Rewriting and termination in lambda calculus

Silvia Ghilezan
University of Novi Sad

Mathematical Institute SASA
Serbia

Lecture 1

Oregon Programming Language Summer School
Eugene, June 2022

26



Roadmap

>

| 2

Rewriting basics

Lambda calculus

Confluence: Church-Rosser property, local confluence
Normalisation: strong normalisation, normalisation

Strategies: leftmost-outermost strategy, perpetual
strategies

Simple types in lambda calculus: strong normalization

Intersection types in lambda calculus: complete
characterisations of normalisations



Rewriting basics

Higher-order rewriting systems - Lambda calculus

3/26



Rewriting

Methods of replacing
» subexpressions of a formula (object)
> with other expressions

Examples: algebra, arithmetics, logic, geometry, linguistics,
physics

» Term rewriting

» Higher-order term rewriting

» Graph rewriting

» String rewriting, semi-Thue systems
>

Trace rewriting, concurrent computation and process
calculi

> ...



Algebra - commutative group theory

(axb)xc — ax(bxc) associativity

axe — a neutral element
axa'—e inverse element
axb—bxa commutativity

Logic - propositional logic

ANB — A ANB — B conjunction
A—->AvVvB B - AvVB disjunction
A— ——A —A— A negation

Abstract rewrite

f(x,x) — g(x)
f(x.g(x)) — b
h(a,x) — f(h(x,a), h(x, x))

26



Abstract rewrite systems - ARS

(Av —>)
» Ais aset

» — is a binary relation on A
> t— s isastep

» —» is a transitive-reflexive closure
> t—»s isasequencet— Sy — Sp...—> S =S

> — . —pisacompositiont —q U —» S

» — is deterministic
» if foreach t € Athereis at mostone s € Asuchthatt — s



ARS main properties

We focus on:
» confluence
» normalisation
> termination



Confluence

(A, —) is confluent if «— - —C— - «—

B

(A, —) is locally confluent if «+— - —C—» - «—

e

8/26



Normalisation and termination

» nec Ais anormal form if there is no ssuchthat n — s

» t ¢ Ahas anormal form if t — nand nis a normal form,
we say that nis a NF of t

» (A,—) is weakly normalising (normalising) if every t € A
has a normal form

> at least one (rewrite) sequence from t is finite
» How to find?

» (A,—) is strongly normalising (terminating) if for every
te A

» all (rewrite) sequences from t are finite
» How to prove?

» (A,—) is not terminating (terminating) if for some t € A

> at least one (rewrite) sequence from ¢t is infinite
» How to find?



ARS more properties

Theorem
Confluence implies uniqueness of normal form

Proof.

Suppose t has two normal forms ny and n,. Then ny «— t —» n,. Then by
confluence there is an s such that ny —» s «— n», which is not possible since n; and
n, are normal forms.

0

Theorem (Newman’s Lemma)

A terminating ARS is confluent if and only if it is locally
confluent

Proof.
Based on well-founded induction O

10/26



Example

Rewrite system

f(x,x) — 9(x)
f(x,9(x)) — b
h(a,x) — f(h(x,a), h(x,x))

» Normalizing: h(a, a) has two NF b and g(b)

» Not terminating: h(a, a) has an infinite derivation
» Not confluent: h(a, a) has two NF, then it is not confluent

11/26



Reduction strategies

Reduction strategy: A restriction to a subreduction
—el—

is a way to control that in a term there are different possible
choices of reduction

Example. CBN, CBV, perpetual, leftmost (later)

Normalisation strategy: A reduction strategy which reaches the
normal form if it exists

Example. Leftmost (later)

12/26



Term rewriting

A term rewriting system (TRS) is a rewriting system (ARS)
whose objects are terms, which are expressions with nested
sub-expressions.

Example Logic - propositional, above, is a term rewriting system

> the terms are composed of binary operators (V) and (A) and the unary operator
(=)

> the rules contain variables, which represent any possible term (though a single
variable always represents the same term throughout a single rule)

Higher-order term rewriting systems (HOR) are a generalization
of first-order term rewriting systems to systems allowing
» higher order functions

» bound variables

13/26



Higher-order rewriting systems -
models of computation 1930s

» Alonzo Church: lambda calculus
> theory of functions - formalisation of mathematics
> successful model for computable functions

» Moses Schonfinkel (1921): combinators
» Haskell Curry: combinatory logic

14/26



References

@ F. Baader, T. Nipkow '

Term rewriting and all that
Cambridge University Press, 1999

=

D

@ Term Rewriting Systems - Terese
eds M. Bezem, J. W. Klop, R. de Vrijer
Cambridge University Press, 2003

@ F. van Raamsdonk
Higher-Order Rewriting
RTA 1999: 220-239

@ Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, P. Wadler
The Call-by-Need Lambda Calculus
POPL 1995: 233-246

15/26



Higher-order rewriting systems - Lambda calculus

16/26



Lambda calculus: background

In mathematics,
1. expressions with free variables
2. functions

Example.

1.x2+1<10 x? <9 x €(-3,3) free

26 bound

2.fx)=x2+1  f(5)=52+1  £(5)

Church: Ax.(x? + 1) denotes a function of x

17/26



HOR feature - bound variables

Function behaviours treated formally in lambda calculus

» The name of the argument is not important
f(x) =x2+1and f(y) = y? + 1
Ax.(x2 4+ 1) and \y.(y? + 1) must be considered as equal
«-conversion

» Function application evaluation
(Ax.(x% 4-1))(5) and 52 + 1 must be considered as equal
B-conversion

» Substitution and bindings
(Ax.(\y.(x2 + 1+ y)))(y) should be Aw.(y? + 1 + w)
but not Ay.(y? + 1+ y)
Barendregt variable convention: no variable is both free
and bound

18/26



HOR feature - functions of multiple arguments

In lambda calculus, functions of multiple arguments can be
treated as iterated applications of single argument functions

f(x,y,z2)=x+y+2z
f(1,2,3) =6

f becomes (Ax.(\y.(Az.x + y + 2)))
(Ax.(Ay.(Az.x+ y + 2)))(1)(2)(3) evaluates to

(\y.(Az.1 4+ y + 2))(2)(8) evaluates to
()\z 142+ 2)))(8) evaluates to

currying

19/26



Syntax

V ={x,y,z, xq,...} acountable set of variables
C ={a,b,c,ay,...} acountable set of constants

Definition

The set A of (lambda) terms is inductively defined
» V C Aand C C A atomic terms
» M, N € Athen (MN) € A application
» Me A x e Vthen (Ax.M) € A abstraction

Conventions for minimizing the number of the parentheses:
» MM, Mj stands for ((M;M.)Ms) application associates to left
> \x.y.M stands for (Ax.(\y.(M)) abstraction associates to right
> Ax.MyM, = Xx.(M;Ms); application has priority over abstraction

Pure lambda calculus, if C =0

M = x| MM |Ax.M

20/26



Running example

Xyzx
AX.zZX

I = Ax.x

K= \xy.x

S = \xyz.xz(yz)

A = AX.xx

Y = M.(Ax.f(xx))(Ax.f(xx))
Q = AA = (AX.xx)(AX.xx)

combinator |
combinator K
combinator S
selfapplication

fixed point combinator

higher-order function

21/26



Free and bound variables

Definition
(i) The set FV(M) of free variables of M is defined inductively:

> FV(x) = {x}
> FV(MN) = FV(M)U FV(N)
> FV(Ax.M) = FV(M)\ {x}

(if) A variable in M is bound if it is not free
» x is bound in M if it appears in a subterm of the form Ax.N

(i) Mis a closed A-term (or combinator) if FV(M) = ()
A° denotes the set of closed \-terms.

Example

> In \x.zx, variable z is free.
» Term A\xy.xxy is closed.

22/26



Running example: 1. free variables

M Fv(M)
Xyzx {x,y,z}
AX.ZX {z}

I = dx.x 0

K = \xy.x 0

S = \xyz.xz(yz) 0

A = \X.xx 0

Y = M. (Ax.f(xx))(Ax.f(xx)) | 0
Q=AA=(Axxx)(Ax.xx) |0

23/26



Substituion

Implicit substitution, meta notion (not in the language)

Definition
N[x := M)] is defined by induction on the structure of N

N = x x[x = M)] = M

N=y ylx:= M| =y

N = N1 N2 (N1 N2)[X = M] = N1 [X = M] NQ[X = M]
N=Xx.N (Mx.N)[x:=M = XN

N=Xy.N (Ay.N)x:=M] = Xy.(N[x:=M)]),y¢ FV(M)
N=Xy.N (A\y.N)[x =M] = (Az.N[y :=2z])[x = M)]),

y € FV(M) A z¢ FV(M)

Explicit substitution, calculi where substituion is in the language

24/26



Rewrite rules

a-reduction:
XM —o Ay M[x:=y], y¢& FV(M)

B-reduction:
(AM.M)N —5 M[x := N|

n-reduction:

AX.(Mx) —, M, x ¢ FV(M)

Properties of rewrite systems: confluence, normal forms,
normalisation, strong normalisation, strategies

25/26



References

@ H.P. Barendregt. ——=—
Lambda Calculus: Its syntax and Semantics.
North Holland, 1984.

[3 F Cardone, J. R. Hindley
History of Lambda-calculus and Combinatory Logic

Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp.
723-817 (online 2006)

ﬁ H.P. Barendregt G. Manzonetto
A Lambda Calculus Satellite
ongoing work, in preparation, 2022.

26/26



