
Bi-orthogonality

Paul Downen

August, 2014

1 Context
I originally wrote these notes in the summer of 2014 when I was trying to work out
the strong normalization of a symmetric sequent calculus with user-defined data and
codata types for an arbitrary class of evaluation strategies. In particular, I had finished
the paper “The duality of construction” [2] and was working on how to extend it to
inductive and coinductive types and programs, which would later become the paper
“Structures for structural recursion” [6].

Here, I was working with just the system with basic (non-recursive) type construc-
tors, and wanted to prove that was strongly normalizing. Although these notes do not
have a formal introduction to that system, you can find the description in [2] which
defines the syntax, rewriting theory, and equational theory.

In order to approach the strong normalization problem for [2], I was heavily in-
spired by Guillaume Munch-Maccagnoni’s paper “Focalisation and classical realis-
ability” [9], which studies a similar system based on a symmetric linear sequent cal-
culus. You can see some of the inspiration inside of these notes which rely on some
important ideas introduced by Guillaume, notably the idea of “generation” by the (co)-
values of a type.

In order to preserve the integrity of these notes (and to show my state of mind when
I was learning this (bi)orthogonality technique for the first time), I have not modified
any of the text that follows from its original form in 2014. In order to ensure the
validity of these notes, I have tried keep only the parts that were ultimately sensible.
For various complete demonstrations of adequacy of the model in a way that works for
a large class of evaluation strategies and languages, see the papers (and appendices)
done in collaboration with some of my coauthors Ariola, Johnson-Freyd, and Ghilezan
[6, 7, 5, 3, 4, 1, 8].

2 Orthogonality
We’re going to look at a syntactic model of understanding computation in the sequent
calculus in terms of orthogonality. The model hinges on some judgment that iso-
lates commands of the sequent calculus that we deem to be valid execution states for

1

our purposes. In other words, we isolate a set of commands that can run. For ex-
ample, if we are trying to execute well-typed programs, we might say that the com-
mand ⟨true||µ̃[true⇒ c1 | false⇒ c2]⟩ runs when c1 and c2 do, but a command like
⟨true||1 · tp⟩ does not run since it is nonsensical to apply the boolean value true to a
number. The idea that only some commands in the untyped sequent calculus go well
when run can be specified by a particular subset of all possible commands, y:

y ⊆ Command

Another way to think of the set y is that it specifies pairs of terms and coterms run
together and can fruitfully cooperate with one another. We may write the fact that a
term v goes with a coterm e (and vice versa) as the shorthand v y e:

v y e ≜ ⟨v||e⟩ ∈ y

Having made some particular choice for y, we can define two important closure
operations that find everything that runs with a set of terms or coterms. Starting from
an initial set of plausibly “well-behaved” (co)terms of the untyped syntax, Term∅ and
CoTerm∅, we define the orthogonal of a chosen set of (co)terms:1

• For any particular subset of terms TermA, its orthogonal is the set of coterms that
runs with everything in TermA:

Term⊥A = {e ∈ CoTerm∅ | ∀v ∈ TermA, v y e}

• For any particular subset of coterms CoTermA, its orthogonal is the set of terms
that runs with everything in CoTermA:

CoTerm⊤A = {v ∈ Term∅ | ∀e ∈ CoTermA, v y e}

As with the running set y, we also have some choice in how to define the initial sets
Term∅ and CoTerm∅. This flexibility allows us to capture some additional criteria in
the orthogonality operations, and avoid letting in any unwanted miscreants. For in-
stance, Munch-Maccagnoni [9] takes all closed (co)terms to be the initial sets to model
classical realizability. If instead we are interested in strong normalization, then we can
start with the sets of all strongly normalizing (co)terms as the initial sets. For other
purposes, we may not require any additional criteria in the orthogonality operations, so
the entire untyped syntax of (co)terms serves sufficiently well as a default choice.

Example 1. For example, suppose we are trying to reason about execution of well-
typed programs. In other words, we want to model type-safe, top-level reduction
in the sequent calculus. We would need to design our running set of commands
that contains all valid states of type-safe execution, and excludes stuck states that are
caused by type errors. For example, y would not include commands like ⟨true||1 · tp⟩,
⟨µ(x · α.c)||µ̃[(x, y).c]⟩, ⟨ι1(1)||µ̃[(x, y).c]⟩, and ⟨µ(x · α.c)||π1[tp]⟩, since they are all stuck

1Traditionally, these operations are referred to as either both ⊥ or ⊤, but here we use the two different
symbols to help disambiguate between terms and coterms.

2

on irrecoverable miscommunications like missing case analysis or data/codata mis-
matches. Instead, y would include valid states where we may not have enough in-
formation to take the next step, but execution could potentially continue if we learn
more. These would be states where we are stuck on a free variable, like ⟨ f ||1 · tp⟩ or
⟨z||µ̃[(x, y).c]⟩, or on a free covariable, like ⟨true||α⟩ or ⟨µ(x · α.c)||β⟩. To complete the
running set y, we should also ensure that a command that eventually reaches a valid
state in some number of steps is also valid. That is, if c′ is in y and c→→ c′ then c is
also in y. This is commonly referred to as “closure under expansion” or “closure under
backward reduction” and is found in similar models of program evaluation.

Now, we can consider what the orthogonality operations mean for the above de-
scription of our choice of the running set. We can begin with every (co)term in the
initial sets Term∅ and CoTerm∅. For instance, {()}⊥ selects every coterm that runs with
the term (). This would include coterms like µ̃[().c] and µ̃ .c for commands c that
are in y, because they both reduce to the running command c in one step. However,
{()}⊥ would not include coterms like 1 · tp or µ̃[ι1(x).c | ι2(y).c′] since commands like
⟨()||1 · tp⟩ are stuck on an irrecoverable type error and are excluded from y. As another
example, {}⊥ would instead select every coterm, since the condition ∀v ∈ {}, v y e is
vacuously true for any e. Note that this fact about {}⊥ (or {}⊤) holds regardless of the
definition of y, so that the orthogonal of the empty set always gives back every term in
Term∅ (or coterm in CoTerm∅). End Example 1.

While we often have a particular purpose in mind (like the above example of type-
safe execution), we can temporarily ignore the particular details and just leave y ab-
stract for the time being. As we will see, orthogonality already gives us some interest-
ing structure independent of our choice in y and without knowing anything about the
particularities of terms and coterms.

3 Orthogonality and intuitionistic negation
As an operation on sets of (co)terms, orthogonality has some inherently negating be-
havior: it generates a collection of consumers (terms) from a collection of consumers
(coterms), and vice versa. We will see that this simple intuition reveals a fundamental
connection between the orthogonality of (co)terms and negation in an intuitionistic set-
ting. As it turns out, basic properties of intuitionistic negation, both from a logical and
computational perspective, are shared with the orthogonality operation. Furthermore,
classical but non-intuitionistic properties of negation are invalid for the orthogonality
model.

To review, a logical presentation of negation in intuitionistic natural deduction can
be given by the typical encoding in terms of implication and falsehood: ¬A = A → ⊥.
The inference rules for connectives like →, ∧, and ∨ are defined as usual (see Frank
Pfenning’s OPLSS lectures, for example). Additionally, the encoding of negation is
summarized by the following two inference rules for the ¬ connective that are derived

3

from the rules for→:

A
x

....
⊥

¬A ¬Ix ¬A A
⊥

¬E

Remark 1. For the record, ⊥ would typically be given the following inference rules:

no ⊥I rules
⊥

C ⊥E

For our purposes here, we will not actually need to use the ⊥ elimination rule ⊥E.
Rather, we could have defined negation without any reference to falsehood. However,
the use of ⊥ allows us to use the encoding ¬A = A → ⊥, and helps to clarify the
connections between the logic, programs, and orthogonality. End Remark 1.

Using the rules for negation given above, we can give some schematic proofs in-
volving negation and implication that hold in intuitionistic logic. For example, we have
double negation introduction, A→ (¬¬A),

¬A k A
x

⊥
¬E

¬¬A ¬Ik

A→ (¬¬A) → Ix

the contrapositive of a function, (A→ B)→ (¬B→ ¬A),

¬B k A→ B
f

A
x

B → E

⊥
¬E

¬A ¬Ix

(¬B)→ (¬A) → Ik

(A→ B)→ ((¬B)→ (¬A)) → I f

and triple negation elimination, (¬¬¬A)→ (¬A),

¬¬¬A
w
¬A k A

x

⊥
¬E

¬¬A ¬Ik

⊥
¬E

¬A ¬Ix

(¬¬¬A)→ (¬A) → Iw

Each of these proofs can also be written as a term in the simply-typed λ-calculus by
taking the encoding ¬A = A→ ⊥ and letting ⊥ be some unknown type.

DNI : A→ ¬¬A = λx : A.λk : ¬A.k x

ContraPos : (A→ B)→ (¬B→ ¬A) = λ f : A→ B.λk : ¬B.λx : A.k (f x)
T NE : ¬¬¬A→ ¬A = λw : ¬¬¬A.λx : A.w (λk : ¬A.k x)

4

Remark 2. The three terms DNI, ContraPos, and T NE have an important status for
pure functional programming in languages like Haskell. In particular, they give us a
definition of the continuation monad over the return type ⊥, Cont A = ¬¬A. Double
negation introduction, DNI, is the return (a.k.a unit) function. Triple negation elimi-
nation, T NE, is the join function from Cont (Cont A) → Cont A with a more general
type. And ContraPos is the contravariant mapping function for the underlying ¬ func-
tor. We can get the Functor mapping function f map by taking ContraPos twice on a
function, f map f = ContraPos (ContraPos f). End Remark 2.

As it turns out, these three properties of double negation introduction, contrapos-
itive mapping, and triple negation elimination correspond to similar properties of or-
thogonality. In particular, the two orthogonality operation on sets of (co)terms takes
on the role of negation, and the subset relation takes on the role of implication. With
this correspondence in mind, we get the following three intuitionistic orthogonality
properties:

Property 1. 1. If TermA ⊆ Term∅ then TermA ⊆ Term⊥⊤A and if CoTermA ⊆

CoTerm∅ then CoTermA ⊆ CoTerm⊤⊥A .

2. If TermA ⊆ TermB then Term⊥B ⊆ Term⊥A and if CoTermA ⊆ CoTermB then
CoTerm⊤B ⊆ CoTerm⊤A .

3. Term⊥⊤⊥A = Term⊥A and CoTerm⊤⊥⊤A = CoTerm⊤A .

Proof. For simplicity, we focus only on the properties for sets of terms. The corre-
sponding properties on sets of coterms follow analogously.

1. By the definition of orthogonality, we know that every coterm in Term⊥A runs
with every term in TermA. Conversely, that also means that every term in TermA

runs with every coterm in Term⊥A . Therefore, every term in TermA must also
be a member of Term⊥⊤A , since it is one of the terms in Term∅ that runs with
everything in Term⊥A .

2. Suppose that eB is a coterm in Term⊥B . By the definition of orthogonality, we
know that eB is in CoTerm∅ and runs with every term in TermB. But since
everything in TermA is included in TermB, then eB also runs with everything in
TermA. Therefore, eB must also be a member of Term⊥A .

3. First, we get the fact that Term⊥A ⊆ Term⊥⊤⊥A as a consequence of Property 1.1
on coterms. Second, we get the fact that Term⊥⊤⊥A ⊆ Term⊥A from Properties 1.1
and 1.2. More specifically, we may introduce the double orthogonality with 1.1,
TermA ⊆ Term⊥⊤A , and arrive at the contrapositive with 1.2, Term⊥⊤⊥A ⊆ Term⊥A .
Therefore, the set Term⊥⊤⊥A must be equal to Term⊥A . □

It is important to point out that when demonstrating the above three properties, we
never needed to know anything about what makes up our initial sets of (co)terms and
how we defined the running set runs. This means that Properties 1.1, 1.2, and 1.3 must
hold for any choice of initial (co)terms and any choice of y. No matter what choices
me make, we get to use these intuitionistic reasoning principles when working with
orthogonality.

5

Example 2. One difference between intuitionistic negation versus negation in classi-
cal logic is that double negation elimination, i.e., (¬¬A) → A, is not assumed to hold
generically for any A in the intuitionistic setting. To see why “double orthogonal elimi-
nation”, i.e., Term⊥⊤A ⊆ TermA, cannot hold, let’s return to our example of type-safe ex-
ecution from Example 1. For the moment, let’s assume a call-by-value evaluation order
for the sequent calculus, so that every coterm is a covalue and so ⟨µα.c||e⟩ → c{e/α} for
any e. Recall that the orthogonal of the empty set of terms, {}⊥, is the set of all coterms.
Now, suppose that the command c is in the running set y. Notice that ⟨µ .c||e⟩ → c, so
that for an arbitrary coterm e, the command ⟨µ .c||e⟩ reduces in one step to a command
in the running set. This means that the term µ .c must be in the double-orthogonal
of the empty set, {}⊥⊤. But this also means that we’ve run into a situation where the
double orthogonal of a set of terms (namely the empty set) includes terms that weren’t
originally there. Therefore, we can’t say in general say that the double orthogonal of a
set of (co)terms the same as the original set.

Since taking the double orthogonal of a set of (co)terms can introduce new (co)-
terms, we can view it as a closure operation. Because taking the orthogonal thrice gives
the same thing as just once (Property 1.3), flipping back and forth more than twice in
this way is redundant: Term⊥⊤⊥⊤A = Term⊥⊤A and CoTerm⊤⊥⊤⊥A = Coterm⊤⊥A . In this
regard, Term⊥⊤A can be seen as the completion of TermA with respect to the running
set y, and CoTerm⊤⊥A is the completion of CoTermA. End Example 2.

By adding more connectives into the mix, like conjunction (∧) and disjunction (∨),
we get additional properties of intuitionistic negation. In particular, we have the de
Morgan law that allows us to distribute negation over conjunction in both directions:
(¬(A ∨ B)) ↔ ((¬A) ∧ (¬B)). This law is provable with the rules of our intuitionistic
natural deduction as two implications:

¬(A ∨ B) k A
x

A ∨ B
∨I1

⊥
¬E

¬A ¬Ix

¬(A ∨ B) k B
y

A ∨ B
∨I2

⊥
¬E

¬B ¬Iy

(¬A) ∧ (¬B) ∧I

(¬(A ∨ B))→ ((¬A) ∧ (¬B)) → Ik

A ∨ B
x

(¬A) ∧ (¬B) k

¬A
∧E1 A

y

⊥
¬E

⊥

(¬A) ∧ (¬B) k

¬B
∧E2 B

z

⊥
¬E

⊥
⊥

∨Ey,z

⊥
¬Ix

((¬A) ∧ (¬B))→ (¬(A ∨ B)) → Ik

We can also write down terms in the λ-calculus extended with pairs and sums that have

6

similar types, expressing the above de Morgan law as two functions:

PairNeg : (¬A) ∗ (¬B)→ ¬(A + B)
PairNeg = λk.λx. case x of ι1 y⇒ π1 k y | ι2 z⇒ π2 k z

NegS um : ¬(A + B)→ (¬A) ∗ (¬B)
NegS um = λk.((λx.k (ι1 x)), (λy.k (ι2 y)))

There is another de Morgan law for distributing a negation over a conjunction in
both directions: (¬(A∧ B))↔ ((¬A)∨ (¬B)). However, in an intuitionistic setting, this
law does not hold both ways. In particular, we can only assume that the right-to-left
direction of this law holds in general: (¬(A∧ B))← ((¬A)∨ (¬B)). This implication is
provable in intuitionistic natural deduction:

(¬A) ∨ (¬B) k ¬A
q A ∧ B

x

A
∧E1

⊥
¬E

¬B
r A ∧ B

x

B
∧E2

⊥
¬E

⊥

⊥
∨Eq,r

¬(A ∧ B) → Ix

((¬A) ∨ (¬B))→ (¬(A ∧ B)) → Ik

And we also have an (extended) λ-calculus function that corresponds to the one direc-
tion of the law.

S umNeg : (¬A) + (¬B)→ ¬(A ∗ B)
S umNeg = λk.λx. case k of ι1 q⇒ q (π1 x) | ι2 r ⇒ r (π2 x)

We are unable to write the inverse function, NegPair : ¬(A ∗ B)→ (¬A) + (¬B), since
we don’t know up front which of ¬A or ¬B to return in general.

Just like before, these three de Morgan laws correspond to similar properties of or-
thogonality. The union and intersection operations on sets take on the roles of conjunc-
tion and disjunction. This gives us the following intuitionistic de Morgan orthogonality
properties.

Property 2. 1. (TermA ∪ TermB)⊥ = (Term⊥A ∩ Term⊥B) and
(CoTermA ∪CoTermB)⊤ = (CoTerm⊤A ∩CoTerm⊥B).

2. (TermA ∩ TermB)⊥ ⊇ (Term⊥A ∪ Term⊥B) and
(CoTermA ∩CoTermB)⊤ ⊇ (CoTerm⊤A ∪CoTerm⊤B)

Proof. Again, for simplicity we will focus attention only on the properties for sets of
terms. Coterms follow analogously.

1. First, we show that (TermA ∪ TermB)⊥ ⊆ (Term⊥A ∩ Term⊥B). Suppose that e is
some coterm in (TermA ∪ TermB)⊥, so that e is in CoTerm∅ and runs with both
everything in TermA and everything in TermB. This means that it is indepen-
dently a member of both Term⊥A and of Term⊥B , forcing e in Term⊥A ∩ Term⊥B .

7

Second, we show that (Term⊥A ∩ Term⊥B) ⊆ (TermA ∪ TermB)⊥. Suppose that e
is some coterm in Term⊥A ∩Term⊥B . Then we know that e must be in both Term⊥A
and Term⊥B , so it is in CoTerm∅ and runs with everything in TermA and TermB.
But that means that e must also be in (TermA ∪ TermB)⊥.

2. Suppose that e is some coterm in Term⊥A ∪ Term⊥B , so that we know that e is
in CoTerm∅ and runs with either everything in TermA or with everything in
TermB (or both). Since every term v in TermA ∩ TermB must come from both
TermA or TermB, then we know that e must run with v. Therefore, e is also in
(TermA ∩ TermB)⊥. □

Again, take notice that the de Morgan properties of orthogonality don’t depend on
what (co)terms we’re working with, nor what the running set y happens to be. They
are general laws that come out from the definition of the orthogonality operations and
basic operations and relations on sets.

Example 3. To see why the de Morgan Property 2.2 does not go both ways like Prop-
erty 2.1, let’s return again to type-safe execution from Example 1. Now, suppose we
begin with two sets of terms, TermA = {True, ()} and TermB = {False, ()}, so that
their intersection is TermA ∩ TermB = {()}. The orthogonal of this intersection is
(TermA ∩ TermB)⊥ = {e | () y e}. By our description of the running set from Exam-
ple 1, given a command c in y we have that the coterm µ̃[().c] runs with () because
⟨()||µ̃[().c]⟩ → c, so the µ̃[().c] is in (TermA ∩ TermB)⊥. However, both ⟨true||µ̃[().c]⟩
and ⟨false||µ̃[().c]⟩ are not in the running set since they are stuck on a type error. This
means that the coterm µ̃[().c] is in neither Term⊥A nor Term⊥B , since µ̃[().c] fails to run
with some of the terms in TermA and TermB. Therefore, we’ve stumbled onto a situa-
tion where a coterm is in the orthogonal set of an intersection, but does not come from
the union of the separate orthogonal sets. In other words, taking the orthogonal of an
intersection between two sets of terms permits more possible coterms than just forming
the orthogonal sets in isolation and putting them together. End Example 3.

Aside 1. All of the above properties of orthogonality (except for Proposition 2.2 which
I found from the analogy to de Morgan laws for intuitionistic negation) appear in [9]
under the proposition for the “Basic properties of the orthogonal.” There is only one
more property listed under that header that talks about behaviors. A set of terms TermA

is a behavior when it has the form TermA = CoTerm⊤B for some set CoTermB, and
analogously a set of coterms CoTermA is a behavior when it has the form CoTermA =

Term⊥B . The property then states that

Property 3. TermA is a behavior if and only if TermA = Term⊥⊤A , and CoTermA is a
behavior if and only if CoTermA = CoTerm⊤⊥A .

I wonder if this also has some interesting correspondence to known facts about
negation in other settings, like the analogy with intuitionistic negation and de Morgan
laws above. End Aside 1.

8

4 Modeling constructions
Having looked at orthogonality and some of it’s basic properties in detail, let’s now see
what it can tell us about computation. In particular, we can use orthogonality as the
heart of a relational term model (in the general style of logical relations or parametricity
model) for classical programs in the sequent calculus.

Every type in the sequent calculus carves out a subset of both terms and coterms
that belong to that type. We can then give the meaning of a type in the model, ⟦A⟧, by
both a set of terms and a set of coterms. We will refer to the meaning of a type A as the
semantic type ⟦A⟧ which defines a set of terms and coterms:

⟦A⟧ : P(Term∅) × P(CoTerm∅)
Term⟦A⟧ ⊆ Term∅ CoTerm⟦A⟧ ⊆ CoTerm∅

The way that terms and coterms of a type interact is through the cut rule, which lets us
form a command from any term and coterm from the same type. When looking at types
from the perspective of the model, the cut rule corresponds to the intuitive property that
we should be able to run any term of a type with any coterm of the same type. In other
words, we should expect that the following holds for a type A:

Term⟦A⟧ = CoTerm⟦A⟧⊤ CoTerm⟦A⟧ = Term⟦A⟧⊥

That is, the terms and coterms of a type should be mutually orthogonal to one another.
Furthermore, when we begin to consider the types created by user-defined (co)data

types, we will see type variables appear from the schematic nature of declarations:

data F(
#»
X) where

K1 :
»
A1 ⊢ F(

#»
X) |

»
B1

. . .

Kn :
»
An ⊢ F(

#»
X) |

»
Bn

codata G(
#»
X) where

H1 :
»
A1 | G(

#»
X) ⊢

»
B1

. . .

Hn :
»
An | G(

#»
X) ⊢

»
Bn

For the purposes of analyzing the models for these schematic declarations, it is helpful
to define the model for open types which may contain free type variables, as found
in the types

#»
A and

#»
B above. To accommodate this generalization, we extend the

translation of types to also take a mapping, σ, from type variables to sets of terms and
coterms. Then we can define the meaning of a free type variable with respect to a
mapping σ as:

⟦X⟧σ ≜ σ(X)
Term⟦X⟧σ ≜ Term(σ(X)) CoTerm⟦X⟧σ ≜ CoTerm(σ(X))

The intention of quantifying over the mapping is to simulate substitution of types that
occurs due to instantiations of type constructors like F(

#»
C) and G(

#»
C) in the model itself.

Proposition 1. ⟦A⟧{⟦B⟧σ/X}σ = ⟦A{B/X}⟧σ.

For simplicity, when we are working with closed types, we use the shorthand ⟦A⟧
to signify the model of A with respect to the empty mapping, ⟦A⟧{}.

9

4.1 Modeling data types
Let’s now look at how we can translate data types into the model. Data types in the
sequent calculus are defined by the ways that we can construct a term of the type. In
other words, to understand a data type, we have to first understand the structure of term
constructions for that type. The coterms of a data type are instead given by inversion
over the different constructions, so that they consider the possible structures for input
that they might interact with. In terms of the model, we can define a data type A by its
constructions as a type-specific subset of all possible terms, Cons⟦A⟧. Then, the co-
terms of A are given by everything that is orthogonal to the constructions, and general
terms of type A are found by the double-orthogonal closure of the constructions.

Cons⟦A⟧σ ⊆ Term CoTerm⟦A⟧σ ≜ Cons⟦A⟧σ⊥ Term⟦A⟧σ ≜ Cons⟦A⟧σ⊥⊤

Note that our requirement that the (co)terms of a type are orthogonal to one another
follows from the above definition. In particular, Term⟦A⟧σ = CoTerm⟦A⟧σ⊤ by
definition, and CoTerm⟦A⟧σ = Term⟦A⟧σ⊥ by Property 1.3.

To make things more concrete, consider how we can use the general model of data
types for basic data types like pairs and sums. Additionally, for now we will only look
at closed types, so that we do not have to keep track of the mapping of type variables.
The pair type A ⊗ B is defined by the rule for introducing the pair constructor:

data A ⊗ B where
(,) : A, B ⊢ A ⊗ B |

Γ ⊢ vA : A | ∆ Γ ⊢ vB : B | ∆
Γ ⊢ (vA, vB) : A ⊗ B | ∆ ⊗R

In other words, we can build a pair whenever we have an arbitrary term of type A and
an arbitrary term of type B. Therefore, the meaning of the type A ⊗ B in the model
identifies all pairs constructed out of terms from Term⟦A⟧ and Term⟦B⟧.

Cons⟦A ⊗ B⟧ ≜ {(vA, vB) | vA ∈ Term⟦A⟧, vB ∈ Term⟦B⟧}

And by unfolding the definitions of orthogonality in CoTerm⟦A ⊗ B⟧ and Term⟦A ⊗ B⟧,
we get:

CoTerm⟦A ⊗ B⟧ = {e ∈ CoTerm∅ | ∀vA ∈ Term⟦A⟧,∀vB ∈ Term⟦B⟧, (vA, vB) y e}

Term⟦A ⊗ B⟧ = {v ∈ Term∅ | ∀e,∀vA ∈ Term⟦A⟧,∀vB ∈ Term⟦B⟧, (vA, vB) y e =⇒ v y e}

For sums, we define the type A ⊕ B by the rules for introducing one of the two sum
constructors:

data A ⊕ B where
ι1() : A ⊢ A ⊕ B |

ι2() : B ⊢ A ⊕ B |

Γ ⊢ vA : A | ∆
Γ ⊢ ι1(vA) : A ⊕ B | ∆

⊕R1
Γ ⊢ vB : B | ∆

Γ ⊢ ι2(vB) : A ⊕ B | ∆
⊕R2

10

In other words, we can build a sum whenever we have an arbitrary term of type A or
an arbitrary term of type B. Therefore, the meaning of the type A ⊕ B in the model
identifies all sums constructed from Term⟦A⟧ as well as all sums constructed from
Term⟦B⟧.

Cons⟦A ⊕ B⟧ ≜ {ι1(vA) | vA ∈ Term⟦A⟧} ∪ {ι2(vB) | vB ∈ Term⟦B⟧}

Unfolding the definitions, we get the following (co)terms for A ⊕ B:

CoTerm⟦A ⊕ B⟧ = {e ∈ CoTerm∅ | ∀vA ∈ Term⟦A⟧, ι1(vA) y e}

∩ {e ∈ CoTerm∅ | ∀vB ∈ Term⟦B⟧, ι2(vB) y e}

= {e ∈ CoTerm∅ | ∀vA ∈ Term⟦A⟧,∀vB ∈ Term⟦B⟧,

ι1(vA) y e ∧ ι2(vb) y e}

Term⟦A ⊕ B⟧ = {v ∈ Term∅ | ∀e,∀vA ∈ Term⟦A⟧,∀vB ∈ Term⟦B⟧,

(ι1(vA) y e ∧ ι2(vb) y e) =⇒ v y e}

It is also interesting to consider the nullary versions of pairs and sums, which is the
unit type 1 and empty type 0, respectively. The 1 type is defined by the singleton unit
constructor, and the 0 type is defined by the fact that it has no possible constructors.

data 1 where
() : ⊢ 1 |

data 0 where

Γ ⊢ () : 1 | ∆ 1R no 0R rules

In the model, the constructions of these data types correspond to the singleton set and
the empty set:

Cons⟦1⟧ ≜ {()} Cons⟦0⟧ ≜ {}

By unfolding the definitions, we get the following general (co)terms of the 1 and 0
types:

CoTerm⟦1⟧ = {e ∈ CoTerm∅ | () y e}

Term⟦1⟧ = {v ∈ Term∅ | ∀e ∈ CoTerm∅, () y e =⇒ v y e}

CoTerm⟦0⟧ = {e ∈ CoTerm∅}

Term⟦0⟧ = {v ∈ Term∅ | ∀e ∈ CoTerm∅, v y e}

The representation of 0 is especially interesting here. The set CoTerm⟦0⟧ includes
every coterm of CoTerm∅, and the set Term⟦0⟧ includes only those terms that are
capable of running with any coterm in CoTerm∅.

11

We can model user-defined data types in general based on their declarations. Given
a declaration for the data type constructor F:

data F(
#»
X) where

K1 :
»
A1 ⊢ F(

#»
X) |

»
B1

. . .

Kn :
»
An ⊢ F(

#»
X) |

»
Bn

we can model its constructions as:

Cons⟦F(
#»
C)⟧σ ≜ {K1(#»ei

i, #»vi
i) |

»

ei ∈ CoTerm⟦B1i⟧σ
′
i
,

»

vi ∈ Term⟦A1i⟧σ
′
i
}

∪ . . .

∪ {Kn(#»ei
i, #»vi

i) |
»

ei ∈ CoTerm⟦Bni⟧σ
′
i
,

»

vi ∈ Term⟦Ani⟧σ
′
i
}

whereσ′ = { # »
⟦C⟧σ/

#»
X }σ

Notice that now the mapping from type variables to semantic types becomes useful to
handle the placeholders used by a data type declaration, in order to plug in the meaning
of the types

#»
C for the occurrences of the type variables

#»
X that show up in the types of

each constructor.
It is worthwhile to discuss why this definition of ⟦F(

#»
C)⟧σ is well-defined. In all of

the above models for basic data types, ⟦A⟧ is defined by induction on the structure of
the type A. In Cons⟦F(

#»
C)⟧σ above, the models for each of

#»
C follows from structural

induction on F(
#»
C). However, the types

#»
A and

#»
B that are introduced by the declaration

of F appear to come out of nowhere. Fortunately, this does not pose a problem when the
declaration for F is non-recursive. In other words, the types

#»
A and

#»
B never mention the

data type constructor F. Moreover, combinations of many type constructor declarations
F1, . . . ,Fn should also be non-recursive, meaning that there is a well-founded ordering
of dependencies between each Fi. Therefore, the model for a type, ⟦A⟧σ, follows
by lexicographical induction on (1) the set of type constructors used to build A, and
(2) the structure of the type A. In each of

»
⟦C⟧σ, C may be built from the same set

of connectives but is a sub-component of the original type. In each of
»

⟦A⟧σ′ and
»

⟦B⟧σ′ ,
#»
A and

#»
B are not sub-components of the original type, but they are built from a

strictly smaller set of connectives (namely, the set with F removed). Therefore, ⟦A⟧ is
well-defined for user-declared data types.

This general definition encompasses all of the above definitions for basic data types.
For example, the declaration for ⊗ gives us the following set of constructions for a
closed pair type:

Cons⟦A ⊗ B⟧ = {(vA, vB) | vA ∈ Term⟦X⟧{⟦A⟧, ⟦B⟧/X,Y}, vB ∈ Term⟦Y⟧{⟦A⟧, ⟦B⟧/X,Y}}

= {(vA, vB) | vA ∈ Term⟦A⟧vB ∈ Term⟦B⟧}

And similarly for the data type constructors ⊕, 1, and 0.

12

4.2 Modeling codata types
Codata types in the sequent calculus follow exactly the dual pattern as data types,
and are defined by the ways that we can construct a coterm of the type. In other
words, to understand a codata type, we first have to understand the structure of the
observations (i.e., coterm constructions) for that type. The terms of a codata type are
instead given by inversion over the different possible observations, so that they consider
the possible structures of the output they might interact with. In terms of the model, we
can define a codata type A by its observations as a type-specific subset of all possible
coterms, Obs⟦A⟧. Then, the terms of A are given by everything that is orthogonal to
the observations, and general coterms of type A are found by the double-orthogonal
closure of the specific observations.

Obs⟦A⟧σ ⊆ CoTerm∅ Term⟦A⟧σ ≜ Obs⟦A⟧σ⊤ CoTerm⟦A⟧σ ≜ Obs⟦A⟧σ⊤⊥

Since this is just the oppositely oriented version of our treatment of data types, it should
be no surprise that our requirement that the (co)terms of a type are orthogonal to one
another. Specifically, CoTerm⟦A⟧σ = Term⟦A⟧σ⊥ by definition, and Term⟦A⟧σ =
CoTerm⟦A⟧σ⊤ by Property 1.3.

To help explain the general model of codata types, lets consider some pervasive
basic co types like products and functions. The product type A & B is defined by the
two rules for projection:

codata A & B where
π1[] :| A & B ⊢ A

π2[] :| A & B ⊢ B

Γ | eA : A ⊢ ∆
Γ | π1[eA] : A & B ⊢ ∆

&L1
Γ | eB : A ⊢ ∆

Γ | π2[eB] : A & B ⊢ ∆
&L2

In other words, we are allowed to observe a product A & B whenever we have an
arbitrary coterm accepting type A or an arbitrary coterm accepting type B. Therefore,
the meaning of the type A & B in the model identifies all first projections built from
CoTerm⟦A⟧ as well as all second projections built from CoTerm⟦B⟧.

Obs⟦A & B⟧ ≜ {π1[eA] | eA ∈ CoTerm⟦A⟧} ∪ {π2[eB] | eB ∈ CoTerm⟦B⟧}

Term⟦A & B⟧ = {v ∈ Term∅ | ∀eA ∈ CoTerm⟦A⟧, v y π1[eA]}
∩ {v ∈ Term∅ | ∀eB ∈ CoTerm⟦B⟧, v y π2[eB]}
= {v ∈ Term∅ | ∀eA ∈ CoTerm⟦A⟧,∀eB ∈ CoTerm⟦B⟧,

v y π1[eA] ∧ v y π2[eB]}
CoTerm⟦A & B⟧ = {e ∈ CoTerm∅ | ∀vTerm∅,∀eA ∈ CoTerm⟦A⟧,∀eBCoTerm⟦B⟧,

(v y π1[eA] ∧ v y π2[eB]) =⇒ v y e}

13

For functions, we define the type A→ B by the rule for introducing a function call:

codata A→ B where
· : A | A→ B ⊢ B

Γ ⊢ vA : A | ∆ Γ | eB : B ⊢ ∆
Γ | vA · eB : A→ B ⊢ ∆ → L

In other words, we are allowed to observe a function A → B whenever we have an
arbitrary term of type A and an arbitrary coterm accepting type B. Therefore, the
meaning of the type A → B in the model identifies all function calls built out of terms
from Term⟦A⟧ and coterms from CoTerm⟦B⟧.

Obs⟦A→ B⟧ ≜ {vA · eB | vA ∈ Term⟦A⟧, eB ∈ CoTerm⟦B⟧}

And for the terms and general coterms of A→ B we have:

Term⟦A→ B⟧ = {v ∈ Term∅ | ∀vA ∈ Term⟦A⟧,∀eB ∈ CoTerm⟦B⟧, v y vA · eB}

CoTerm⟦A→ B⟧ = {e ∈ Term∅ | ∀v ∈ Term∅,∀vA ∈ Term⟦A⟧,∀eB ∈ CoTerm⟦B⟧,

(v y vA · eB) =⇒ (v y e)}

Γ | eA : A ⊢ ∆ Γ | eB : B ⊢ ∆
Γ | [eA, eB] : AM B ⊢ ∆ ML

We can also give a model of classical connectives, like A M B, which make use of
multiple (or no) conclusions. The codata type A M B is defined as the dual of the pair
A ⊗ B:

codata AM B where
[,] :| AM B ⊢ A, B

And likewise, the observations of A M B are a mirror image of the constructions of
A ⊗ B:

Obs⟦AM B⟧ ≜ {[eA, eB] | eA ∈ CoTerm⟦A⟧, eB ∈ CoTerm⟦B⟧}

This definition is also similar to functions, except that the first component A of the
structure is also an output like B.

As before, it is interesting to take a look at the nullary versions of products and
copairs (i.e., M).

codata⊥where
tp : | ⊥ ⊢

codata⊤where

Γ | tp : ⊥ ⊢ ∆ ⊥L no ⊤L rules

14

In the model, the observations of these codata types correspond to the singleton set and
the empty set:

Obs⟦⊥⟧ ≜ {tp} Obs⟦⊤⟧ ≜ {}

which gives us the following general (co)terms of the ⊥ and ⊤ types:

Term⟦⊥⟧ = {v ∈ Term∅ | v y tp}

CoTerm⟦⊥⟧ = {e ∈ CoTerm∅ | ∀v ∈ Term∅, v y tp =⇒ v y e}

Term⟦⊤⟧ = {v ∈ Term∅}

CoTerm⟦⊤⟧ = {e ∈ CoTerm∅ | ∀v ∈ Term∅, v y e}

As the dual to 0, the ⊤ type is especially interesting. The set Term⟦⊤⟧ includes every
term of the language, and the set CoTerm⟦⊤⟧ includes only the coterms that can run
with any term.

As with data types, we can model user-defined codata types in general based on
their declarations. Given a declaration for the codata type constructor G:

codata G(
#»
X) where

H1 :
»
A1 | G(

#»
X) ⊢

»
B1

. . .

Hn :
»
An | G(

#»
X) ⊢

»
Bn

we can model its observations as:

Obs⟦G(
#»
C)⟧σ ≜ {H1[#»vi

i, #»ei
i] |

»

vi ∈ Term⟦A1i⟧σ
′
i
,

»

ei ∈ CoTerm⟦B1i⟧σ
′
i
}

∪ . . .

∪ {Hn[#»vi
i, #»ei

i] |
»

vi ∈ Term⟦Ani⟧σ
′
i
,

»

ei ∈ CoTerm⟦Bni⟧σ
′
i
}

The (non-recursive) user-declared codata type ⟦G(
#»
C)⟧ is well-defined for similar rea-

sons as user-defined data types. Just as before, this general schematic definition en-
compasses all of the models for basic codata types discussed above. For instance, the
declaration for the function type constructor gives us the following observations for
closed types:

Obs⟦A→ B⟧ = {vA · eB | vA ∈ Term⟦X⟧{⟦A⟧, ⟦B⟧/X,Y}, eB ∈ CoTerm⟦Y⟧{⟦A⟧, ⟦B⟧/X,Y}}

= {vA · eB | vA ∈ Term⟦A⟧, eB ∈ CoTerm⟦B⟧}

Remark 3. As observed above, the set of terms for the empty codata type ⊤ and the set
of coterms for the empty data type 0 include everything in the initial sets of terms and
coterms: Term⟦⊤⟧ = Term∅ and CoTerm⟦0⟧ = CoTerm∅. Another way of looking at
this fact is that the choice of Term∅ and CoTerm∅ defines the terms of the type ⊤ and
the coterms of the type 0. Furthermore, the⊤ type corresponds to the terminal object of
a category (as it’s the unit of the product former &), and the 0 type corresponds to initial
object of a category (as it’s the unit of the sum former ⊕). So another viewpoint is that
CoTerm∅ is the initial set defining the initial type, and dually Term∅ is the terminal set
defining the terminal type. End Remark 3.

15

5 Static and semantic typing
Before in Section 4, we mentioned briefly why the recursive meaning of a type, ⟦A⟧,
is well-defined. As a quick warm-up, we can more formally describe the well-defined
nature of the semantic model for open types with free type variables. This proof gives
a simple example of our general induction principle on types built from declared, but
non-recursive, (co)data type constructors.

Lemma 1. For any open type A built from the non-recursive (co)data type constructors
in F , ⟦A⟧σ is defined when σ is defined for every free type variable A.

Proof. By lexicographic induction on (1) inclusion of the set of type constructors F ,
and (2) the structure of A.

• A = X: ⟦X⟧σ = σ(X) and σ(X) is defined by assumption.

• A = F(
#»
C), where F is a non-recursive data type constructor declared as:

data F(
#»
X) where

K1 :
»
A1 j

j
⊢ F(

#»
X) |

»
B1 j

j

. . .

Kn :
»
An j

j
⊢ F(

#»
X) |

»
Bn j

j

Recall that ⟦F(
#»
C)⟧σ is defined as

Term⟦F(
#»
C)⟧σ ≜ Cons⟦F(

#»
C)⟧σ⊥⊤ CoTerm⟦F(

#»
C)⟧σ ≜ Cons⟦F(

#»
C)⟧σ⊥

where the constructions Cons⟦F(
#»
C)⟧σ are defined as

Cons⟦F(
#»
C)⟧σ ≜

n⋃
i=1

{K1(#»e j
j, #»v j

j) |
»

e j ∈ CoTerm⟦Bi j⟧σ
′

j
,

»

v j ∈ Term⟦Ai j⟧σ
′

j
}

whereσ′ = { # »
⟦C⟧σ/

#»
X }σ

Observe that each of
»
⟦C⟧σ are defined by the inductive hypothesis (with the

same set F and decreasing on the structure of the type). Also, because the data
declaration is non-recursive, we know that each of the types Ai j and Bi j do not
contain the type constructor F, but they may contain free occurrences of the
additional type variables

#»
X . Therefore, each ⟦Ai j⟧σ

′ and ⟦Bi j⟧σ
′ is defined by

the inductive hypothesis (with the decreasing set of type constructors F \ {F}). It
follows that Cons⟦F(

#»
C)⟧σ, and therefore ⟦F(

#»
C)⟧σ in general, is defined.

• A = G(
#»
C), where G is a non-recursive codata type constructor declared as:

codata G(
#»
X) where

H1 :
»
A1 j

j
| G(

#»
X) ⊢

»
B1 j

j

. . .

Hn :
»
An j

j
| G(

#»
X) ⊢

»
Bn j

j

Analogous to the case for a data type constructor by duality. □

16

In addition to the fact that the recursively semantic model for types is well-defined,
it also follows the expected substitution principle for open types.

Lemma 2. For any open types A built from the non-recursive (co)data type construc-
tors in F which are closed under σ, ⟦A⟧{⟦D⟧σ/Y}σ = ⟦A{D/Y}⟧σ when σ is defined
for every free type variable in A (besides Y) and D.

Proof. By lexicographic induction on (1) inclusion of the set of type constructors F,
and (2) the structure of A.

• A = X: then ⟦X⟧{⟦C⟧σ/X}σ = ⟦C⟧σ = ⟦X{C/X}⟧σ.

• A = F(
#»
C), where F is a non-recursive data type constructor declared as:

data F(
#»
X) where

K1 :
»
A1 j

j
⊢ F(

#»
X) |

»
B1 j

j

. . .

Kn :
»
An j

j
⊢ F(

#»
X) |

»
Bn j

j

Observe that each of
»

⟦C⟧{⟦D⟧σ/Y}σ =
»

⟦C{D/Y}⟧σ by the inductive hypothesis
(with the same set F and decreasing on the structure of the type). Also, because
the data declaration is non-recursive, we know that each of the types Ai j and Bi j

do not contain the type constructor F. Furthermore, because the data declaration
is closed under σ, we know that each of the types Ai j and Bi j do not contain the
free type variable Y (unless it is in

#»
X). Let σ′ = {

»

⟦C⟧{⟦D⟧σ/Y}σ/
#»
X }σ and note

that σ′ = {
»

⟦C{D/Y}⟧σ/
#»
X }σ by the inductive hypothesis on

»

⟦C⟧{⟦D⟧σ/Y}σ.
Then each ⟦Ai j⟧σ

′{⟦D⟧σ/Y} = ⟦Ai j⟧σ
′ and ⟦Bi j⟧σ

′{⟦D⟧σ/Y} = ⟦Bi j⟧σ
′ by

one of two cases:

– Y is not in
#»
X : then each Ai j{D/Y} = Ai j and Bi j{D/Y} = Bi j, and so

each ⟦Ai j⟧σ
′{⟦D⟧σ/Y} = ⟦Ai j⟧σ

′ and ⟦Bi j⟧σ
′{⟦D⟧σ/Y} = ⟦Bi j⟧σ

′ by
the inductive hypothesis.

– Y is in
#»
X : then σ′{⟦D⟧σ/Y} = σ′ by shadowing.

Therefore, ⟦F(
#»
C)⟧σ′ = ⟦F(

»

C{D/Y})⟧σ.

• A = G(
#»
C), where G is a non-recursive codata type constructor declared as:

codata G(
#»
X) where

H1 :
»
A1 j

j
| G(

#»
X) ⊢

»
B1 j

j

. . .

Hn :
»
An j

j
| G(

#»
X) ⊢

»
Bn j

j

Analogous to the case for a data type constructor by duality. □

17

Now that we have a well-defined semantic model for types that we can use to talk
about the run-time behavior of commands, we would like to relate the static type system
to the model. Suppose we have a well-typed, open command with free (co)variables,
as described by a derivation ending in the sequent c : (Γ ⊢ ∆). Intuitively, the environ-
ments Γ and ∆ give the range of significance for the free (co)variables of c, so that if
x : A is in Γ and we plug in any value of type A for x in c, then the resulting command
should also be well-typed (and similarly for covariables). Likewise for (co)terms, ev-
ery well-typed substitution for a free variable of the (co)term should yield a well-typed
(co)term of the same type.

We can reflect this intuition in the semantic world by defining the model of an open
command, c : (Γ |= ∆), by the fact that c runs for every sensible substitution for its
free (co)variables. Note that we only ever substitute (co)values for (co)variables, so
we now need to specify the (co)values of a semantic type, rather than just the general
terms. Since the notion of “what is a (co)value” comes from the strategy, the (co)values
of a semantic type depend on the chosen strategy S:

Value⟦A⟧σ ≜ Term⟦A⟧σ ∩ ValueS
CoValue⟦A⟧σ ≜ CoTerm⟦A⟧σ ∩CoValueS

The model of an environment is given by the set of all possible (parallel) substitutions
for all specified (co)variables:

⟦
»
xi : Ai

i
⟧σ ≜ {

#»
Vi

i
/ #»xi

i
|

»
Vi ∈ Value⟦Ai⟧σ

i
}

⟦
»
αi : Ai

i
⟧σ ≜ {

#»
Ei

i
/ #»αi

i
|

»
Ei ∈ CoValue⟦Ai⟧σ

i
}

Then, the model for open commands is the statement that the command runs for every
possible substitution for its environment, and the model for (co)terms is the statement
that the (co)term is a member of the particular type for every possible substitution for
its environment.

c : (Γ |=σ ∆) ≜ ∀γ ∈ ⟦Γ⟧σ,∀δ ∈ ⟦∆⟧σ, c{γ, δ} ∈ y
Γ |=σ v : A | ∆ ≜ ∀γ ∈ ⟦Γ⟧σ,∀δ ∈ ⟦∆⟧σ, v{γ, δ} ∈ Term⟦A⟧

Γ | e : A |=σ ∆ ≜ ∀γ ∈ ⟦Γ⟧σ,∀δ ∈ ⟦∆⟧σ, e{γ, δ} ∈ CoTerm⟦A⟧

Now that we have given an interpretation for open commands and (co)terms in the
model, we can express the soundness of the type system with respect to the model:
static typing implies semantic typing.

Property 4 (Soundness). For a particular running set y, µµ̃F
S

typing is sound with
respect to ⟦µµ̃F

S
⟧ iff:

1. c : (Γ ⊢ ∆) implies c : (Γ |= ∆),

2. Γ ⊢ v : A | ∆ implies Γ |= v : A | ∆, and

3. Γ | e : A ⊢ ∆ implies Γ | e : A |= ∆.

18

It is now our goal to prove that for a general class of choices — (co)data type
constructors F , strategies S, initial sets Term∅ and CoTerm∅, and running set y —
the type system of µµ̃F

S
is sound with respect to ⟦µµ̃F

S
⟧. In other words, we need to

justify each inference rule of the µµ̃F
S

sequent calculus in terms of the model, and in
doing so may need to require some additional properties about F , S, Term∅, CoTerm∅,
and y. These properties arise pragmatically out of the needs of the ultimate proof of
soundness, giving a general characterization of the reasoning that pushes the inductive
argument through.

To begin establishing the preliminaries for soundness, let’s consider the most fun-
damental rule of the sequent calculus: the Cut rule. Recall that the Cut rule declares
that for any type A, we can meaningfully put together an arbitrary term and coterm of
type A:

Γ ⊢ v : A | ∆ Γ | e : A ⊢ ∆
⟨v||e⟩ : Γ ⊢ ∆ Cut

In terms of the model, this rule requires that the terms and coterms of every semantic
type ⟦A⟧ be mutually orthogonal to one another, so that we can run a command formed
by any combination from the sets of (co)terms.

Property 5 (Mutual orthogonality). A set of terms TermA and coterms CoTermA are
mutually orthogonal iff TermA = CoTerm⊤A and CoTermA = Term⊥A . Furthermore,
a semantic type R is mutually orthogonal iff Term(R) and CoTerm(R) are mutually
orthogonal.

It follows that the meaning of every static type is a mutually orthogonal semantic
type.

Lemma 3 (Mutual orthogonality of types). For every type A built from the (co)data
type constructors F , ⟦A⟧σ is mutually orthogonal whenever every semantic type in
the codomain of σ is mutually orthogonal.

Proof. By cases on the structure of A:

• A = X: then ⟦X⟧σ = σ(X), which is mutually orthogonal by assumption.

• A = F(
#»
C) where F is a data type constructor: then Term⟦F(

#»
C)⟧σ = CoTerm⟦F(

#»
C)⟧σ⊤

by definition and

CoTerm⟦F(
#»
C)⟧σ = Cons⟦F(

#»
C)⟧σ⊥ = Cons⟦F(

#»
C)⟧σ⊥⊤⊥ = Term⟦F(

#»
C)⟧σ⊥

by triple orthogonal elimination.

• A = G(
#»
C) where G is a codata type constructor: then CoTerm⟦G(

#»
C)⟧σ =

Term⟦G(
#»
C)⟧σ⊥ by definition and

Term⟦G(
#»
C)⟧σ = Obs⟦G(

#»
C)⟧σ⊤ = Obs⟦G(

#»
C)⟧σ⊤⊥⊤ = CoTerm⟦G(

#»
C)⟧σ⊤

by triple orthogonal elimination. □

19

As a consequence of the mutual orthogonality of static types, we also have that the
terms and coterms of every static type belong to the initial sets Term∅ and CoTerm∅,
due to the definition of the dual orthogonality operations.

Lemma 4. For every type A built from the (co)data type constructors F , Term⟦A⟧σ ⊆
Term∅ and CoTerm⟦A⟧σ ⊆ CoTerm∅ whenever every semantic type in the codomain
of σ is mutually orthogonal.

Proof. By Lemma 3 and the definition of ⊥ and ⊤. □

The rest of the inference rules assert the typing of certain forms of terms and co-
terms. Therefore, we need to make sure that these certain (co)terms are in the initial
sets Term∅ and CoTerm∅, so that they are not lost during the double orthogonal pro-
cedure. In other words, we need to make sure that Term∅ and CoTerm∅ and initialized
properly, so that they contain “enough” (co)terms that we expect to have available. In
the remainder of the section, let the data type constructor F and codata type constructor
G declared as:

data F(
#»
X) where

K1 :
»
A1 j

j
⊢ F(

#»
X) |

»
B1 j

j

. . .

Kn :
»
An j

j
⊢ F(

#»
X) |

»
Bn j

j

codata G(
#»
X) where

H1 :
»
A1 j

j
| G(

#»
X) ⊢

»
B1 j

j

. . .

Hn :
»
An j

j
| G(

#»
X) ⊢

»
Bn j

j

stand in place for some generic (co)data type constructor.

Property 6 (Initialization). • Term∅ is initialized with A neutrality iff µα.c ∈ Term∅
whenever c : (|= α : A). CoTerm∅ is initialized with A neutrality iff µ̃x.c ∈
CoTerm∅ whenever c : (x : A |=).

• For a data type constructor F, Term∅ is initialized with F data iff for all construc-
tors Ki of F, Cons⟦F(

#»
C)⟧σ ⊆ Term∅ whenever

»
e ∈ CoTerm∅ and #»v ∈ Term∅.

CoTerm∅ is initialized with F data iff µ̃[
»

Ki(#»α j
j, #»x j

j).ci
i
] ∈ CoTerm∅ whenever

ci : (
»
x j : Ai j

j
|={ # »
⟦C⟧ /

#»
X }

»
α j : Bi j

j
) for any types

#»
C .

• For a codata type constructor G, CoTerm∅ is initialized with G codata iff for
all coconstructors Hi of G, Hi[#»v , #»e] ∈ CoTerm∅ whenever #»v ∈ Term∅ and
#»e ∈ CoTerm∅. Term∅ is initialized with G codata iff µ(

»

Hi[#»x j
j, #»α j

j].ci
i
) ∈ Term∅

whenever ci : (
»
x j : Ai j

j
|={ # »
⟦C⟧ /

#»
X }

»
α j : Bi j

j
) for any types

#»
C .

Additionally, we also need to make sure that the running set y contains “enough”
commands, based on the run-time behavior of programs. That is to say, if a command
— made up of plausibly well-behaved (co)terms from Term∅ and CoTerm∅ — reduces
to a second command that runs, then the first command also runs. This assertion gives
us a generalized version of saturation from classical realizability [9] and reducibility
candidates.

20

Property 7 (Saturation). For a reduction relation L, a running set y is saturated by L
iff the following condition holds:

• For any v ∈ Term∅ and e ∈ CoTerm∅, ⟨v||e⟩ ∈ y whenever ⟨v||e⟩ →L c and c ∈ y.

Furthermore, a set of term TermA and a set of coterms CoTermA are saturated by L iff
the following conditions hold, respectively:

• For any v ∈ Term∅, v ∈ TermA whenever v→L v′ and v′ ∈ TermA.

• For any e ∈ CoTerm∅, e ∈ CoTermA whenever e→L e′ and e′ ∈ TermA.

For the remainder of this section, we will generally assume that the initial sets
Term∅ and CoTerm∅ are initialized with neutrality at every type, and with every (co)-
data type constructor in the particular F under consideration. Also, we will generally
assume that the running set y is saturated by µµ̃F

S
head reduction for our choice of type

constructors F and strategy S. That is, y will be some set of commands saturated by
reduction with the µE , µ̃V , or β rules applied to the top-level command, and with the ς
rules applied to the immediate sub-(co)term of the top-level command.

Now, let’s consider the Act and CoAct inference rules for introducing the generic
input and output abstractions. These rules assert that for any well-typed command, we
can abstract over a variable or covariable of any type to get a well-typed coterm or term
of that type:

c : (Γ ⊢ α : A,∆)
Γ ⊢ µα.c : A | ∆ Act

c : (Γ, x : A ⊢ ∆)
Γ | µ̃x.c : A ⊢ ∆ CoAct

For it to be possible that Term⟦A⟧ contains the term µα.c and CoTerm⟦A⟧ contains
the coterm µ̃x.c, we need to ensure that Term∅ and CoTerm∅ are initialized with A
neutrality. Next, the saturation of y by µE and µ̃V head reduction gets us part of the
way there, guaranteeing a weaker form of activation stating that µα.c runs with any
covalue of A, and µ̃x.c runs with any value of A.

Lemma 5 (Weak activation). • µα.c ∈ CoValue⟦A⟧⊤ whenever c : (|= α : A).

• µ̃x.c ∈ Value⟦A⟧⊥ whenever c : (x : A |=).

Proof. • For the first point, observe that for any EA ∈ CoValue⟦A⟧ we have the
head reduction:

⟨µα.c||EA⟩ →µE c{EA/α}

where c{EA/α} ∈ y by the assumption that c : (|= α : A). Furthermore, µα.c ∈
Term∅ by initialization of Term∅ by A neutrality, and EA ∈ CoTerm∅ because
CoValue⟦A⟧ ⊆ CoTerm⟦A⟧ by definition and CoTerm⟦A⟧ ⊆ CoTerm∅ by
Lemma 4. Therefore, µα.c y EA by saturation of y by µE head reduction, and
so µα.c ∈ CoValue⟦A⟧⊤.

• The second point for µ̃x.c ∈ Value⟦A⟧⊥ follows analogously by duality. □

21

In order to extend this weak form of activation to a stronger form that demonstrates
the soundness of the Act rule (and dually the CoAct rule), we need to show that because
µα.c runs with any value of ⟦A⟧ it also must run with any term of ⟦A⟧. Therefore, we
need to establish something more about the relationship between the (co)terms and
(co)values of the semantic types in question. In particular, we would like to say that
the terms of every semantic type ⟦A⟧ are generated by the double orthogonal closure
on the values of ⟦A⟧ (and dually for the covalues generating the coterms). That would
imply that the values of ⟦A⟧ describe all of its interesting intricacies, and that we are
not missing out on any different subtleties by only testing µ̃x.c on just the values of
⟦A⟧.

Property 8 (Generation). For a chosen strategy S:

• A set of terms TermA is generated by its values iff TermA = (TermA∩ValueS)⊥⊤.

• A set of coterms CoTermA is generated by its covalues iffCoTermA = (CoTermA∩

CoValueS)⊤⊥.

• A semantic type R is generated by its (co)values iff Term(R) is generated by its
values and CoTerm(R) is generated by its covalues.

With the assumption that the meaning of a type A is generated by its values, we get
the stronger version of activation that we have been seeking.

Lemma 6 (Strong activation). • µα.c ∈ Term⟦A⟧ whenever c : (|= α : A) and
CoTerm⟦A⟧ is generated by its covalues.

• µ̃x.c ∈ CoTerm⟦A⟧ whenever c : (x : A |=) and Term⟦A⟧ is generated by its
values.

Proof. • For the first point, we know that µα.c ∈ CoValue⟦A⟧⊤ by Lemma 5.
From the assumption that CoTerm⟦A⟧ = CoValue⟦A⟧⊤⊥ we know that CoTerm⟦A⟧⊤ =
CoValue⟦A⟧⊤⊥⊤ = CoValue⟦A⟧⊤ by triple orthogonal elimination, and that
Term⟦A⟧ = CoTerm⟦A⟧⊤ = CoValue⟦A⟧⊤ by Lemma 3. Therefore, µα.c is
also in Term⟦A⟧.

• The second point for µ̃x.c ∈ CoTerm⟦A⟧ follows analogously by duality. □

22

References
[1] P. Downen. Sequent Calculus: A Logic and a Language for Computation and

Duality. PhD thesis, The University of Oregon, 2017.

[2] P. Downen and Z. M. Ariola. The duality of construction. In Programming Lan-
guages and Systems - 23rd European Symposium on Programming, ESOP 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume
8410 of Lecture Notes in Computer Science, pages 249–269. Springer, 2014.

[3] P. Downen and Z. M. Ariola. Beyond polarity: Towards a multi-discipline inter-
mediate language with sharing. In 27th EACSL Annual Conference on Computer
Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, volume 119
of LIPIcs, pages 21:1–21:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018.

[4] P. Downen and Z. M. Ariola. A computational understanding of classical
(co)recursion. In PPDP ’20: 22nd International Symposium on Principles and
Practice of Declarative Programming, Bologna, Italy, 9-10 September, 2020, pages
5:1–5:13. ACM, 2020.

[5] P. Downen, Z. M. Ariola, and S. Ghilezan. The duality of classical intersection and
union types. Fundamenta Informaticae, 170(1-3):39–92, 2019.

[6] P. Downen, P. Johnson-Freyd, and Z. M. Ariola. Structures for structural recursion.
In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’15, pages 127–139, New York, NY, USA, 2015. ACM.

[7] P. Downen, P. Johnson-Freyd, and Z. M. Ariola. Abstracting models of strong
normalization for classical calculi. Journal of Logical and Algebraic Methods in
Programming, 111:100512, 2020.

[8] P. Johnson-Freyd. Properties of Sequent-Calculus-Based Languages. PhD thesis,
The University of Oregon, 2017.

[9] G. Munch-Maccagnoni. Focalisation and classical realisability. In Computer Sci-
ence Logic, pages 409–423. Springer, 2009.

23

	Context
	Orthogonality
	Orthogonality and intuitionistic negation
	Modeling constructions
	Modeling data types
	Modeling codata types

	Static and semantic typing

