
Game semantics and friends

Pierre-Louis Curien (CNRS – Université Paris Cité – Inria)

OPLSS 2022, Eugene, OR, 20-23/6/2022

Main source for the course: my

Notes on game semantics (2006), available from curien.galene.org/papers

and bibliography therein

Some dual pairs in the world of programming

• memory cell (or location or register) versus its actual contents
or value; in object-oriented style, record field names versus their
values, method names versus their actual definition.

• input and output, or (in the language of proof theory) hypothe-
ses and conclusions;

• sending and receiving messages (in process calculi);

• a program and its context (the libraries of your program en-
vironment – or the larger program of which the program under
focus is a subpart, or a module); the programmer and the com-
puter; two programs that call each other;

• call-by-name (CBN) and call-by-value (CBV).

1

Proofs as strategies

Proofs can be given a dialogue-game interpretation:a formula
is tested through a dialogue between an opponent who doubts
some formulas, and the player who justifies his proof step-by-step
by exhibiting the rules he has used.

t1+SSt2 = S(t1+St2)

t1+St2 = S(t1+t2)

S(t1+St2) = SS(t1+t2)

t1+SSt2 = SS(t1+t2)

2

Untyped �-calculus

The syntax of the untyped �-calculus (�-calculus for short) is
given by:

M ::= x || MM || �x.M,

where x is called a variable, M1M2 is called an application, and
�x.M is called an abstraction.

�-reduction:

(�x.M)N !M [x N]

M !M
0

MN !M 0N

N ! N
0

MN !MN 0
M !M

0

�x.M ! �x.M 0

3

Normal forms in the �-calculus

Any �-term has exactly one of the following two forms:

• head normal form (n � 1, p � 1):

�x1 · · ·xn.xM1 · · ·Mp

• head redex (n � 0, p � 1):

�x1 · · ·xn.(�x.M)M1 · · ·Mp

Note that a normal form can be only of the first form, and
recursively so.

4

Böhm trees

!(M)=

(
⌦ ifM = �x1 · · ·xn.(�x.P)M1 · · ·Mp

�x1 · · ·xn.x!(M1) · · ·!(Mp) ifM = �x1 · · ·xn.xM1 · · ·Mp ,

⌦ M

M1  N1 · · ·Mp  Np

�x1 · · ·xn.xM1 · · ·Mp  �x1 · · ·xn.xN1 · · ·Np

Then the Böhm tree of a term is the (possibly infinite) least
upper bound of all !(N), for all N such that M !⇤ N .

The Böhm tree of a normalisable term is its normal form.

5

Böhm trees as strategies

M1 . . .

N1 . . . Np

�y1 · · · yp.y . . . Mn

�x1 · · ·xn.x

�x1 · · ·xn.xM1 . . . (�y1 · · · yp.yN1 . . . Np) . . .Mn

6

Simply typed �-calculus

A ::= C || A! A (C base type)

Thus every type write s uniquely as A1 ! · · · ! An ! C.

x : A 2 �
� ` x : A

�, x : A `M : B

� ` �x : A.M : A! B

� `M : A! B � ` N : A
� `MN : B

Böhm trees associated to simply typable terms are finite (see
Silvia’s lectures!).

7

⌘-long Böhm trees

We restrict ourselves to the simply typed setting, and impose
that

• each occurrence of a variable must appear in a context where
it is applied to all its arguments,

• and in each sequence of abstractions �~x.M the number of pa-
rameters x1, . . . , xn is exactly the number of arguments N1, . . . , Nn

which the term �~x.M can accept according to its type.

8

Executing Böhm trees (the abstract machine)

Terms M ::= (�~x.W) Environments e ::= nil || B•e

Code W ::= y ~M Frames B ::= h~z ~Mi[e].

We split M in this way even if ~x is empty: in this case we write
M = (W) and W = y ~N . We also call W a body.

(K) (x ~M)[e]!W [h~z ~Mi[e]•ei]

where

8
<

:
e = B0• · · · •Bn Bi = h~xi ~Nii[ei]
x = xij Nij = (�~z.W)

9

Executing Böhm trees (illustration)

20 u(�x.u(�y.x)) hu 2 (�r.r(r(z)))i[] = ⇢0

30 r(r(z)) hr 3 (�x.u(�y.x))i[⇢0] = ⇢1

40 u(�y.x) hx (r(z))i[⇢1]•(⇢0 = hu 4 (�r.r(r(z)))i[]) = ⇢2

50 r(r(z)) hr 5 (�y.x)i[⇢2] = ⇢3

60 x hy (r(z))i[⇢3]•(⇢2 = hx 6 (r(z))i[⇢1]•⇢0) = ⇢4

70 r(z) hi[⇢4]•(⇢1 = hr 7 (�x.u(�y.x))i[⇢0]) = ⇢5

80 u(�y.x) hx (z)i[⇢5]•(⇢0 = hu 8 (�r.r(r(z)))i[]) = ⇢6

90 r(r(z)) hr 9 (�y.x)i[⇢6] = ⇢7

100 x hy (r(z))i[⇢7]•(⇢6 = hx 10 (z)i[⇢5]•⇢0) = ⇢8
110 z hi[⇢8]•⇢5

10

The language PCF

PCF is simply typed �-calculus, with the following constants

n : Nat (n 2 !)
T, F : Bool

succ, pred : Nat! Nat

zero? : Nat! Bool

if then else : Bool! Nat! Nat! Nat

if then else : Bool! Bool! Bool! Bool

⌦ : A for all A
Y : (A! A)! A for all A

11

Operational semantics of PCF

(�x.M)N !M [x N] YM !M(YM)
zero?(0)! T zero?(n+1)! F

succ(n)! n+1 pred(n+1)! n

if T then N else P ! N if F then N else P ! P

M !M
0

MN !M
0
N

M !M
0

if M then N else P ! if M
0 then N else P

M !M
0

f(M)! f(M 0)
(for f 2 {succ, pred, zero?})

12

PCF Böhm trees

M ::= �~x : ~A.W W ::= v || case yM1 · · ·Mn [v1 !W1, . . . , vk !Wk]

v : C

� ` v : C

�•y = A1 ! · · ·! An ! C v1, . . . , vk : C
� `M1 : A1 · · · � `Mn : An � `W1 : C1 · · · � `Wk : C1

� ` case yM1 · · ·Mn [v1 !W1, . . . , vk !Wk] : C1

�, ~x : ~A `W : C

� ` (�~x : ~A.W) : ~A! C

Note that a body W is always of base type C.

13

PCF Böhm trees as strategies

M1 · · · Mp v1 !W1 · · · vk !Wk

�~x.case y

14

HO games

Game semantics arose as such in the early 1990’s from parallel
works of

• Abramsky, Jagadeesan, Malacaria (AJM)

• Hyland and Ong (HO)

A fore-runner was sequential algorithms (Berry-Curien) (late
1970’s).

In this course, we focus on HO.

15

Entering the arena!

We start with the simplest kind of data type. The arena nat for
natural numbers has the following moves: one (initial) O move
denoted q, and a P move n for each natural number n.

(
{✏}
{✏, qn}

(
?
n

16

Product of arenas

The arena nat ⇥ nat is made of two disjoints copies of nat.
8
>>><

>>>:

{✏}
{✏, q1m1}
{✏, q2n2}
{✏, q1m1, q2n2}

8
>>><

>>>:

(?,?)
(m,?)
(?, n)
(m,n)

17

Function types (nat1 !nat✏)

q✏q1

(
013✏
316✏

�x. case x

(
0! 3
3! 6

Note the inversion of polarity for nat1. Also, q✏ ` q1.

Interaction with {q10} converges, interaction with {q12} diverges.

18

Plays and (deterministic) strategies

The tree q✏q1

(
013✏
114✏

can equivalently be descirbed by the set of

its even-length branches, which are called plays:

{✏, q✏q1, q✏q1013✏, q✏q1114✏}

A strategy is a set of even-length plays. Note that plays start
with O and alternate between O and P.

Here we deal with deterministic strategies �:

if pv, pw 2 �, then v = w.

The player knows how to react to each opponent’s move: “my
head variable is”.

19

Just a paraphrase of syntax?

Mathematics is full of useful equivalent presentations: descriptive
/ analytical geometry, matrices / linear maps, etc...

Sign of good syntax: Böhm trees!

In fact, the correspondence is an injection: games o↵er a wider
picture (cf. IA).

20

Stuttering

�x. case x [4! case x [3! 2]] as strategy contains q✏q141q1312✏.

Stuttering strategies do not exist in the earlier model of sequen-
tial algorithms of PCF (Berry-Curien, late 1970).

21

A higher-order type

(nat11 !nat1)!nat✏

h = �f. case f(3)[4! 7,6! 9]

As a strategy:

�f. case f

8
><

>:

(3)
4! 7
6! 9

q✏q1

8
><

>:

q11311
417✏
619✏

22

Pointers

Kierstead1 = �f.case f(�x.case f(�y.case x))

Kierstead2 = �f.case f(�x.case f(�y.case y))

q✏q1

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

q11q1

8
>>>>>><

>>>>>>:

q11q111

8
<

:
T111T11
F111F11

T1T11
F1F11

T1T✏
F1F✏

(type ((bool111 !bool11)! bool1)! bool✏) AMBIGUOUS!

23

de Bruijn

The solution to this ambiguity is to import the de Bruijn tech-
nology of pointers! Recall that in de Bruijn notation, bound
variables are replaced by numbers recording “how far they are
bound”, e.g.

�x.x(�y.yx) �.0(�.01)

We do the same here to disambiguate q111 (next slide).

24

Kierstead1 = q✏[q1,
0 -]

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

q11[q1,
1 -]

8
>>>>>>><

>>>>>>>:

q11[q111,
1 -]

8
<

:
T111[T11,

1 -]
F111[F11,

1 -]
T1[T11,

1 -]
F1[F11,

1 -]

T1[T✏,
1 -]

F1[F✏,
1 -]

Kierstead2 = q✏[q1,
0 -]

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

q11[q1,
1 -]

8
>>>>>>><

>>>>>>>:

q11[q111,
0 -]

8
<

:
T111[T11,

1 -]
F111[F11,

1 -]
T1[T11,

1 -]
F1[F11,

1 -]

T1[T✏,
1 -]

F1[F✏,
1 -]

25

Inserting the implicit pointers in our previous examples

h = �f. case f(3)[4! 7,6! 9] �x. case x[0! 3,3! 6]

q✏q1

8
><

>:

q11311
417✏
619✏

q1q11

(
01131
31161

q✏[q1,
0 -]

8
>>><

>>>:

q11[311,
0 -]

41[7✏,
1 -]

61[9✏,
1 -]

q1[q11,
0 -]

8
<

:
011[31,

1 -]
311[61,

1 -]

26

Game abstract machine (GAM) for PCF Böhm trees

The machine takes as input a strategy � of type, say, A! C and
a strategy ⌧ of type A (which we call the counter-strategy), and
returns a strategy of type C (that is, a value of base type).

The machine explores both � and ⌧ , alternatively. The successive
steps are 1, 20, 2, 30, 3, . . ., with n, (n+ 1)0 pointing in � for n odd
and in ⌧ for n even. The machine has two rules:

• Rule 1. At step 1, the machine points to the root of �. At
each step n, the machine is pointing to an O move in either �

or ⌧ , and the next step (n+ 1)0 is played according to what � or
⌧ (both deterministic) prescribes.

• Rule 2. Once a (Player) step (q0 has been performed, the next
step q is performed on the other side as described next slide (so
the machine goes back and forth between � and ⌧).

27

The GAM, pictorially

• If q0 points to p, then the next step q is played over p0. The
name m of the move played at time q0 dictates which branch to
choose from p0. If p is 1, then play q at the root of ⌧ .

28

GAM: an example of execution

q✏[q1,
0 -]

8
>>><

>>>:

q11[311,
0 -]

41[7✏,
1 -]

61[9✏,
1 -]

q1[q11,
0 -]

8
<

:
011[31,

1 -]
311[61,

1 -]
interaction

hq✏, 1i
20

[q1,
0 -]

8
>>>>>><

>>>>>>:

hq11, 3i
40

[311,
0 -]

h61, 5i
60

[9✏,
1 -]

hq1, 2i
30

[q11,
0 -]

8
<

: h311, 4i
50

[61,
1 -]

29

Executing Kierstead against

�g.case g(case gT [T ! T, F ! F]) [T ! F, F ! T]

q1[q11,
0 -]

8
>>>>>>><

>>>>>>>:

q111[q11,
1 -]

8
>><

>>:

q111[F111,
0 -]

T11[T111,
1 -]

F11[F111,
1 -]

T11[F1,
1 -]

F11[T1,
1 -]

Kierstead1 = q✏[q1,
0 -]

8
>>>>>>>>><

>>>>>>>>>:

q11[q1,
1 -]

8
>>>><

>>>>:

q11[q111,
1 -]

(
T111[T11,

1 -]
F111[F11,

1 -]
T1[T11,

1 -]
F1[F11,

1 -]
T1[T✏,

1 -]
F1[F✏,

1 -]

30

hq✏, 1i[q1,
0 -]

8
>>>>>>>>>>><

>>>>>>>>>>>:

hq11, 3i[q1,
1 -]

8
><

>:

hq11, 5i[q111,
1 -]

n
hT111, 15i[T11,

1 -]
hF1, 17i[F11,

1 -]

hq11, 7i[q1,
1 -]

8
><

>:

hq11, 9i[q111,
1 -]

n
hF111, 11i[F11,

1 -]
hT1, 13i[T11,

1 -]
hT1, 19i[T✏,

1 -]
8
>>>>>>>>>>><

>>>>>>>>>>>:

hq1, 2i[q11,
0 -]

8
>>><

>>>:

hq111, 6i[q11,
1 -]

8
<

:
hq111, 10i[F111,

0 -]
hT11, 14i[T111,

1 -]
hF11, 18i[T1,

1 -]
hq1, 4i[q11,

0 -]
n
hT11, 16i[F1,

1 -]
hq1, 8i[q11,

0 -]
n
hF11, 12i[T1,

1 -]
31

Compare with the stack-free environment machine

(
hq✏, 1i

u

[q1,
0 -]

8
>>>>>>><

>>>>>>>:

(�x
hq11, 3i

u

[q1,
1 -]

(
(�y
hq11, 5i

x

[q111,
1 -]

(�x
hq11, 7i

u

[q1,
1 -]

(
(�y
hq11, 9i

x

[q111,
1 -]

8
>>>>>>>>>><

>>>>>>>>>>:

(�r
hq1, 2i

r

[q11,
0 -]

8
<

:
(

hq111, 6i
r

[q11,
0 -]

(
(

hq111, 10i [z, -]
(�r
hq1, 4i

r

[q11,
0 -]

(�r
hq1, 8i

r

[q11,
0 -]

32

Non-linearity

The last two examples feature non-linear terms (multiple occur-
rences of f , and multiple occurrences of u, r).

Each time the machine revisits a node that was already visited,
it has to open a new copy of the strategy. (In the last example,
see steps 2, 4 and 8, and 3 and 7.)

33

Steps versus nodes versus moves

One should not confuse

- the successive steps of the machine (in bold), that are num-
bers n or n0,

- the nodes (or positions, or occurrences) in the trees of the
strategy and counter-strategy,

- the moves of the relevant arenas.

• In a strategy, nodes are decorated by moves. The same move
can decorate several nodes (cf. stuttering), but locally all the
moves decorating the children of a P move are labelled by dif-
ferent moves.

• In a GAM execution, there are additionally decorations on nodes
by numbers and primed numbers, that act as time stamps (and
may induce copy creation, cf. previous slide).

34

Spelling out Rule 2 of the GAM in full detail

“If q0 points to p, then the next step q is played over p0” means,
slowly:

At step q0, the machine has visited a P node, labelled by a move
m in, say, �. This node is equipped with a pointer to an O
node in (a copy of a subtree of) �, which was visited at time p.
Then, at the next step q, the machine will visit a node � which
is among the children of the node ↵ of (a copy ... of) ⌧ visited
by the machine at time p0. The name m of the move played at
time q0 dictates which child to choose: the one which is labelled
by m!

35

Well-bracketing

This strategy of (nat11⇥nat12 !nat1)!nat✏ is not the interpre-
tation of a PCF term:

q✏q1

8
><

>:

q110✏
q121✏
n1(n+2)✏

The initial question q✏ may be answered while q1 and q11 are
still open.

In the well-bracketed discipline, along any play questions must
be answered obeying a stack discipline.

36

Strong (or partial) evaluation

If we want now to let � : A ! B and ⌧ : A to interact (with B

not of base type), then we need to relaunch (but not reboot)
the machine again and again.

q✏q2

8
>>>><

>>>>:

62q1

(
418✏
211✏

32q1

(
415✏
116✏

against q141 yields q✏q2

(
628✏
325✏

(�xy.case y [6! case x [. . .], . . .])4 ! �y.case y [. . .]

To produce the branch q✏q2628✏, “we” (= the Opponent in B)
have to provide 62 and then the machine can continue.

Lazy, stream-like loop of evaluation.

37

On the form of the plays involved in PCF Böhm trees

They are alternating sequences of moves OPO. . . , equipped with
backward pointers from P moves to some previous O move.

Such plays are called views.

General plays (that will feature in a more synthetic definition of
composition of strategies) will also have pointers from the O
moves (to some previous P move).

38

Arenas

An arena A is given by a set of moves M , which have a polarity
O or P (formally, there is function �A : M ! {O,P}).

and by an enabling relation `, which is the disjoint union of a
subset of M ⇥M (one writes m ` n) and of M (one writes ` m).

If m ` n, then m and n have opposite polarities, and 6` n. If ` m,
then m is an opponent move.

39

The arena nat for natural numbers

The set of moves is {q} [N, with �(q) = O and �(n) = P , and
we set

` q

q ` n

Similarly for bool.

40

Product of two arenas

Let A and B be arenas. The arena A ⇥ B has as moves all m1

such that m is a move of A and all moves n2 such that n is a
move of B. Polarities of these moves are as in A and B. Enabling
is defined as follows:

`A m

` m1

`B n

` n2

m `A a

m1 ` a1

n `B b

n2 ` b2

41

Function space of two arenas

Let A and B be arenas. The arena A ! B has as moves all m1

such that m is a move of A, with polarity opposite to that in
A, and all moves n2 such that n is a move of B, with the same
polarity as in B. Enabling is defined as follows:

`B n

` n2

`A m `B n

n2 ` m1

m `A a

m1 ` a1

n `B b

n2 ` b2

42

Plays and strategies

A legal play, or play for short, is a (possibly empty) sequence of
moves of alternating polarity which is such that every occurrence
of non-initial move is equipped with a pointer to a previous oc-
currence of a move justifying it. The set of legal plays over an
arena A is written LA. (A play starts with Opponent, since only
opponent moves can be initial.) A legal play looks like this:

A strategy on an arena A is a non-empty set of even-length legal
plays, which is closed under even-length prefixes.

Other conditions, like determinism and innocence, can be added.
43

Strategies as trees

We note that any set of words over any alphabet can be organised
as a forest (each word is a branch): try! It is a forest, in general.

Now, for the arenas interpreting PCF types, we note that they
all have a unique intial move: this is because the initial move
of the arena interpreting A1 ! . . . ! An ! C has as only initial
move the unique initial move of (the arena interpreting) C. So
we have trees.

44

An automaton recognising LA!B

Convention: O and P moves of A (B) are written q, v (q0, v0). Le-
gal plays are among the even-length words read by the following
automaton (initial state OO):

(If one insists on final states, then taking OO and PP as final
states implements the even-length constraint!)

Additionally, the word must be equipped with pointers respecting
enablings!

45

Legal interactions

Let A,B,C be three arenas. A legal interaction, or interaction
for short, over these arenas is a sequence u of moves from the
three arenas such that

u �A,B2 LA!B , u �B,C2 LB!C , u �A,C2 LA!C

We write int(A,B,C) for the set of legal interactions over A,B,C.

In this definition, say, u �A,B denotes the subsequence of u con-
sisting only of the moves of A,B. One takes care of maintaining
the moves of A,B,C all distinct by tagging them if needed.

46

An automaton recognising legal interactions

47

Composition of strategies

Let A,B,C be three arenas, and let � (resp. ⌧) be a strategy
of A ! B (resp. B ! C). The following defines a strategy of
A! C, called the composition of � and ⌧ :

⌧ � � = {v | 9u 2 int(A,B,C) v = u �A,C, u �A,B2 �, v �B,C2 ⌧} .

(we say that u is a witness of v).

In the vocabulary of concurrency theory:

(|| composition) + hiding

48

Associativity of composition

Lemma. If u 2 int(A,C,D) and v 2 int(A,B,C) are such that
u �A,C= v �A,C, then there is a unique w 2 int(A,B,C,D) such
that w �A,C,D= u and w �A,B,C= v.

(Here, int(A,B,C,D) is defined in a similar way as int(A,B,C),
by taking restrictions to A! B, B ! C, C ! D, and A! D.)

Proposition. If �, ⌧, � are strategies of A ! B,B ! C, and
C ! D, respectively, then � � (⌧ � �) = (� � ⌧) � �.

49

Identity strategy

We define

id 0 = {u 2 LA!A | v �1= v �2 for all even prefixes v of u}

We define id 00 as the smallest set of plays closed under the fol-
lowing rules:

✏ 2 id 00
v 2 id 00, a O move

va2a1 2 id 00
v 2 id 00, a P move

va1a2 2 id 00

We have id 0 = id 00 (id for short), and id is a strategy.

50

The identity strategy is an identity

Let A,B,C be three arenas and let u 2 int(A,B,C). Then u

is a sequence of blocks of the form mb1 . . . bkn where m is an O
(A! C) move, the bi’s are B moves, and n is a P (A! C) move.
Moreover, if u is a witness for ⌧ � � (i.e., u �A,B2 �, u �B,C2 ⌧),
and if u = u

0
mb1 . . . bkn where mb1 . . . bkn is as above, then u

0 is
also a witness.

We have always id � � = � and � � id = �.

51

Determinism, innocence

• Recall that a strategy � is called deterministic when

smn1, smn2 2 �) n1 = n2

• The P view psq of a play s is defined as follows:

p✏q = ✏

psnq = psq n (n P move)
psmq = m (m initial)
psns0mq = psnqm (m O move,m points to n)

A deterministic strategy is called innocent if

s 2 � , psq 2 �

Arenas and strategies form a category. It contains as subcate-
gories the categories of arenas and deterministic strategies, and
of arenas and innocent strategies (idem for well-bracketed).

52

Visibility

In fact, the definition of view just given is sloppy: what to do
with the pointers?

Hyland and Ong further impose a visibility condition on plays,
which guarantees that you do not lose your (remaining) pointers
while defining the view recursively (details omitted).

53

Innocence, logically

In a view, O, unlike P, has to play in the immediate subtype:

�x. . . .�y.xM1M2

• P = head variable x : A1 ! A2 ! B can be bound far away
• O = initial move of M1 (or M2) has to be in type A1 (or A2)

54

Fat versus meager

In the o�cial HO semantics, the meaning of a PCF Böhm tree
(or term) is made of all plays whose view is in (the transcription
of the) tree (as strategy), as stressed in this course. We call
the resulting set of plays the fat version. In contrast, we call our
preferred version, consisting of views only, the meager version.

Theorem. The composition defined on the fat versions through
(|| composition) + hiding is the fat version of the composition
of the meager versions via the game abstract machine.

55

Illustrating (|| composition) + hiding

The (unique) legal interaction witnessing the interaction

q✏[q1,
0 -]

8
>>><

>>>:

q11[311,
0 -]

41[7✏,
1 -]

61[9✏,
1 -]

q1[q11,
0 -]

8
<

:
011[31,

1 -]
311[61,

1 -]

is

which belongs to the fat version of the strategy on the left:

puq = q✏[q1,
0 -]61[9✏,

1 -]

56

The key result of Hyland and Ong

The properties characterising (the injective interpretation of)
PCF Böhm trees are

determinism, innocence and well-bracketing

(For AJM, characterisation via history-freeness)

57

A cartesian closed category

• For products, we need

(A! B1)⇥ (A! B2)

A! (B1 ⇥B2)

indeed, a strategy in A! (B1⇥B2) is a forest which can be split
in two forests (according to where the roots come from).

• We get the canonical currying isos “for free” (the moves are
the same, up to retagging):

(A⇥B)! C

A! (B ! C)

• Moreover, one can interpret fixpoints (since we were able to
read infinite Böhm trees as strategies).

Therefore, we have a model of PCF.
58

Full abstraction

We write M =op N i↵ for all C s.t. C[M] and C[N] are closed
and of base type, we have:

C[M] �!?
c i↵ C[N] �!?

c

.

A model is fully abstract when

[[M]] = [[N]] i↵ M =op N

The “if” direction is the di�cult one

59

The full abstraction problem for PCF

In the late 1970’s arose the question of finding a fully abstract
model of PCF.

• Milner built one as a “term model quotiented by the opera-
tional equivalence”. The question was then: can we describe
this model by other means, as functions of some sorts between
suitable domains?

• Candidate 1. Scott continuous functions f (any single piece
of the output f(x) may be computed using a finite part of the
input x, which one can take be minimal). But Scott pointed out
the problematic parallel disjunction satisfying

por(?, T) = T por(T,?) = T

which is not definable in PCF. But adding it to the syntax,
Plotkin showed that Scott model “becomes” fullly abstract.

60

The stable model of PCF

• Candidate 2. Gérard Berry “killed” por by introducing stable
functions (for a fixed x and a fixed piece of f(x), such a minimal
input is unique, and thus minimum).

But he noticed the problematic character of the function Gustave

satisfying

Gustave(T, F,?) = T

Gustave(F,?, T) = T

Gustave(?, T, F) = T

• The next candidates in the list were sequential algorithms, and
then HO/AJM.

61

Definable separability

If the model is such that for every distinct f, g of the same type
A (interpreting some syntactic type) there exists a definable h

of type A! bool such that hf 6= hg, then it is fully abstract.

Proof. If [[M]] 6= [[N]], let h be given by our assumption, and let
P be such that [[P]] = h, v1 = h([[M]]), v2 = h([[N]]), and C = P [].
Then C[M]!⇤ v1 and C[M]!⇤ v2, and hence M 6=op N .

Compact definability + extensionality imply definable separabil-
ity.

62

Some results and some non-results

Language Model Def. FA

PCF+ por Cont Yes Yes
PCF+ catch SA ⇡ (Ginn/ =op) Yes Yes

PCF PCFBT/ =op Yes Yes

PCF GAJM ,GHO ,PCFBT Yes No
PCF+ control Ginn Yes No
Idealised Algol Gwb Yes Yes

63

HO games vs sequential algorithms

Interpret exponential di↵erently:
• HO games are repetitive, bool!bool infinite
• Sequential algorithms have memory, bool!bool finite

For the linear logicians: cf. two exponentials of coherence spaces
(multiset and set)

64

Around full abstraction

• Stable model (Berry, reinvented by Girard) 7! linear logic.
• Sequential algorithms led ... to the categorical abstract ma-
chine, and then to explicit substitutions.
• The full abstraction problem boosted also the study of logical
relations (Sieber, O’Hearn and Ricky, Bucciarelli), and motivated
Bucciarelli-Ehrhard’s and Longley’s extensional accounts of se-
quentiality.

65

The game semantics program

• references (Abramsky, McCusker, Honda)
• control (Laird)
• subtyping (Chroboczek)
• nondeterminism (Harmer), probabilistic choice (Danos and Harmer)
• call-by-value (Honda and Yoshida)
• concurrency (Ghica and Murawski, Laird)

66

Imperative arenas

• The arena comm: run and done
• The arena var:

read write(n) (n 2 !)
OK n (n 2 !)

The strategy cell :

write(0) OK read 0
write(0) OK write(2) OK read 2

reads last written value (not innocent)

67

Cell discipline enforced by interaction

[[(x := 0); (x := x+1)]] =

run✏ write(0)1 OK1 read1

8
><

>:

...
n1 write(n+1)1 OK1 done✏
...

Interaction play with cell:

run✏ write(0)1 OK1 read1 01 write(1)1 OK1 done✏

68

Definability through factorisation

Every strategy � : A can be written as (⌧ cell) for some innocent
strategy ⌧ : var! A

Other such results:
• catch for non well-bracketing (Laird)
• a dice strategy for nondeterminism / probabilistic games (Danos,
Harmer)
• a form of case for non-rigidity (a condition dual to well-bracketing)
(Danos, Harmer, Laurent)

69

Definable separability

Essentially the same argument for sequential algorithms, and for
the IA model

Let �1,�2 : A, let m1 . . . m2n 2 �1 \ �2. We define ⌧ : A! nat as
the minimal strategy that contains

q m1 . . . m2n 0

70

Game semantics for verification

Up to second-order:

• pointers are useless, i.e., can be reconstructed uniquely

(Ghica and McCusker)

• the strategies interpreting second-order IA terms (as

sets of words) are regular languages.

Applications to decidability results. More results have
been obtained for larger fragments (third order: Ong
and others)

71

Abstract interpretation

For decidability, we need finiteness of alphabets. A finite ap-
proximation of nat or var is specified by a finite partition ⇡ of
N.

n, write(n) are now [n]⇡, write([n]⇡).

Now, strategies interpreting terms with abstracted types can be
nondeterministic!

72

Example of non-determinism arising from abstract

interpretation

Suppose that = receives the type nat⇡1 ⇥ nat⇡2 ! bool. Then
its interpretation contains all the plays qq1[n]⇡1q2[n]⇡2T and all
the plays qq1[n]⇡1q2[m]⇡2F (for m 6= n). Then, say, as soon as
the equivalence class of n is not a singleton in either ⇡1 or ⇡2,
then n = n may execute nondeterministically to T or F . To be
completely specific, suppose that [2]⇡1 = {2} and [2]⇡2 = {0,2},
then = contains both qq1[2]⇡1q2[2]⇡2T and qq1[2]⇡1q2[2]⇡2F .

73

A model checking loop (Ghica et al)

For checking a safety property (add a P move abort):

1. Evaluate [[M]]⇡ with respect to some abstract interpretation

2. If [[M]]⇡ does not contain the move abort, conclude that M

is safe.

a. if all the occurrences of abort have been reached nondeter-
ministically, then refine the abstract interpretation accord-
ingly, and go back to step 1.

b. Otherwise, conclude that M is unsafe.

74

Categorical combinatorics
of scheduling and synchronization

in game semantics

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université Paris Diderot

ACM Symposium on Principles of Programming Languages
Cascais � POPL’19 � 16 Ñ 19 January 2019

Understanding logic in space and time

What are the principles at work in a dialogue?

Template games

Categorical combinatorics of synchronization

The category of polarities

We introduce the category

�game

freely generated by the graph

xay x‘y
P

O

the category �game will play a fundamental role in the talk

Template games

First idea:

Define a game as a category A equipped with a functor

A

�game

�A

to the category �game freely generated by the graph

xay x‘y
P

O

Inspired by the notion of coloring in graph theory

Positions and trajectories

It is convenient to use the following terminology

objects Ø positions
morphisms Ø trajectories

and to see the category A as an unlabelled transition system.

The polarity functor

The polarity functor

�A : A �game

assigns a polarity ‘ or a to every position of the game A.

Definition. A position a P A is called

Player when its polarity �Apaq “ ‘ is positive
Opponent when its polarity �Apaq “ a is negative

Opponent moves

Definition. An Opponent move

m : a
‘

b
a

is a trajectory of the game A transported to the edge

O : x‘y xay
of the template category �game.

Player moves

Definition. A Player move

m : a
a

b
‘

is a trajectory of the game A transported to the edge

P : xay x‘y
of the template category �game.

Silent trajectories

Definition. A silent move

m : a b

is a trajectory of the game A transported to an identity morphism

idx‘y : x‘y x‘y

idxay : xay xay

of the template category �game.

The template of strategies

Categorical combinatorics of synchronization

The template of strategies

In order to describe the strategies between two games

� : A B|
we introduce the template of strategies

�strat

defined as the category freely generated by the graph

xa,ay x‘,ay x‘,‘y
Os

Ps

Pt

Ot

The template of strategies

Each of the four labels

Os Ps Ot Pt

describes a specific kind of Opponent and Player move

Os : Opponent move played at the source game
Ps : Player move played at the source game
Ot : Opponent move played at the target game
Pt : Player move played at the target game

which may appear on the interactive trajectory played by a strategy

� : A B.|

The template of strategies

The four generators

xa,ay x‘,ay x‘,‘y
Os

Ps

Pt

Ot

of the category

�strat

may be depicted as follows:

OP O P
s s tt

The template of strategies

In that graphical notation, the sequence

Ot ¨ Ps ¨ Os ¨ Pt

is depicted as

O

P

O

P

s

s

t

t

The template of strategies

The category �strat comes equipped with a span of functors

�game �strat �game
s“p1q t“p2q

defined as the projection s “ p1q on the first component:

xa,ay fiÑ xay
x‘,ay , x‘,‘y fiÑ x‘y

Os fiÑ P Ps fiÑ O

Ot , Pt fiÑ idx‘y
and as the projection t “ p2q on the second component:

x‘,‘y fiÑ x‘y
xa,ay , x‘,ay fiÑ xay

Ot fiÑ O Pt fiÑ P

Os , Ps fiÑ idxay

The template of strategies

The two functors s and t are illustrated below:

O

P

O

P

s

s

t

t

O

P

O

P

source target

Strategies between games

Second idea:

Define a strategy between two games

� : A B|
as a span of functors

A S B
s t

together with a scheduling functor

S �strat
��

Strategies between games

making the diagram below commute

A S B

�game �strat �game

�A

s

��

t

�B

s t

Key idea:

Every trajectory s P S induces a pair of trajectories sA P A and sB P B.

The functor �� describes how sA and sB are scheduled together by �.

Support of a strategy

Terminology. The category S defining the span

A S B
s t

is called the support of the strategy

� : A B

Basic intuition:

« the support S contains the trajectories played by � »

A typical scheduling B¨A¨A¨B

A trajectory s P S of the strategy � with schedule

x‘,‘y x‘,ay xa,ay xa,‘y x‘,‘yOt Ps Os Pt

is traditionally depicted as

A B

first move m1 of polarity Ot m1

second move n1 of polarity Ps n1

third move m2 of polarity Os m2

fourth move n2 of polarity Pt n2

�

A typical scheduling B¨A¨A¨B

Thanks to the approach, one gets the more informative picture:

O

P

O

P

s

s

t

t

m1 :

:

m2 :

:

n1

n2

Simulations

Definition: A simulation between strategies

✓ : � ⌧ : A B|
is a functor from the support of � to the support of ⌧

✓ : S T

making the three triangles commute

S T

�game

✓

s s

S T

�strat

✓

�� �⌧

S T

�game

✓

t t

The category of strategies and simulations

Suppose given two games A and B.

The category Games pA,Bq has strategies between A and B

�, ⌧ : A B|
as objects and simulations between strategies

✓ : � ⌧ : A B|
as morphisms.

The bicategory Games

A bicategory of games, strategies and simulations

The bicategory Games of games and strategies

At this stage, we want to turn the family of categories

Games pA,Bq
into a bicategory

Games

of games and strategies.

The bicategory Games of games and strategies

To that purpose, we need to define a composition functor

˝A,B,C : Games pB,Cq ˆ Games pA,Bq Games pA,Cq

which composes a pair of strategies

� : A B| ⌧ : B C|
into a strategy

� ˝A,B,C ⌧ : A C|

Composition of strategies

The construction starts by putting the pair of functorial spans side by side:

S T

A �strat B �strat C

�game �game �game

s
��

t s
�⌧

t

�A
s t

�B
s t

�C

Fine, but how shall one carry on and perform the composition?

The template of interactions

Third idea:

We define the template of interactions

�int

as the category obtained by the pullback diagram below

�int

�strat pb �strat

�game �game �game

⇡1 ⇡2

s

t s

t

The template of interactions

Somewhat surprisingly, the category

�int

is simple to describe, as the free category generated by the graph

xa,a,ay x‘,a,ay x‘,‘,ay x‘,‘,‘y
Os P|O

Ps

Pt

O|P Ot

with four states or positions.

The template of interactions

The six generators

xa,a,ay x‘,a,ay x‘,‘,ay x‘,‘,‘y
Os P|O

Ps

Pt

O|P Ot

may be depicted as follows:

O
t

P
t

O P

OP

P
s

O
s

The template of interactions

A typical sequence of interactions is thus depicted as follows:

O
t

P
t

O P

OP

P
s

O
s

Key observation

The template �int of interactions comes equipped with a functor

hide : �int �strat

which makes the diagram below commute:

�strat �int �strat

�game �strat �game

p1q

p12q p23q

hide p2q
s“p1q t“p2q

and thus defines a map of span.

Key observation

The functor

hide : �int �strat

is defined by projecting the positions of the interaction category

x "1 , "2 , "3 y
on their first and third components:

xa,a,ay fiÑ xa,ay Os fiÑ Os Ps fiÑ Ps

x‘,a,ay , x‘,‘,ay fiÑ x‘,ay O|P , P|O fiÑ idx‘,ay
x‘,‘,‘y fiÑ x‘,‘y Os fiÑ Os Ps fiÑ Ps

Illustration

O
t

P
t

O P

OP

P
s

O
s

P
s

O
s

O

P

O

P

s

s

t

t

id

id

hide

Composition of strategies

S ˆB T

S �int T

A �strat �strat C

�game �strat �game

⇡1 ⇡2
�� }�⌧

⇡2

s
��

⇡1 ⇡2

hide

�⌧
t

�A
s t �C

ts

Composition of strategies

This definition of composition implements the slogan that

composition = synchronization + hiding

What about identities?

There exists a functor

copycat : �game �strat

which makes the diagram commute:

�game

�game �game

�strat

id id

copycat

s“p1q t“p2q

and thus defines a morphism of spans.

What about identities?

The functor

copycat : �game �strat

is defined by duplicating the positions of the polarity category

x"y
in the following way:

xay fiÑ xa,ay O fiÑ Ot ¨ Ps

x‘y fiÑ x‘,‘y P fiÑ Os ¨ Pt

A synchronous copycat strategy

The functor

copycat : �game �strat

transports the edge

xay x‘yO

to the trajectory consisting of two moves

xa,ay x‘,ay x‘,‘yPs Ot

A synchronous copycat strategy

The functor

copycat : �game �strat

transports the edge

xay x‘yP

to the trajectory consisting of two moves

xa,ay x‘,ay x‘,‘yOs Pt

The identity strategy

Given a game A, the copycat strategy

ccA : A A

is defined as the functorial span

A A A
identity identity

together with the scheduling functor

� ccA
“ A �game �strat

�A copycat

Identity strategy

A

�game

A A

�game �strat �game

identity

�A

identity

copycat
id id

�A �A

s t

Discovery of an unexpected principle

Key observation: the categories

�r0s “ �game � r1s “ �strat � r2s “ �int

and the span of functors

�r0s �r1s �r0ss t

define an internal category in Cat with composition and identity

�r2s �r1shide �r0s �r1scopycat

As an immediate consequence...

Theorem A. The construction just given defines a bicategory

Games

of games, strategies and simulations.

Main technical result of the paper

Theorem B. The bicategory

Games

of games, strategies and simulations is symmetric monoidal.

Main technical result of the paper

Theorem C. The bicategory

Games

of games, strategies and simulations is star-autonomous.

All these results are based on the same recipe!

One constructs an internal category of tensorial schedules

�b

together with a pair of internal functors

� ˆ � �b �
pick pince

All these results are based on the same recipe!

One constructs an internal category of cotensorial schedules

�M

together with a pair of internal functors

� ˆ � �M �
pick pince

All these results are based on the same recipe!

One constructs an internal functor

reverse : � op �

which reverses the polarity of every position and move

‘ fiÑ a O fiÑ P

a fiÑ ‘ P fiÑ O

The pick functor

The internal functor

pick : �b � ˆ �

is defined at dimension 0 by the functor:

pick r0s

The pick functor

The internal functor

pick : �b � ˆ �

is defined at dimension 1 by the functor:

pick r1s

The pince functor

The internal functor

pince : �b �

is defined at dimension 0 by the functor:

pince r0s

The pince functor

The internal functor

pince : �b �

is defined at dimension 1 by the functor:

pince r1s

Conclusion and future work

B games played on categories with synchronous copycats

B an easy recipe to construct new game semantics

B three templates considered in the paper:

�alt alternating games and strategies
�conc concurrent games and strategies
�span functorial spans with no scheduling

I same basic principles in concurrent separation logic

I a model of differential linear logic based on homotopy theory

Selected bibliography

[1] Pierre Castellan and Nobuko Yoshida.
Two Sides of the Same Coin: Session Types and Game Semantics.
POPL’19 – Capabilities and Session Types session this afternoon!

[2] Clovis Eberhart and Tom Hirschowitz.
What’s in a Game? A Theory of Game Models.
LICS 2018

[3] Russ Harmer, Martin Hyland and PAM.
Categorical Combinatorics for Innocent Strategies.
LICS 2007

[4] PAM and Samuel Mimram.
Asynchronous Games: Innocence Without Alternation.
CONCUR 2007

[5] PAM and Léo Stefanesco.
An Asynchronous Soundness Theorem for Concurrent Separation Logic.
LICS 2018

[6] Sylvain Rideau and Glynn Winskel.
Concurrent Strategies.
LICS 2011

The distributivity law of linear logic

A game semantics of linear logic

The distributivity law of linear logic

The main ingredient of linear logic

A,B,C : A b pBMCq pA b BqMC

cannot be interpreted in traditional game semantics.

When one interprets it in template games, here is what one gets...

A B C

A B C

A B C

A B C() A B C()

linear
distributivity

OA

PA

O
B

PBPC

O
C

OA

PA

OA

PA

O
B

PBPC

O
C

PC

OC

OA

PA

O
B

PBPC

O
C

& &

The template of interactions

How the category �int is computed as a pullback

The template of interactions

We find illuminating to depict the canonical functor

�int �strat ˆ �strat
p1223q

induced by the pullback diagram in the following way:

p1223q

The template of interactions

In order to fully appreciate the diagram, one needs to “fatten” it

“

O

t
P

sO

sP

P OO P

t

in such a way as to recover the template of interactions

xa,a,ay x‘,a,ay x‘,‘,ay x‘,‘,‘y
Os P|O

Ps

Pt

O|P Ot

The template of concurrent games

Templates of concurrent games as commutative monoids

The template of games

The category

�conc r0s
is generated by the graph

x˚yP O

together with the additional equation

O ¨ P “ P ¨ O

The template of strategies

The category

�conc r1s
is generated by the graph

together with the six elementary equations

Os ¨ Ps “ Ps ¨ Os Os ¨ Pt “ Pt ¨ Os Os ¨ Ot “ Ot ¨ Os

Ot ¨ Ps “ Ps ¨ Ot Ot ¨ Pt “ Pt ¨ Ot Ps ¨ Pt “ Pt ¨ Os

The templates of games and strategies

The two templates

�conc r0s �conc r1s
are commutative monoids generated by the sets of moves:

�concr0s “ �concr1s “

The representation is nice to describe the source and target functors:

ts

The template of interactions

When one computes the pullback

�conc r2s

�conc r1s pb �conc r1s

�conc r0s �conc r0s �conc r0s

⇡1 ⇡2

s

t s

t

one obtains the commutative monoid:

�conc r2s “

