it accepts
the parallel-or function por (discussed below) that cannot be defined in PCF.

1

The function por : Bool → Bool → Bool precludes full-abstraction because
it is possible to construct two PCF terms N and M each of type (Bool →
Bool → Bool) → Bool that differ only in their denotational interpretation
when applied to por, hence M =op N (because por cannot be defined in “real”
PCF) yet [[M]] ̸= [[N]] (when applied to por in the model).

2.2 Research on PCF full abstraction

In the late 1970’s arose the question of finding a fully abstract model of PCF.
There were multiple candidate models:

• Milner’s term model solves the full abstraction problem when quotiented
by operational equivalence. The necessity of the quotienting step reduces
the appeal of the model.

• Scott semantics is not a fully abstract model of PCF, but it is a fully
abstract model for PCF+por. Scott semantics models a computer program
with a Scott-continuous function f (any single piece of the output f(x)
may be computed using a finite part of the input x (where x itself could
be infinite), which one can take to be minimal). But Scott pointed out
the barrier to full abstraction posed by por(⊥, T) = T and por(T,⊥) = T
which is not definable in PCF (discussed above). Plotkin observed that
Scott continuous functions are a fully abstract model for the extension
PCF + por of PCF.

• The stable model of PCF, was developed by Gérard Berry and uses a
“stability” condition to exclude the problematic por from the denotational
semantics. A function f is stable if for a fixed x and fixed piece of f(x),
such a minimal input is unique, and is thus minimum. But this condition
was not sufficient to obtain full abstraction, as witnessed by the following
function:

Gustave(T, F,⊥) = T Gustave(F,⊥, T) = T Gustave(⊥, T, F) = T

Gustave1 is problematic because on one hand any pair of elements do
not have a common upper bound (viz. first components in the first two
equations) hence it is stable, but on the other hand, no sequential program
can compute it.

2.3 Definable separability

We say that a model has the property of definable separability if for any two
terms with different denotations there exists a definable function that produces a
different value when applied to each term (hence the terms are not operationally
equivalent). Definable separability is a sufficient condition to get a fully abstract
model.

1Gustave was the nickname given to Berry when he joined INRIA as a PhD student.

2

Theorem 2.1. If the model is such that for every distinct f ,g of the same type
A (interpreting some syntactic type) there exists a definable h of type A → bool
such that hf ̸= hg, then it is fully abstract.

Proof. Suppose that JMK ̸= JNK, i.e. M and N are not denotationally
equivalent. We want to show that M ̸=op N . Let h be given by our assumption,
and let P be such that h = JP K, v1 = h(JMK), v2 = h(JNK), and context
C = P []. Then C [M] →∗ v1 and C [N]] →∗ v2, and hence M ̸=op N .

3 Imperative semantics

We now step away from PCF to apply game semantics to imperative program-
ming languages. For this, we introduce a new class of moves that correspond to
statements in an imperative program. We’ll start with a very small arena comm

containing just two moves:

• run, an opponent move, and the initial move

• done, a player move, enabled by run

We’ll introduce another imperative arena var that expresses what it means
to read and write from a single memory cell that can hold a natural number.
The moves are:

• write(n) for any n ∈ ω. This is an opponent move and is initial.

• OK. This is a player move and is the response sent after a write is success-
fully committed.

• read. This is an opponent move that asks for the value of the cell.

• n for any n ∈ ω. This is a player move that represents responding to a
read request with the current value of the cell.

As an example of a strategy in this arena, consider the strategy “cell” whose
plays are as follows: write(0) OK read 0. Here, the opponent begins the game
by requesting to write 0. The player responds OK signifying that the write has
completed. Then the opponent sends a read request. The player responds with
the value of the cell of memory.

As a second example, consider write(0) OK write(2) OK read 0. Similar
to the previous example, the opponent writes 0 and the game continues with
the player’s turn. Then opponent then writes 2. Now, when the player sends
a read request, 2 is obtained. For this reason, the strategy is not innocent as
“reads” refer to the most recent “write.”

3

3.1 Cell discipline enforced by interaction

This scheme naturally allows for expansion to interaction plays, e.g. write after
reads. For example, consider the program x := 0; x := x+1. The denota-
tional semantics of this program is defined as follows:

runϵ write(0)1 OK1 read1

...

n1 write(n+ 1)1 OK1 doneϵ
...

Observe that after the read1 there are branches for any natural number.
This may seem counterintuitive, because write(0)1 appears earlier in the de-
notation of the program, and we expect a cell to retain the most recent value
stored in it. This is not a bug but a feature, because it allows us to model con-
currency: if another program is also interacting with the same cell of memory,
then there is no guarantee as to what may be found in that cell immediately
prior to the read. In this way, our game semantics (which we developed with
reference to the completely sequential execution of PCF) is “ready” to express
concurrent execution, provided that when the above strategy is applied to the
strategy “cell” (see above), then the allowed interaction must impose non inter-
ference.

Here is an example of a play in the strategy denoted above:

runϵ write(0)1 OK1 read1 01 write(1)1 OK1 doneϵ

3.2 Sequencing commands

The sequencing of commands (noted comm1; comm2) can be modeled with the
strategy for comm1 × comm2 → commϵ:

runϵ run1 done1 run2 done2 doneϵ

3.3 Assignment

The assignment operation can be interpreted as a strategy for var1 → commϵ,
where var is the type of variables. For example, the strategy for x := 2 is

runϵ write(2)1 OK1 doneϵ

Mixing assignment and sequencing we can interpret (x := 0) ; (x := x+ 1) as

runϵ write(0)1 OK1 read1

01 write(0 + 1)1 OK1 doneϵ

11 write(1 + 1)1 OK1 doneϵ

21 write(2 + 1)1 OK1 doneϵ
...

4

