OPLSS 2022 - Abstract Machines and Classical
Realizability - Paul Dowen

Brian Christian, Parisa Fathololumi, Hannah Leung, Joshua Turcotti

June 24, 2022

Mbotivational Contrast: Why is anyone interested
in abstract machines?

Direct (Operational) Semantics
e Defines meaning for source code, returns value or behavior
e Makes it easy to reason about high-level properties

e Harder to understand low-level cost of programs

Abstract Machines

e Definition inside theoretical machine, abstracts some details, but is closer
to a real machine

e Fasier to reason about cost

e Harder to reason about high-level properties

But! The goal is to be able to reason about high-level properties in abstract
machines anyways - making them the best of both worlds. For example, type
safety is a property that at first seems easier to reason about in a direct opera-
tional semantics, but will be shown to be possible to model nicely in an abstract
machine as well.

The Simply-Typed A Calculus

We will now proceed to give the syntax, reduction steps +, typing rules, and
statements of type safetly for the Simply Typed A Calculus

Grammar

M,N =z | MN | Ax.M | True | False | if M then N; else No
A, B ::=Bool| (A — B)
E =[] |if F then Ny else Ny | E N

The first entry in this grammar gives us the language of terms M and N
for the A calculus. The second entry defines types, which in this version of the
STLC are only Bools as primitive types and functions (A — B) between any
other two types A, B. The third entry defines evaluation contexts - expressions
containing holes that may be filled in by arbitrary other expressions.

Reductions

(\w.MN > M[N/a] (5)
if True then N else No — N1 (Bpoo1;)
if False then Ns else No — No (Bpoo1,)
M— N
E[m] — E[n]

It’s important to remember that these reductions do not provide in them-
selves a sufficiently performative scheme for evaluation in practice, such as in
a realistic compiler. The heart of this issue is rule S_, - which cannot actually
perform the rewriting indicated by the rule.

These reduction rules constitute what is known as a small step operational
semantics, alternatively, a big step operational semantics could be written down
that would specify the end state reached by any given term in a single judgment,
but this is more difficult to reason about.

Typing Rules

Nz:A-M:B 'rM:A— B ''EN:A
Me:AkFz: A 'kXeM:A— B I'MN:B

I': M :Bool 'EN A I'ENy: A
I'if M then Nj else Ny : A I' True : Bool

I' - False : Bool

Type Safety

Lemma 1 (Progress). If - = M : Bool, then either M is “done” (it’s True or
False) or AM': M — M’

Lemma 2 (Preservation). If M — M’ and T+ M : A, then THM': A

Theorem 1 (Type Safety). If - = M : Bool, then whenever M + ... — M’ and
BM" - M' — M", then M’ is a final value (i.e. True or False).

Type Safety is also commonly phrased as “Well-types programs can’t go
wrong”, this clearly lacks formality.

Reduction Theory

We now introduce two new bits of syntax: C for any context (placing holes
anywhere in the term language, as opposed to the definition of ¥ which places
holes only in two places), and — (overloaded with the types syntax) for a possi-
bly nondeterministic relation representing human free will, and generalizing the
deterministic — relation. This new — relation is derivable by the following rule
describing the process of identifiting a small step from the original semantics,
and combining it with an arbitrary context.

COMPATIBILITY
M— N

C[M] = C[n]

We also now define the — relation (reflexive, transitive closure of —) by the
following rules:

LIFTING R TRANSITIVITY
M — N EFLEXIVITY M . M/ M/ s M//
M — N M — M M — M"”

This completes the reduction theory.

Equational Theory

We now define an equational theory - centered around the new operator = on
terms in the STLC. It has the expected rules, in addition to three other n rules
that are necessary to fill out the theory.

COMPATIBILITY LIFTING SYMMETRY

M=N Mi— N M= M REFLEXIVITY
C[M] = C[N] M=N M =M M=M
TRANSITIVITY
M =M M =M"

M= M)\I(M:L') =M (77—>)

if M then True else False = M (7)zo01)

E[if M then N; else Ny| = if M then E[N;] else E[Na] (7poo1)

This completes the equational theory.

Abstract Machines

Abstract machines codify the process of attempting to apply reductions to terms
in the STLC. They are comprised of steps that fall into two categories: refocusing
steps that attempt to identify reducible expressions (i.e. redezes), and reduction
steps that rewrite those redexes.

Abstract Machine-specific Syntax

To specifiy our abstract machine, we will retain the entry M to describe terms
in the STLC, replace the E entry in the original grammar with a new one
representing “continuations”, and add a ¢ entry to represent the overall state of
the machine.

E:=a«a|N-FE|if then ¢; else ¢y
c:= (M| E)

Note that in this E entry, the o corresponds to the holes [] from the prior
STLC grammar.
We can now specify the two kinds of steps allowable by our machine:

Refocusing Steps

(M N|E)—= (M|N-E) (p-)
(if M then N; else Ny | E) — (M | if then (N1|E) else (N2|E)) (poo1)

Reduction Steps

(Ae.M | N -E) = (M[N/z] | E) (8-)
(True | if then ¢; else ¢2) — ¢1 (Bgoo1,)
(False | if then ¢; else ¢3) — c2 (Bpool,)

A Better Abstract Machine

Unfortunately, there is some redundancy in these rules for our abstract ma-
chine. Imagine if we treat the symbol « in the continuation language as a hole,
admitting a rule like:

(M N|a)y— (M|N-a«)

We formalize this with the binding operator p, which, for example, can
encode the following;:

M N :=pa.(M | N -a«)
if M then N; else Ny := pa.(M | if then (N; | @) else (N3 | «))

We can now rewrite our machine to have a single refocussing step phrased
in terms of pu.

(a-c| E) = c[E/a] (k)
We also add another compatibility rule for command steps:

COMPATIBILITY
c—c

Cle] — C[]

And we can now rephrase our three 7 rules as well to use this more general
1 binder.

Arpoa M |x-a)=M:A— B (ns)
if then (True | E) else (False | E) = E : Bool (7poo1)
pa (M | a) =M ()

And finally we could rewrite our expression grammer as:

M,N =z | Ax.M | True | False | pa.c

This new abstract machine is more easily extensible and easier to reason
about.
Exercises
1. Let and = Az.\y.if x then y else False. Show (\y.and True y) - A\y.y.
2. Let not = Az.if x then False else True. Show (Az.not(not z)) = Az.z.

3. Write a compile function [M] of STLC that produces a term of the final

abstract machine language described in this lecture. Example semantics:
[Az.M] = \x.[M].

4. (bonus) Also redo 1 and 2 for the compiled versions of and and not.

