Rewriting and termination in lambda calculus

Silvia Ghilezan

University of Novi Sad Mathematical Institute SASA Serbia

Lecture 2

Oregon Programming Language Summer School Eugene, June 2022

Roadmap

Rewriting basics

Lambda calculus

- Confluence: Church-Rosser property, local confluence
- Normalisation: strong normalisation, normalisation
- Strategies: leftmost-outermost strategy, perpetual strategies
- Simple types in lambda calculus: strong normalization
- Intersection types in lambda calculus: complete characterisations of normalisations

Higher-order rewriting systems - Lambda calculus

Simply lambda calculus

α -conversion

The formalisation of the principal that the name of the bound variable is irrelevant

Definition α -reduction:

$$\lambda x.M \longrightarrow_{\alpha} \lambda y.M[x := y], y \notin FV(M)$$

Proposition —» $_{\alpha}$ is an equivalence relation, notation $=_{\alpha}$

Proof.

Symmetry, the interesting case

Example

$$\lambda x.fx =_{\alpha} \lambda y.fy$$

"A rose by any other name would smell as sweet"

William Shakespeare, "Romeo and Juliet"

β -reduction

The formalisation of function evaluation

 $(\lambda x.M)N \longrightarrow_{\beta} M[x := N]$

- M[x := N] represents an evaluation of the function M with N being the value of the parameter x.
- $(\lambda x.M)N$ is a redex and M[x := N] is a contractum
- β-conversion is the symmetric closure of →_β is an equivalence (with α-reduction), notation ≡_β
- Barendregt's variable convention: If a term contains a free variable which would become bound after *beta*-reduction, that variable should be renamed.
- Renaming could be done also by using De Bruijn name free notation.

Example

$$(\lambda x.x^2+1)5 \longrightarrow_{\beta} 5^2+1 \rightarrow 26$$

η -conversion

The formalisation of extensionality Definition η -reduction:

$$\lambda x.(Mx) \longrightarrow_{\eta} M, x \notin FV(M)$$

This rule identifies two functions that always produce equal results if taking equal arguments.

Example

$$\lambda x.\operatorname{succ} x \longrightarrow_{\eta} \operatorname{succ}$$

 $(\lambda x.\operatorname{succ} x) 2 \longrightarrow_{\beta} \operatorname{succ} 2 \quad \operatorname{succ} 2$

Combinatory logic

Language

 $M ::= x | \mathbf{S} | \mathbf{K} | \mathbf{I} | MM$

 $\begin{array}{cccc} \text{Rewrite rules} & & \\ \textbf{K}MN & \longrightarrow & M \\ \textbf{S}MNP & \longrightarrow & MP(NP) \\ \textbf{I}M & \longrightarrow & M \end{array}$

Identity $\mathbf{I} = \mathbf{SKK}$ Lambda calculus and combinatory logic

$$\mathbf{I} = \lambda \mathbf{x} \cdot \mathbf{x}$$
 $\mathbf{K} = \lambda \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{x}$ $\mathbf{S} = \lambda \mathbf{x} \cdot \mathbf{y} \cdot \mathbf{z} \cdot \mathbf{x} \mathbf{z} (\mathbf{y} \mathbf{z})$

Translation

- from CL to lambda calculus is a unique map
- from lambda calculus to CL is not unique, depends on how abstraction is defined

In the mid 1930s

• (Curry) Equivalence of λ -calculus and Combinatory Logic.

 (Kleene) Equivalence of λ-calculus and recursive functions.

• (Turing) Equivalence of λ -calculus and Turing machines.

Recall: ARS normal forms

n ∈ *A* is a normal form if there is no *s* such that *n* → *s t* ∈ *A* has a normal form if *t* → *n* and *n* is a normal form, we say that *n* is a NF of *t*

Notation: \longrightarrow will denote $\longrightarrow_{\beta} \cup \longrightarrow_{\alpha}$

Running example: 2. β -normal forms

xyzx	normal form NF	
$\mathbf{I} = \lambda \mathbf{X} \cdot \mathbf{X}$	normal form NF	
$\mathbf{K} = \lambda x y. x$	normal form NF	
$\mathbf{S} = \lambda x y z. x z (y z)$	normal form NF	
KI(KII)	strongly normalizing SN	
ΚΙΩ	normalizing N	
$\mathbf{Y} = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$	head normalizing HN (solvable)	
$\Omega = \Delta \Delta = (\lambda x. xx)(\lambda x. xx)$	unsolvable	
KI(KII) → KII → I KI(KII) → I		
$KI\Omega \rightarrow I$	•	10/34

Properties - Confluence

Theorem (Church-Rosser theorem)

If $M \longrightarrow N$ and $M \longrightarrow P$, then there exists S such that $N \longrightarrow S$ and $P \longrightarrow S$

The proof is deep and involved.

Corollary

- If $M \longrightarrow N$ and $M \longrightarrow P$, then N = P
- Every lambda term has at most one normal form (uniqueness of NF)
- The order of the applied reductions is arbitrary and always leads to the same result
- Reductions can be executed in parallel (parallel computing)

Proof.

The general form of a lambda term

$$\lambda x_1 \dots x_n ((\lambda y. P)Q)Q_1 \dots Q_k, \ n \ge 0, \ k \ge 0$$

 $\blacktriangleright \lambda x_1 \dots x_n X Q_1 \dots Q_k, \ n \ge 0, \ k \ge 0$

Head redex (head reduction \longrightarrow_h and \longrightarrow_h)

 $(\lambda y.P)Q$

$$\lambda x_1 \dots x_n ((\lambda y. P)Q)Q_1 \dots Q_k, n \ge 0$$

Internal redex is not a head redex (internal reduction \longrightarrow_i and $\xrightarrow{}_i$) Head normal form

$$\lambda x_1 \dots x_n \cdot x Q_1 \dots Q_k, \quad n \ge 0, \ k \ge 0$$

Normal form is a HNF

$$\lambda x_1 \dots x_n . x Q_1 \dots Q_k, \ Q_i \in NF, \ i \leq k$$

Standardization

Example

$$\begin{array}{l} \lambda x.((\lambda z.zz)(\mathbf{I}(\mathbf{I}x))) & \longrightarrow_{h} & \lambda x.(\mathbf{I}(\mathbf{I}x))(\mathbf{I}(\mathbf{I}x)) \\ & \longrightarrow_{h} & \lambda x.(\mathbf{I}x)(\mathbf{I}(\mathbf{I}x)) \\ & \longrightarrow_{h} & \lambda x.x(\mathbf{I}x)) & \text{no more} \longrightarrow_{h} \\ & \longrightarrow_{i} & \lambda x.x(\mathbf{I}x) \\ & \longrightarrow_{i} & \lambda x.xx & \text{standard} (\longrightarrow_{s}) \end{array}$$

$$\begin{array}{l} \lambda x.((\lambda z.zz)(\mathbf{I}(\mathbf{I}x))) & \longrightarrow_{h} & \lambda x.x(\mathbf{I}(\mathbf{I}x)) & \text{no more} \longrightarrow_{h} \\ & \longrightarrow_{i} & \lambda x.x(\mathbf{I}x) \\ & \longrightarrow_{i} & \lambda x.x(\mathbf{I}x) \\ & \longrightarrow_{i} & \lambda x.xx & \text{not standard} \end{array}$$

Theorem (Standardization)

Strategies

perpetual

- normalization
- call-by-name, call-by-value, call-by-need ...
- optimal
- ▶ ...

Perpetual strategies

A strategy $\longrightarrow_e \subseteq \longrightarrow$ is **perpetual** if for every $M \in \Lambda$ which is not SN (has an infinite reduction), there is an infinite reduction path $M \longrightarrow_e M_1 \longrightarrow_e M_2 \longrightarrow_e \dots$

An effective perpetual strategy is $M_i \longrightarrow_{\rho} M_{i+1}$ where $M_{i+1} = F_{\infty}(M_i)$

$$F_{\infty}(M) = \begin{cases} M \\ \text{otherwise,} \\ C[P[x := Q]] & \text{if } R \text{ is I-redex} \\ \text{otherwise} & \text{if } R \text{ is K-redex} \\ \begin{cases} C[P] & \text{if } Q \text{ is NF} \\ C[(\lambda x.P)F_{\infty}(Q)] & \text{if } Q \text{ is not NF} \end{cases}$$

if *M* is a nf $M \equiv C[R]$, if $R \equiv (\lambda x.P)Q$ is the leftmost redex

15/34

Example $\mathbf{KI}\Omega \longrightarrow \mathbf{I}$ $\mathbf{KI}\Omega \rightarrow \mathbf{KI}\Omega \rightarrow \dots \rightarrow \mathbf{KI}\Omega \rightarrow \mathbf{I}$ stop $\mathbf{KI}\Omega \rightarrow \mathbf{KI}\Omega \rightarrow \dots \rightarrow \mathbf{KI}\Omega \rightarrow \dots$ infinite loop $\mathbf{KI}\Omega \rightarrow_{p} (\lambda y.\mathbf{I})\Omega \rightarrow_{p} (\lambda y.\mathbf{I})\Omega \rightarrow_{p} \dots$ perpetual strategy

Theorem

► If M is not SN then
$$M = M_0 \longrightarrow_p M_1 \longrightarrow_p M_2 \longrightarrow_e \dots$$
,

S combinator $SSS(SSS)(SSS) = AAA^1$ has an infinite head reduction² $A \equiv SSS$

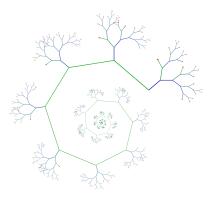


Fig. 5. Limit of the infinite head reduction of AAA.

¹Dance of the Starlings, Henk Barendregt, Jörg Endrullis, Jan Willem Klop, and Johannes Waldmann, Raymond Smullyan on self reference, Springer, 2017

²Written an a wall in Barendregt's house in the 1970s

Y combinator - Fixed point theorems

$$\mathbf{Y} \equiv \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$

$$\rightarrow \lambda f.f((\lambda x.f(xx))(\lambda x.f(xx))) \quad \mathsf{HNF}$$

- $\rightarrow \lambda f.ff((\lambda x.f(xx))(\lambda x.f(xx)))$ HNF
- Fixedpoint theorem: Y is a fixed point combinator such that for all $F \in \Lambda$

$$F(\mathbf{Y}F) = \mathbf{Y}F,$$

These properties enable the representation of the recursive functions in λ-calculus.

Normalization strategies

A strategy $\longrightarrow_n \subseteq \longrightarrow$ is **normalizing** if for every $M \in \Lambda$ which is normalizing (has a NF M_{nf}) $M \longrightarrow_n M_1 \longrightarrow_n \dots \longrightarrow_n M_{nf}$

Definition

A lambda term is in the *normal form* if it does not contain any redex:

$$\lambda x_1 x_2 \dots x_m y N_1 \dots N_k$$
, $N_i \in NF$ $m, k \ge 0$

An effective normalising strategy is the leftmost reduction

 $C[(\lambda x.P)Q] \longrightarrow_{I} C[P[x := Q]], \text{ where}(\lambda x.P)Q \text{ is the most left redex in } C$

Normalization theorem

Theorem *M* is normalizing (has a NF M_{nf}), then $M \longrightarrow_{I} M_{nf}$

Proof. *M* has NF $M_{nf} \Rightarrow M \longrightarrow M_{nf}$ $\Rightarrow M \longrightarrow_s M_{nf}$ by the Standardization theorem $\Rightarrow M \longrightarrow_h P \longrightarrow_i M_{nf}$

Head reductions are leftmost reductions, and the internal reductions of the standard reduction are ordered from left to right.

References

H.P. Barendregt

Lambda Calculus: Its syntax and Semantics.

North Holland, 1984.

F. Cardone, J. R. Hindley

History of Lambda-calculus and Combinatory Logic

Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp. 723-817 (online 2006)

To Mock a Mockingbird.

Alfred A. Knopf, New York, 1985.

S. Wolfram

Combinators: A Centennial View

2021

Higher-order rewriting systems - Lambda calculus

Simply lambda calculus

Motivation

- "Disadvantages" of the untyped λ -calculus:
 - infinite computation there exist λ -terms without a normal form
 - meaningless applications it is allowed to create terms like sin log
- Types are syntactical objects that can be assigned to λ-terms.
 - Reasoning with types present in the early work of Church on untyped lambda calculus.
- two typing paradigms:
 - à la Curry implicit type assignment (lambda calculus with types);
 - à la Church explicit type assignment (typed lambda calculus).

Simply typed λ -calculus - syntax of types

Definition

The alphabet consists of

- $V = \{\alpha, \beta, \gamma, \alpha_1, \ldots\}$, a countable set of type variables
- ▶ \rightarrow , a type forming operator
-), (auxiliary symbols

The language is the set of types T defined as follows

• If
$$\alpha \in \mathbf{V}$$
 then $\alpha \in \mathbf{T}$

• If
$$\sigma, \tau \in \mathbf{T}$$
 then $(\sigma \to \tau) \in \mathbf{T}$.

The abstract grammar that generates the language

$$\sigma ::= \alpha \mid \sigma \to \sigma$$

Conventions for minimizing the number of the parentheses:

• $\sigma_1 \rightarrow \sigma_2 \rightarrow \sigma_3$ stands for $(\sigma_1 \rightarrow (\sigma_2 \rightarrow \sigma_3))$

 $\lambda \rightarrow$ - the language

Μ : σ

Definition

- Type assignment is an expression of the form *M* : σ, where *M* is a λ-term and σ is a type
- Declaration x : σ is a type assignment in which the term is a variable
- Basis (environment) Γ = {x₁ : σ₁,..., x_n : σ_n} is a set of declarations in which all term variables are different

 $\lambda \rightarrow$ - the type system

► Axiom

$$(Ax) \qquad \overline{\Gamma, x : \sigma \vdash x : \sigma}$$

$$\models \text{ Rules} \qquad (\rightarrow_{elim}) \qquad \frac{\Gamma \vdash M : \sigma \rightarrow \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \qquad (\rightarrow_{intr}) \qquad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x \cdot M : \sigma \rightarrow \tau}$$

Running example: 3. types

М	Туре
V1/7	
ХУZ	$\mathbf{X}: \boldsymbol{\sigma} \to \boldsymbol{\tau} \to \boldsymbol{\rho}, \mathbf{Y}: \boldsymbol{\sigma}, \mathbf{Z}: \boldsymbol{\tau} \vdash \mathbf{X}\mathbf{Y}\mathbf{Z}: \boldsymbol{\rho}$
$\lambda x.zx$	$\mathbf{Z}: \sigma \to \rho \vdash \lambda \mathbf{X}.\mathbf{Z}\mathbf{X}: \sigma \to \rho$
$\mathbf{I} = \lambda \mathbf{x} \cdot \mathbf{x}$	$\sigma ightarrow \sigma$
$\mathbf{K} = \lambda x y. x$	$\sigma \to \rho \to \sigma$
$\mathbf{S} = \lambda xyz.xz(yz)$	$\sigma ightarrow ho ightarrow au ightarrow (\sigma ightarrow au) ightarrow (\sigma ightarrow ho)$
$\Delta = \lambda x. x x$	NO
$\mathbf{Y} = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$	NO
$\Omega = \Delta \Delta = (\lambda x.xx)(\lambda x.xx)$	NO

Typability (type inference): given M

M :?

Inhabitation: given σ

?:σ

Type checking: given M and σ

(**M** : σ)?

The logical meaning of \rightarrow

. . .

Intuitionistic logic - Natural deduction, Gentzen 1930s Axiom

Inhabitation

Intuitionistic logic - Natural deduction, Gentzen 1930s Axiom

$$(Ax) \qquad \overline{\Gamma, x : \sigma \vdash x : \sigma}$$

$$\models \text{ Rules} \qquad (\rightarrow_{elim}) \qquad \frac{\Gamma \vdash M : \sigma \rightarrow \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \qquad (\rightarrow_{intr}) \qquad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x \cdot M : \sigma \rightarrow \tau}$$

Curry-Howard correspondence Intuitionistic logic vs computation

 $\vdash \sigma \Leftrightarrow \vdash M : \sigma$

A formula is provable in *LI* if and only if it is inhabited in $\lambda \rightarrow$.

- 1950s Curry
- 1968 (1980) Howard formulae-as-types
- 1970s Lambek CCC Cartesian Closed Categories
- 1970s de Bruijn AUTOMATH

formulae	-as-	types
proofs	– as –	terms
proofs	-as-	programs
proof normalisation	-as-	term reduction

 BHK - Brouwer, Heyting, Kolmogorov interpretation of logical connectives is formalized by the Curry-Howard correspondence

Subject reduction, type preservation under reduction If $M \longrightarrow P$ and $M : \sigma$, then $P : \sigma$.

- Broader context: evaluation of terms (expressions, programs, processes) does not cause the type change.
- type soundness
- type safety = progress and preservation

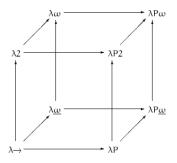
Strong normalization

If $M : \sigma$, then M is strongly normalizing.

Tait 1967

- reducibility method (reducibility candidates, logical relations)
- arithmetic proofs

Lambda cube



Theorem M is typable $\implies M$ strongly normalizing.

More type systems: intersection types, recursive types

References

B. C. Pierece.

H.P. Barendregt, W. Dekkers, R. Statman. Lambda Calculus with Types.

Cambridge University Press 2013.

Types and programming languages. *MIT Press 2002*.

There is no perfect world

$\ln\lambda \rightarrow$

$\lambda x.xx : NO$