Rewriting and termination in lambda calculus

Silvia Ghilezan

University of Novi Sad Mathematical Institute SASA Serbia

Lecture 1

Oregon Programming Language Summer School Eugene, June 2022

Roadmap

Rewriting basics

Lambda calculus

- Confluence: Church-Rosser property, local confluence
- Normalisation: strong normalisation, normalisation
- Strategies: leftmost-outermost strategy, perpetual strategies
- Simple types in lambda calculus: strong normalization
- Intersection types in lambda calculus: complete characterisations of normalisations

Rewriting basics

Higher-order rewriting systems - Lambda calculus

Rewriting

Methods of replacing

- subexpressions of a formula (object)
- with other expressions

Examples: algebra, arithmetics, logic, geometry, linguistics, physics

- Term rewriting
- Higher-order term rewriting
- Graph rewriting
- String rewriting, semi-Thue systems
- Trace rewriting, concurrent computation and process calculi

Algebra - commutative group theory

$$(a \star b) \star c \to a \star (b \star c)$$
 associativity
 $a \star e \to a$ neutral element
 $a \star a^{-1} \to e$ inverse element
 $a \star b \to b \star a$ commutativity

Logic - propositional logic

$A \wedge B \rightarrow A$	$A \wedge B \rightarrow B$	conjunction
$A \rightarrow A \lor B$	$B \rightarrow A \lor B$	disjunction
$A ightarrow \neg \neg A$	$ eg \neg \neg A ightarrow A$	negation

Abstract rewrite

Abstract rewrite systems - ARS

- (A, \longrightarrow)
 - A is a set
 - \blacktriangleright \longrightarrow is a binary relation on A
 - $t \longrightarrow s$ is a step
 - → is a transitive-reflexive closure
 t → s is a sequence t → s₁ → s₂... → s_n ≡ s
 - $\blacktriangleright \longrightarrow_1 \cdot \longrightarrow_2 \text{ is a composition } t \longrightarrow_1 u \longrightarrow_2 s$
 - ► → is deterministic
 - ▶ if for each $t \in A$ there is at most one $s \in A$ such that $t \longrightarrow s$

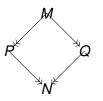
ARS main properties

We focus on:

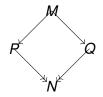
- confluence
- normalisation
- termination

Confluence

$$(A, \longrightarrow)$$
 is confluent if $\leftarrow \cdot \longrightarrow \subseteq \longrightarrow \cdot \leftarrow$



 (A, \longrightarrow) is locally confluent if $\leftarrow \cdot \longrightarrow \subseteq \longrightarrow \cdot \ll$



Normalisation and termination

- $n \in A$ is a normal form if there is no *s* such that $n \longrightarrow s$
- ► $t \in A$ has a normal form if $t \longrightarrow n$ and n is a normal form, we say that n is a NF of t
- (A, →) is weakly normalising (normalising) if every t ∈ A has a normal form
 - at least one (rewrite) sequence from t is finite
 - How to find?
- (A, \rightarrow) is strongly normalising (terminating) if for every $t \in A$
 - all (rewrite) sequences from t are finite
 - How to prove?
- (A, →) is not terminating (terminating) if for some t ∈ A
 at least one (rewrite) sequence from t is infinite
 How to find?

ARS more properties

Theorem Confluence implies uniqueness of normal form

Proof.

Suppose *t* has two normal forms n_1 and n_2 . Then $n_1 \leftarrow t \rightarrow n_2$. Then by confluence there is an *s* such that $n_1 \rightarrow s \leftarrow n_2$, which is not possible since n_1 and n_2 are normal forms.

Theorem (Newman's Lemma)

A terminating ARS is confluent if and only if it is locally confluent

Proof.

Based on well-founded induction

Example

Rewrite system

$$egin{array}{lll} f(x,x) &
ightarrow g(x) \ f(x,g(x)) &
ightarrow b \ h(a,x) &
ightarrow f(h(x,a),h(x,x)) \end{array}$$

- Normalizing: h(a, a) has two NF b and g(b)
- Not terminating: h(a, a) has an infinite derivation
- Not confluent: h(a, a) has two NF, then it is not confluent

Reduction strategies

Reduction strategy: A restriction to a subreduction

is a way to control that in a term there are different possible choices of reduction

Example. CBN, CBV, perpetual, leftmost (later)

Normalisation strategy: A reduction strategy which reaches the normal form if it exists

Example. Leftmost (later)

Term rewriting

A term rewriting system (TRS) is a rewriting system (ARS) whose objects are terms, which are expressions with nested sub-expressions.

Example Logic - propositional, above, is a term rewriting system

- \blacktriangleright the terms are composed of binary operators (\lor) and (\land) and the unary operator (\neg)
- the rules contain variables, which represent any possible term (though a single variable always represents the same term throughout a single rule)

Higher-order term rewriting systems (HOR) are a generalization of first-order term rewriting systems to systems allowing

- higher order functions
- bound variables

Higher-order rewriting systems - models of computation 1930s

- Alonzo Church: lambda calculus
 - theory of functions formalisation of mathematics
 - successful model for computable functions
- Moses Schonfinkel (1921): combinators
- Haskell Curry: combinatory logic

References

F. Baader, T. Nipkow

Term rewriting and all that

Cambridge University Press, 1999

Term Rewriting Systems - Terese eds M. Bezem, J. W. Klop, R. de Vrijer Cambridge University Press, 2003

F. van Raamsdonk Higher-Order Rewriting RTA 1999: 220-239

Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, P. Wadler The Call-by-Need Lambda Calculus POPL 1995: 233-246 **Rewriting basics**

Higher-order rewriting systems - Lambda calculus

Lambda calculus: background

In mathematics,

- 1. expressions with free variables
- 2. functions

Example.

1. $x^2 + 1 < 10$ $x^2 < 9$ $x \in (-3,3)$ free2. $f(x) = x^2 + 1$ $f(5) = 5^2 + 1$ f(5) = 26 bound

Church: $\lambda x.(x^2 + 1)$ denotes a function of x

HOR feature - bound variables

Function behaviours treated formally in lambda calculus

The name of the argument is not important $f(x) = x^2 + 1$ and $f(y) = y^2 + 1$ $\lambda x.(x^2 + 1)$ and $\lambda y.(y^2 + 1)$ must be considered as equal α -conversion

Function application evaluation $(\lambda x.(x^2 + 1))(5)$ and $5^2 + 1$ must be considered as equal β -conversion

Substitution and bindings
 (λx.(λy.(x² + 1 + y)))(y) should be λw.(y² + 1 + w)
 but not λy.(y² + 1 + y)
 Barendregt variable convention: no variable is both free
 and bound

HOR feature - functions of multiple arguments

In lambda calculus, functions of multiple arguments can be treated as iterated applications of single argument functions

$$f(x, y, z) = x + y + z$$

 $f(1, 2, 3) = 6$

f becomes
$$(\lambda x.(\lambda y.(\lambda z.x + y + z)))$$

$$(\lambda x.(\lambda y.(\lambda z.x + y + z)))(1)(2)(3)$$
 evaluates to
 $(\lambda y.(\lambda z.1 + y + z))(2)(3)$ evaluates to
 $(\lambda z.1 + 2 + z)))(3)$ evaluates to
6

currying

Syntax

 $V = \{x, y, z, x_1, ...\}$ a countable set of variables $C = \{a, b, c, a_1, ...\}$ a countable set of constants

Definition

The set Λ of (lambda) terms is inductively defined

- $V \subseteq \Lambda$ and $C \subseteq \Lambda$ atomic terms
- $M, N \in \Lambda$ then $(MN) \in \Lambda$ application
- $M \in \Lambda, x \in V$ then $(\lambda x.M) \in \Lambda$ abstraction

Conventions for minimizing the number of the parentheses:

- $M_1 M_2 M_3$ stands for $((M_1 M_2) M_3)$ application associates to left
- $\lambda x.y.M$ stands for $(\lambda x.(\lambda y.(M))$ abstraction associates to right
- $\lambda x.M_1M_2 \equiv \lambda x.(M_1M_2)$; application has priority over abstraction

Pure lambda calculus, if $C = \emptyset$

$$M ::= x \mid MM \mid \lambda x.M$$

Running example

хуzх	
$\lambda x.zx$	
$\mathbf{I} = \lambda \mathbf{X} \cdot \mathbf{X}$	combinator I
$\mathbf{K} = \lambda \mathbf{x} \mathbf{y} . \mathbf{x}$	combinator K
$\mathbf{S} = \lambda xyz.xz(yz)$	combinator S
$\Delta = \lambda x.xx$	selfapplication
$\mathbf{Y} = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$	fixed point combinator
$\Omega = \Delta \Delta = (\lambda x. xx)(\lambda x. xx)$	higher-order function

Free and bound variables

Definition

(i) The set FV(M) of free variables of M is defined inductively:

(ii) A variable in M is bound if it is not free

• x is bound in M if it appears in a subterm of the form $\lambda x.N$

(ii) *M* is a closed λ -term (or *combinator*) if $FV(M) = \emptyset$

 Λ^{o} denotes the set of closed λ -terms.

Example

- ln $\lambda x.zx$, variable z is free.
- Term $\lambda xy.xxy$ is closed.

Running example: 1. free variables

М	Fv(M)
V//7V	اح بر حرا
xyzx	$\{x, y, z\}$
$\lambda x.zx$	{ <i>z</i> }
$\mathbf{I} = \lambda \mathbf{x} . \mathbf{x}$	Ø
$\mathbf{K} = \lambda x y. x$	Ø
$\mathbf{S} = \lambda xyz.xz(yz)$	Ø
$\Delta = \lambda x. xx$	Ø
$\mathbf{Y} = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$	Ø
$\Omega = \Delta \Delta = (\lambda x. xx)(\lambda x. xx)$	Ø

Substituion

Implicit substitution, meta notion (not in the language)

Definition

N[x := M] is defined by induction on the structure of N

Explicit substitution, calculi where substituion is in the language

Rewrite rules

 α -reduction:

$$\lambda x.M \longrightarrow_{\alpha} \lambda y.M[x := y], y \notin FV(M)$$

 β -reduction:

$$(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$$

 η -reduction:

$$\lambda x.(Mx) \longrightarrow_{\eta} M, x \notin FV(M)$$

Properties of rewrite systems: confluence, normal forms, normalisation, strong normalisation, strategies

References

H.P. Barendregt.

Lambda Calculus: Its syntax and Semantics.

North Holland, 1984.

F. Cardone, J. R. Hindley

History of Lambda-calculus and Combinatory Logic

Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp. 723-817 (*online 2006*)

H.P. Barendregt G. Manzonetto A Lambda Calculus Satellite

ongoing work, in preparation, 2022.