Rewriting and termination in lambda calculus

Silvia Ghilezan
University of Novi Sad

Mathematical Institute SASA
Serbia

Lecture 2

Oregon Programming Language Summer School
Eugene, June 2022

34

Roadmap

>

| 2

Rewriting basics

Lambda calculus

Confluence: Church-Rosser property, local confluence
Normalisation: strong normalisation, normalisation

Strategies: leftmost-outermost strategy, perpetual
strategies

Simple types in lambda calculus: strong normalization

Intersection types in lambda calculus: complete
characterisations of normalisations

Higher-order rewriting systems - Lambda calculus

Simply lambda calculus

3/34

a-conversion
The formalisation of the principal that the name of the bound
variable is irrelevant
Definition
a-reduction:

MM —, Ay.M[x:=y], y¢ FV(M)

Proposition —», is an equivalence relation, notation =,

Proof.
Symmetry, the interesting case U

Example
XX =4 Ay.fy
“A rose by any other name would smell as sweet"

William Shakespeare, “Romeo and Juliet"

[S-reduction
The formalisation of function evaluation

(AM.M)N —3 M[x := N|

» M[x := N] represents an evaluation of the function M with
N being the value of the parameter x.

» (Ax.M)N is a redex and M[x := N] is a contractum
» B-conversion is the symmetric closure of — 3 is an
equivalence (with a-reduction), notation =g

> Barendregt’s variable convention: If a term contains a free variable which would
become bound after beta-reduction, that variable should be renamed.

» Renaming could be done also by using De Bruijn name free notation.

Example

(Oxx2+1)5 —p5 52 +1 — 26

n-conversion

The formalisation of extensionality

Definition
n-reduction:

AX.(Mx) —, M, x ¢ FV(M)
» This rule identifies two functions that always produce equal results if taking equal
arguments.
Example

Ax.succx —, succ

(Ax.succx)2 — 3 succ2 succ2

Combinatory logic
Language
M:= x|S|K|I MM

Rewrite rules
KMN — M

SMNP —s MP(NP)
IM — M

Identity | = SKK
Lambda calculus and combinatory logic

I=Xx.x K=Xx.yx S=Xx.y.zxz(yz)

Translation
» from CL to lambda calculus is a unique map

» from lambda calculus to CL is not unique, depends on how
abstraction is defined

Expressiveness

In the mid 1930s
» (Curry) Equivalence of A-calculus and Combinatory Logic.

» (Kleene) Equivalence of \-calculus and recursive
functions.

» (Turing) Equivalence of A-calculus and Turing machines.

34

Recall: ARS normal forms

» nc Ais anormal form if there is no s suchthatn — s

» t ¢ Ahas anormal form if t — nand nis a normal form,
we say that nis a NF of ¢

Notation: —» will denote —g U —,

/34

Running example: 2. g-normal forms

Xyzx
I = x.x

K = \xy.x

S = \xyz.xz(yz)

KI(KII)

KIQ

Y = M.(Ax.f(xx))(Ax.f(xx))

Q = AA = (Ax.xx)(AX.xx)

KI(KI) — Kl — |
KI(KII) — 1
KIQ — T

normal form NF

normal form NF

normal form NF

normal form NF

strongly normalizing SN
normalizing N

head normalizing HN (solvable)

unsolvable

10/34

Properties - Confluence

Theorem (Church-Rosser theorem)

IfM — N and M —s P, then there exists S such that
N— SandP — S

The proof is deep and involved.

Corollary

» IfM— Nand M —» P, then N =P

» Every lambda term has at most one normal form
(uniqueness of NF)

» The order of the applied reductions is arbitrary and always
leads to the same result

» Reductions can be executed in parallel (parallel computing)

Proof.
[11/34

The general form of a lambda term
> Ax1.... X0 (Ay.P)Q)Qy...Qk, n>0, k>0
> AXq....Xp.XQ1...Qx, n>0, k>0

Head redex (head reduction — 4 and —»)

(\y.P)Q

AX1.... Xn.(A\y.P)Q)Qy...Qk, n>0
Internal redex is not a head redex (internal reduction —; and
—)
Head normal form

AX1....X0.XQy...Qk, n>0, k>0

Normal form is a HNF

AXq.... XnXQq ... Qx, Qe NF, i<k

12/34

Standardization

Example
Ax.((Az.z2)(I(1x)))

Ax.((A\z.zz)(I(1x)))

Theorem (Standardization)

—>h

Ax.(1(1x))(1(1x))

Ax.(Ix)(1(1x))

Ax.x(I(1x)) no more —p
Ax.x(Ix)

AX. XX standard (—s)
Ax.x(I(Ix)) no more —
Ax.x(Ix)

AX. XX not standard

» IfP— Sthen P —s, M —; S for some M

» IfP — Sthen P—:S

13/34

Strategies

perpetual

normalization

call-by-name, call-by-value, call-by-need ...
optimal

vVvYyyvyy

14/34

Perpetual strategies
A strategy —C— is perpetual if for every M € A which is
not SN (has an infinite reduction), there is an infinite reduction
path M —e My —e Mo —¢ ...

An effective perpetual strategy is M; —p M1 where M1 = Foo (M;)

M if M is a nf

otherwise, M = CI[R], if R = (Ax.P)Qis the leftmost redex
ClP[x := Q] if Ris I-redex

Foo (M) = 9 | otherwise if Ris K-redex

CIP| if Qis NF

Cl(Ax.P)F<(Q)] if Qis not NF
Example
KIQ — |
KIQ - KIQ — ... — KIQ — | stop
KIQ - KIQ — ... — KIQ — ... infinite loop

KIQ —p (Ay.D)Q —p (Ay.D)Q —p ... perpetual strategy

Theorem
» I[fMis not SN then M = My —p My —p Mo —¢ ..,

ARV | - /RA\ AN 4 15/34

S combinator
SSS(SSS)(SSS) = AAA! has an infinite head reduction?
A= SSS

Fig. 5. Limit of the infinite head reduction of AAA.

'Dance of the Starlings, Henk Barendregt, Jérg Endrullis, Jan Willem
Klop, and Johannes Waldmann, Raymond Smullyan on self reference,
Springer, 2017

2Written an a wall in Barendregt’s house in the 1970s
16/34

Y combinator - Fixed point theorems

= AM.(AXF(xx))(Ax.f(xx))
— M A((Ax.f(xx))(Ax.f(xx))) HNF
— MAF((Ax.f(xx))(Ax.f(xx))) HNF

» Fixedpoint theorem: Y is a fixed point combinator such
that for all F € A
F(YF)=YF,

» These properties enable the representation of the
recursive functions in A-calculus.

17/34

Normalization strategies

A strategy —,C— is normalizing if for every M € A which is
normalizing (has a NF My) M —pn My — ... — My

Definition

» A lambda term is in the normal form if it does not contain
any redex:

)\X1X2...Xm.yN1...Nk, Nie NF m k>0

An effective normalising strategy is the leftmost reduction

Cl(Ax.P)Q] —»; C[P[x := Q]], where(Ax.P)Q is the most left redex in C

18/34

Normalization theorem

Theorem
M is normalizing (has a NF M), then M —; M¢
Proof.

MhasNF M,y = M— My

= M —g Mnf by the Standardization theorem
= M —>h P —>j Mnf

Head reductions are leftmost reductions, and the internal
reductions of the standard reduction are ordered from left to
right. O

19/34

References

ﬁ H.P. Barendregt =
Lambda Calculus: Its syntax and Semantics.
North Holland, 1984.

[3 F Cardone, J. R. Hindley
History of Lambda-calculus and Combinatory Logic

Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp.
723-817 (online 2006)

ﬁ R. Smullyan. sz
To Mock a Mockingbird.
Alfred A. Knopf, New York, 1985.

ﬁ S. Wolfram .

Combinators: A Centennial View
2021

20/34

Simply lambda calculus

21/34

Motivation

» “Disadvantages" of the untyped A-calculus:
> infinite computation - there exist A-terms without a normal form
> meaningless applications - it is allowed to create terms like sin log

> Types are syntactical objects that can be assigned to
A-terms.

> Reasoning with types present in the early work of Church on untyped
lambda calculus.

» two typing paradigms:
» & la Curry - implicit type assignment
(lambda calculus with types);
» & la Church - explicit type assignment
(typed lambda calculus).

22/34

Simply typed A-calculus - syntax of types

Definition

» The alphabet consists of
> V={q,pB,7,a1,...}, acountable set of type variables
» — atype forming operator
>), (‘auxiliary symbols

» The language is the set of types T defined as follows
> lfa e Vthen a € T
» lfo,7 € T then (c—71) € T.

» The abstract grammar that generates the language
o= alo—o

Conventions for minimizing the number of the parentheses:
> oy — 0o — o3 stands for (0'1 — (0’2 — 0’3))

23/34

A — - the language

M: o
Definition
> Type assignment is an expression of the form M : o,

where M is a A-term and o is a type

» Declaration x : o is a type assignment in which the term is
a variable

» Basis (environment) I = {x{ : 01,...,Xn : on} is a set of
declarations in which all term variables are different

24/34

A — - the type system

> Axiom

(Ax)
> Rules

(—elim)

(= intr)

Mx:oFXx:0

r=M:o0—71 Fr=N:o

r=MN:r

MNx:cFM:1
FrM-=XxM:0c— 71

25/34

Running example: 3. types

M Type

Xyz X:0=>T—=py:0,Z:THEXYZ:p
AX.zZX Z:o—>pkEXXzX:0—p

I = Ax.x o—=0

K = \xy.x o= p—o

S = \xyz.xz(yz) o—=p—=>17—=(0—=71)= (0 —p)
A = AX.xx NO

Y = M. (Ax.f(xx))(Ax.f(xx)) | NO

Q=AA = (Ax.xx)(Ax.xx) | NO

26/34

Typability (type inference): given M
M :?

Inhabitation: given o

Type checking: given M and ¢

(M : 0)?

27/34

The logical meaning of —

Intuitionistic logic - Natural deduction, Gentzen 1930s

> Axiom
(Ax) otFo
> Rules
(<o) l~oc—r71 Mo
elim r I_ T
okFr
(—>intr)

lo—r71

28/34

Inhabitation

Intuitionistic logic - Natural deduction, Gentzen 1930s

> Axiom
A -
(Ax) xokFx:o
> Rules
(<o) Fr-=M:c—r Nr=N:o
elim = MN 1
Mx:.obM:T
(—>intr)

Fr=XXxM:oc—= 71

29/34

Curry-Howard correspondence
Intuitionistic logic vs computation

Fo &« FM:o

A formula is provable in L/ if and only if it is inhabited in A —.

» 1950s Curry

v

1968 (1980) Howard formulae-as-types

> 1970s Lambek - CCC Cartesian Closed Categories

> 1970s de Bruijn AUTOMATH

formulae

proofs

proofs

proof normalisation

types

terms
programs
term reduction

» BHK - Brouwer, Heyting, Kolmogorov interpretation of logical connectives is

formalized by the Curry-Howard correspondence

30/34

> Subject reduction, type preservation under reduction
fM— Pand M:o,then P: 0.
» Broader context: evaluation of terms (expressions,
programs, processes) does not cause the type change.

> type soundness
> type safety = progress and preservation

> Strong normalization

If M : o, then M is strongly normalizing.
> Tait 1967
» reducibility method (reducibility candidates, logical

relations)
» arithmetic proofs

31/34

Lambda cube

APw

)\(.U E———

A2 —’— AP2

Aw 4’> APw
Ay ————————— AP

Theorem
M is typable — M strongly normalizing.

» More type systems: intersection types, recursive types

32/34

References

@ H.P. Barendregt, W. Dekkers, R. Statman. .

Lambda Calculus with Types.
Cambridge University Press 2013.

@ B. C. Pierece.)
Types and programming languages.
MIT Press 2002.

33/34

There is no perfect world

In A\ —
Ax.xx : NO

34/34

