
OPLSS 2022 - Abstract Machines and Classical

Realizability - Paul Dowen

Brian Christian, Parisa Fathololumi, Hannah Leung, Joshua Turcotti

June 24, 2022

Motivational Contrast: Why is anyone interested
in abstract machines?

Direct (Operational) Semantics

• Defines meaning for source code, returns value or behavior

• Makes it easy to reason about high-level properties

• Harder to understand low-level cost of programs

Abstract Machines

• Definition inside theoretical machine, abstracts some details, but is closer
to a real machine

• Easier to reason about cost

• Harder to reason about high-level properties

But! The goal is to be able to reason about high-level properties in abstract
machines anyways - making them the best of both worlds. For example, type
safety is a property that at first seems easier to reason about in a direct opera-
tional semantics, but will be shown to be possible to model nicely in an abstract
machine as well.

The Simply-Typed λ Calculus

We will now proceed to give the syntax, reduction steps 7→, typing rules, and
statements of type safetly for the Simply Typed λ Calculus

1

Grammar

M,N ::= x |MN | λx.M | True | False | if M then N1 else N2

A,B ::= Bool | (A→ B)

E ::= [] | if E then N1 else N2 | E N

The first entry in this grammar gives us the language of terms M and N
for the λ calculus. The second entry defines types, which in this version of the
STLC are only Bools as primitive types and functions (A → B) between any
other two types A,B. The third entry defines evaluation contexts - expressions
containing holes that may be filled in by arbitrary other expressions.

Reductions

(λx.M)N 7→M [N/x] (β→)

if True then N1 else N2 7→ N1 (βBool1)

if False then N2 else N2 7→ N2 (βBool2)

M 7→ N

E[m] 7→ E[n]

It’s important to remember that these reductions do not provide in them-
selves a sufficiently performative scheme for evaluation in practice, such as in
a realistic compiler. The heart of this issue is rule β→ - which cannot actually
perform the rewriting indicated by the rule.

These reduction rules constitute what is known as a small step operational
semantics, alternatively, a big step operational semantics could be written down
that would specify the end state reached by any given term in a single judgment,
but this is more difficult to reason about.

Typing Rules

Γ, x : A ` x : A

Γ, x : A `M : B

Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A

Γ `MN : B

Γ : M : Bool Γ ` N1 : A Γ ` N2 : A

Γ ` if M then N1 else N2 : A Γ ` True : Bool

Γ ` False : Bool

Type Safety

Lemma 1 (Progress). If · ` M : Bool, then either M is “done” (it’s True or
False) or ∃M ′ : M 7→M ′

2

Lemma 2 (Preservation). If M 7→M ′ and Γ `M : A, then Γ `M ′ : A

Theorem 1 (Type Safety). If · `M : Bool, then whenever M 7→ ... 7→M ′ and
@M ′′ : M ′ 7→M ′′, then M ′ is a final value (i.e. True or False).

Type Safety is also commonly phrased as “Well-types programs can’t go
wrong”, this clearly lacks formality.

Reduction Theory

We now introduce two new bits of syntax: C for any context (placing holes
anywhere in the term language, as opposed to the definition of E which places
holes only in two places), and→ (overloaded with the types syntax) for a possi-
bly nondeterministic relation representing human free will, and generalizing the
deterministic 7→ relation. This new→ relation is derivable by the following rule
describing the process of identifiting a small step from the original semantics,
and combining it with an arbitrary context.

Compatibility
M 7→ N

C[M]→ C[n]

We also now define the � relation (reflexive, transitive closure of→) by the
following rules:

Lifting
M → N

M � N

Reflexivity

M �M

Transitivity
M �M ′ M ′ �M ′′

M �M ′′

This completes the reduction theory.

Equational Theory

We now define an equational theory - centered around the new operator = on
terms in the STLC. It has the expected rules, in addition to three other η rules
that are necessary to fill out the theory.

Compatibility
M = N

C[M] = C[N]

Lifting
M 7→ N

M = N

Symmetry
M = M ′

M ′ = M

Reflexivity

M = M

Transitivity
M = M ′ M ′ = M ′′

M = M ′′ λx.(Mx) = M (η→)

if M then True else False = M (ηBool)

E[if M then N1 else N2] = if M then E[N1] else E[N2] (ηBool)

This completes the equational theory.

3

Abstract Machines

Abstract machines codify the process of attempting to apply reductions to terms
in the STLC. They are comprised of steps that fall into two categories: refocusing
steps that attempt to identify reducible expressions (i.e. redexes), and reduction
steps that rewrite those redexes.

Abstract Machine-specific Syntax

To specifiy our abstract machine, we will retain the entry M to describe terms
in the STLC, replace the E entry in the original grammar with a new one
representing “continuations”, and add a c entry to represent the overall state of
the machine.

E ::= α | N · E | if then c1 else c2

c ::= 〈M | E〉

Note that in this E entry, the α corresponds to the holes [] from the prior
STLC grammar.

We can now specify the two kinds of steps allowable by our machine:

Refocusing Steps

〈M N | E〉 7→ 〈M | N · E〉 (µ→)

〈if M then N1 else N2 | E〉 7→ 〈M | if then 〈N1|E〉 else 〈N2|E〉〉 (µBool)

Reduction Steps

〈λx.M | N · E〉 7→ 〈M [N/x] | E〉 (β→)

〈True | if then c1 else c2〉 7→ c1 (βBool1)

〈False | if then c1 else c2〉 7→ c2 (βBool2)

A Better Abstract Machine

Unfortunately, there is some redundancy in these rules for our abstract ma-
chine. Imagine if we treat the symbol α in the continuation language as a hole,
admitting a rule like:

〈M N | α〉 7→ 〈M | N · α〉

4

We formalize this with the binding operator µ, which, for example, can
encode the following:

M N := µα.〈M | N · α〉
if M then N1 else N2 := µα.〈M | if then 〈N1 | α〉 else 〈N2 | α〉〉

We can now rewrite our machine to have a single refocussing step phrased
in terms of µ.

〈µa.c | E〉 7→ c[E/α] (µ)

We also add another compatibility rule for command steps:

Compatibility
c 7→ c′

C[c] 7→ C[c′]

And we can now rephrase our three η rules as well to use this more general
µ binder.

λx.µα.〈M | x · α〉 = M : A→ B (η→)

if then 〈True | E〉 else 〈False | E〉 = E : Bool (ηBool)

µα.〈M | α〉 = M (ηµ)

And finally we could rewrite our expression grammer as:

M,N ::= x | λx.M | True | False | µα.c

This new abstract machine is more easily extensible and easier to reason
about.

Exercises

1. Let and = λx.λy.if x then y else False. Show (λy.and True y) � λy.y.

2. Let not = λx.if x then False else True. Show (λx.not(not x)) = λx.x.

3. Write a compile function [[M]] of STLC that produces a term of the final
abstract machine language described in this lecture. Example semantics:
[[λx.M]] = λx.[[M]].

4. (bonus) Also redo 1 and 2 for the compiled versions of and and not.

5

