
Rewriting and termination in lambda calculus

Silvia Ghilezan

University of Novi Sad
Mathematical Institute SASA

Serbia

Lecture 1

Oregon Programming Language Summer School
Eugene, June 2022

1 / 26

Roadmap

◮ Rewriting basics

◮ Lambda calculus

◮ Confluence: Church-Rosser property, local confluence

◮ Normalisation: strong normalisation, normalisation

◮ Strategies: leftmost-outermost strategy, perpetual
strategies

◮ Simple types in lambda calculus: strong normalization

◮ Intersection types in lambda calculus: complete
characterisations of normalisations

2 / 26

Rewriting basics

Higher-order rewriting systems - Lambda calculus

3 / 26

Rewriting
Methods of replacing
◮ subexpressions of a formula (object)
◮ with other expressions

Examples: algebra, arithmetics, logic, geometry, linguistics,
physics

◮ Term rewriting
◮ Higher-order term rewriting
◮ Graph rewriting
◮ String rewriting, semi-Thue systems
◮ Trace rewriting, concurrent computation and process

calculi
◮ ...

4 / 26

Algebra - commutative group theory

(a ! b) ! c → a ! (b ! c) associativity
a ! e → a neutral element
a ! a−1 → e inverse element
a ! b → b ! a commutativity

Logic - propositional logic

A ∧ B → A A ∧ B → B conjunction
A → A ∨ B B → A ∨ B disjunction
A → ¬¬A ¬¬A → A negation

Abstract rewrite

f (x , x) → g(x)
f (x , g(x)) → b
h(a, x) → f (h(x , a), h(x , x))

5 / 26

Abstract rewrite systems - ARS

(A,−→)

◮ A is a set
◮ −→ is a binary relation on A

◮ t −→ s is a step

◮ −→−→ is a transitive-reflexive closure
◮ t −→−→ s is a sequence t −→ s1 −→ s2 . . . −→ sn ≡ s

◮ −→1 · −→2 is a composition t −→1 u −→2 s

◮ −→ is deterministic
◮ if for each t ∈ A there is at most one s ∈ A such that t −→ s

6 / 26

ARS main properties

We focus on:
◮ confluence
◮ normalisation
◮ termination

7 / 26

Confluence
(A,−→) is confluent if ←−←− · −→−→⊆−→−→ · ←−←−

M

P Q

N

(A,−→) is locally confluent if ←− · −→⊆−→−→ · ←−←−

M

P Q

N

8 / 26

Normalisation and termination
◮ n ∈ A is a normal form if there is no s such that n −→ s
◮ t ∈ A has a normal form if t −→−→ n and n is a normal form,

we say that n is a NF of t

◮ (A,−→) is weakly normalising (normalising) if every t ∈ A
has a normal form
◮ at least one (rewrite) sequence from t is finite
◮ How to find?

◮ (A,−→) is strongly normalising (terminating) if for every
t ∈ A
◮ all (rewrite) sequences from t are finite
◮ How to prove?

◮ (A,−→) is not terminating (terminating) if for some t ∈ A
◮ at least one (rewrite) sequence from t is infinite
◮ How to find?

9 / 26

ARS more properties

Theorem
Confluence implies uniqueness of normal form

Proof.
Suppose t has two normal forms n1 and n2. Then n1 ←−←− t −→−→ n2. Then by

confluence there is an s such that n1 −→−→ s ←−←− n2, which is not possible since n1 and

n2 are normal forms.

Theorem (Newman’s Lemma)
A terminating ARS is confluent if and only if it is locally
confluent

Proof.
Based on well-founded induction

10 / 26

Example

Rewrite system

f (x , x) → g(x)
f (x , g(x)) → b
h(a, x) → f (h(x , a), h(x , x))

◮ Normalizing: h(a, a) has two NF b and g(b)
◮ Not terminating: h(a, a) has an infinite derivation
◮ Not confluent: h(a, a) has two NF, then it is not confluent

11 / 26

Reduction strategies

Reduction strategy: A restriction to a subreduction

−→e⊆−→

is a way to control that in a term there are different possible
choices of reduction

Example. CBN, CBV, perpetual, leftmost (later)

Normalisation strategy: A reduction strategy which reaches the
normal form if it exists

Example. Leftmost (later)

12 / 26

Term rewriting

A term rewriting system (TRS) is a rewriting system (ARS)
whose objects are terms, which are expressions with nested
sub-expressions.

Example Logic - propositional, above, is a term rewriting system
◮ the terms are composed of binary operators (∨) and (∧) and the unary operator

(¬)
◮ the rules contain variables, which represent any possible term (though a single

variable always represents the same term throughout a single rule)

Higher-order term rewriting systems (HOR) are a generalization
of first-order term rewriting systems to systems allowing
◮ higher order functions
◮ bound variables

13 / 26

Higher-order rewriting systems -
models of computation 1930s

◮ Alonzo Church: lambda calculus
◮ theory of functions - formalisation of mathematics
◮ successful model for computable functions

◮ Moses Schonfinkel (1921): combinators
◮ Haskell Curry: combinatory logic

14 / 26

References

F. Baader, T. Nipkow
Term rewriting and all that
Cambridge University Press, 1999

Term Rewriting Systems - Terese
eds M. Bezem, J. W. Klop, R. de Vrijer
Cambridge University Press, 2003

F. van Raamsdonk
Higher-Order Rewriting
RTA 1999: 220-239

Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, P. Wadler
The Call-by-Need Lambda Calculus
POPL 1995: 233-246

15 / 26

Rewriting basics

Higher-order rewriting systems - Lambda calculus

16 / 26

Lambda calculus: background

In mathematics,
1. expressions with free variables
2. functions

Example.

1. x2 + 1 < 10 x2 < 9 x ∈ (−3, 3) free

2. f (x) = x2 + 1 f (5) = 52 + 1 f (5) = 26 bound

Church: λx .(x2 + 1) denotes a function of x

17 / 26

HOR feature - bound variables

Function behaviours treated formally in lambda calculus
◮ The name of the argument is not important

f (x) = x2 + 1 and f (y) = y2 + 1
λx .(x2 + 1) and λy .(y2 + 1) must be considered as equal
α-conversion

◮ Function application evaluation
(λx .(x2 + 1))(5) and 52 + 1 must be considered as equal
β-conversion

◮ Substitution and bindings
(λx .(λy .(x2 + 1 + y)))(y) should be λw .(y2 + 1 + w)
but not λy .(y2 + 1 + y)
Barendregt variable convention: no variable is both free
and bound

18 / 26

HOR feature - functions of multiple arguments

In lambda calculus, functions of multiple arguments can be
treated as iterated applications of single argument functions

f (x , y , z) = x + y + z
f (1, 2, 3) = 6

f becomes (λx .(λy .(λz.x + y + z)))

(λx .(λy .(λz.x + y + z)))(1)(2)(3) evaluates to
(λy .(λz.1 + y + z))(2)(3) evaluates to
(λz.1 + 2 + z)))(3) evaluates to
6

currying

19 / 26

Syntax

V = {x , y , z, x1, ...} a countable set of variables
C = {a, b, c, a1, ...} a countable set of constants

Definition
The set Λ of (lambda) terms is inductively defined
◮ V ⊆ Λ and C ⊆ Λ atomic terms
◮ M,N ∈ Λ then (MN) ∈ Λ application
◮ M ∈ Λ, x ∈ V then (λx .M) ∈ Λ abstraction

Conventions for minimizing the number of the parentheses:
◮ M1M2M3 stands for ((M1M2)M3) application associates to left
◮ λx .y .M stands for (λx .(λy .(M)) abstraction associates to right
◮ λx .M1M2 ≡ λx .(M1M2); application has priority over abstraction

Pure lambda calculus, if C = ∅

M ::= x | MM |λx .M

20 / 26

Running example

xyzx

λx .zx

I = λx .x combinator I

K = λxy .x combinator K

S = λxyz.xz(yz) combinator S

∆ = λx .xx selfapplication

Y = λf .(λx .f (xx))(λx .f (xx)) fixed point combinator

Ω = ∆∆ = (λx .xx)(λx .xx) higher-order function

21 / 26

Free and bound variables

Definition
(i) The set FV (M) of free variables of M is defined inductively:

◮ FV (x) = {x}
◮ FV (MN) = FV (M) ∪ FV (N)
◮ FV (λx .M) = FV (M) \ {x}

(ii) A variable in M is bound if it is not free
◮ x is bound in M if it appears in a subterm of the form λx .N

(ii) M is a closed λ-term (or combinator) if FV (M) = ∅
Λo denotes the set of closed λ-terms.

Example

◮ In λx .zx , variable z is free.
◮ Term λxy .xxy is closed.

22 / 26

Running example: 1. free variables

M Fv(M)

xyzx {x , y , z}

λx .zx {z}

I = λx .x ∅

K = λxy .x ∅

S = λxyz.xz(yz) ∅

∆ = λx .xx ∅

Y = λf .(λx .f (xx))(λx .f (xx)) ∅

Ω = ∆∆ = (λx .xx)(λx .xx) ∅

23 / 26

Substituion

Implicit substitution, meta notion (not in the language)

Definition
N[x := M] is defined by induction on the structure of N

N = x x [x := M] = M
N = y y [x := M] = y
N = N1N2 (N1N2)[x := M] = N1[x := M] N2[x := M]
N = λx .N (λx .N)[x := M] = λx .N
N = λy .N (λy .N)[x := M] = λy .(N[x := M]), y /∈ FV (M)
N = λy .N (λy .N)[x := M] = (λz.N[y := z])[x := M]),

y ∈ FV (M) ∧ z /∈ FV (M)

Explicit substitution, calculi where substituion is in the language

24 / 26

Rewrite rules

α-reduction:

λx .M −→α λy .M[x := y], y /∈ FV (M)

β-reduction:
(λx .M)N −→β M[x := N]

η-reduction:

λx .(Mx) −→η M, x /∈ FV (M)

Properties of rewrite systems: confluence, normal forms,
normalisation, strong normalisation, strategies

25 / 26

References

H.P. Barendregt.
Lambda Calculus: Its syntax and Semantics.
North Holland, 1984.

F. Cardone, J. R. Hindley
History of Lambda-calculus and Combinatory Logic
Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp.
723-817 (online 2006)

H.P. Barendregt G. Manzonetto
A Lambda Calculus Satellite
ongoing work, in preparation, 2022.

26 / 26

