
Rewriting and termination in lambda calculus

Silvia Ghilezan

University of Novi Sad
Mathematical Institute SASA

Serbia

Lecture 2

Oregon Programming Language Summer School
Eugene, June 2022

1 / 34

Roadmap

◮ Rewriting basics

◮ Lambda calculus

◮ Confluence: Church-Rosser property, local confluence

◮ Normalisation: strong normalisation, normalisation

◮ Strategies: leftmost-outermost strategy, perpetual
strategies

◮ Simple types in lambda calculus: strong normalization

◮ Intersection types in lambda calculus: complete
characterisations of normalisations

2 / 34

Higher-order rewriting systems - Lambda calculus

Simply lambda calculus

3 / 34

α-conversion

The formalisation of the principal that the name of the bound
variable is irrelevant

Definition
α-reduction:

λx .M −→α λy .M[x := y], y /∈ FV (M)

Proposition −→−→α is an equivalence relation, notation =α

Proof.
Symmetry, the interesting case

Example
λx .fx =α λy .fy
“A rose by any other name would smell as sweet"

William Shakespeare, “Romeo and Juliet"

4 / 34

β-reduction
The formalisation of function evaluation

(λx .M)N −→β M[x := N]

◮ M[x := N] represents an evaluation of the function M with
N being the value of the parameter x .

◮ (λx .M)N is a redex and M[x := N] is a contractum
◮ β-conversion is the symmetric closure of −→−→β is an

equivalence (with α-reduction), notation ≡β

◮ Barendregt’s variable convention: If a term contains a free variable which would
become bound after beta-reduction, that variable should be renamed.

◮ Renaming could be done also by using De Bruijn name free notation.

Example

(λx .x2 + 1)5 −→β 52 + 1 → 26

5 / 34

η-conversion

The formalisation of extensionality

Definition
η-reduction:

λx .(Mx) −→η M, x /∈ FV (M)

◮ This rule identifies two functions that always produce equal results if taking equal

arguments.

Example

λx .succx −→η succ

(λx .succx)2 −→β succ2 succ2

6 / 34

Combinatory logic

Language
M ::= x | S | K | I |MM

Rewrite rules
KMN −→ M
SMNP −→ MP(NP)
IM −→ M

Identity I = SKK
Lambda calculus and combinatory logic

I = λx .x K = λx .y .x S = λx .y .z.xz(yz)

Translation
◮ from CL to lambda calculus is a unique map
◮ from lambda calculus to CL is not unique, depends on how

abstraction is defined

7 / 34

Expressiveness

In the mid 1930s
◮ (Curry) Equivalence of λ-calculus and Combinatory Logic.

◮ (Kleene) Equivalence of λ-calculus and recursive
functions.

◮ (Turing) Equivalence of λ-calculus and Turing machines.

8 / 34

Recall: ARS normal forms

◮ n ∈ A is a normal form if there is no s such that n −→ s
◮ t ∈ A has a normal form if t −→−→ n and n is a normal form,

we say that n is a NF of t

Notation: −→−→ will denote −→−→β ∪ −→α

9 / 34

Running example: 2. β-normal forms

xyzx normal form NF

I = λx .x normal form NF

K = λxy .x normal form NF

S = λxyz.xz(yz) normal form NF

KI(KII) strongly normalizing SN

KIΩ normalizing N

Y = λf .(λx .f (xx))(λx .f (xx)) head normalizing HN (solvable)

Ω = ∆∆ = (λx .xx)(λx .xx) unsolvable

KI(KII) → KII → I
KI(KII) → I
KIΩ → I
KIΩ → KIΩ → . . . → KIΩ → I stop
KIΩ → KIΩ → . . . → KIΩ → . . . infinite loop
Y → λf .f ((λx .f (xx))(λx .f (xx)))

→ λf .ff ((λx .f (xx))(λx .f (xx)))
Ω → Ω → Ω → Ω → . . .

10 / 34

Properties - Confluence
Theorem (Church-Rosser theorem)
If M −→−→ N and M −→−→ P, then there exists S such that
N −→−→ S and P −→−→ S

The proof is deep and involved.

Corollary

◮ If M −→−→ N and M −→−→ P, then N = P
◮ Every lambda term has at most one normal form

(uniqueness of NF)
◮ The order of the applied reductions is arbitrary and always

leads to the same result
◮ Reductions can be executed in parallel (parallel computing)

Proof.
11 / 34

The general form of a lambda term
◮ λx1. . . . xn.((λy .P)Q)Q1 . . .Qk , n ≥ 0, k ≥ 0
◮ λx1. . . . xn.xQ1 . . .Qk , n ≥ 0, k ≥ 0

Head redex (head reduction −→h and −→−→h)

(λy .P)Q

λx1. . . . xn.((λy .P)Q)Q1 . . .Qk , n ≥ 0

Internal redex is not a head redex (internal reduction −→i and
−→−→i)
Head normal form

λx1. . . . xn.xQ1 . . .Qk , n ≥ 0, k ≥ 0

Normal form is a HNF

λx1. . . . xn.xQ1 . . .Qk , Qi ∈ NF , i ≤ k

12 / 34

Standardization

Example
λx .((λz.zz)(I(Ix))) −→h λx .(I(Ix))(I(Ix))

−→h λx .(Ix)(I(Ix))
−→h λx .x(I(Ix)) no more −→h
−→i λx .x(Ix)
−→i λx .xx standard (−→−→s)

λx .((λz.zz)(I(Ix))) −→−→h λx .x(I(Ix)) no more −→h
−→i λx .x(Ix)
−→i λx .xx not standard

Theorem (Standardization)

◮ If P −→−→ S then P −→−→h M −→−→i S for some M
◮ If P −→−→ S then P−→−→sS

13 / 34

Strategies

◮ perpetual
◮ normalization
◮ call-by-name, call-by-value, call-by-need ...
◮ optimal
◮ ...

14 / 34

Perpetual strategies
A strategy −→e⊆−→ is perpetual if for every M ∈ Λ which is
not SN (has an infinite reduction), there is an infinite reduction
path M −→e M1 −→e M2 −→e . . .

An effective perpetual strategy is Mi −→p Mi+1 where Mi+1 = F∞(Mi)

F∞(M) =

!
"""""""#

"""""""$

M if M is a nf
otherwise, M ≡ C[R], if R ≡ (λx.P)Q is the leftmost redex!
"""#

"""$

C[P[x := Q]] if R is I-redex
otherwise if R is K-redex%

C[P] if Q is NF
C[(λx.P)F∞(Q)] if Q is not NF

Example
KIΩ −→−→ I
KIΩ → KIΩ → . . . → KIΩ → I stop
KIΩ → KIΩ → . . . → KIΩ → . . . infinite loop
KIΩ →p (λy .I)Ω →p (λy .I)Ω →p . . . perpetual strategy

Theorem
◮ If M is not SN then M = M0 −→p M1 −→p M2 −→e . . .,

where Mi+1 = F∞(Mi), i = 0, 1, . . .
◮ If M is SN then M = M0 −→p M1 −→p M2 −→p . . .Mk ,

where Mi+1 = F∞(Mi), i = 0, 1, . . . k − 1 is the longest
reduction path starting from M

15 / 34

S combinator
SSS(SSS)(SSS) = AAA1 has an infinite head reduction2

A ≡ SSS

1Dance of the Starlings, Henk Barendregt, Jörg Endrullis, Jan Willem
Klop, and Johannes Waldmann, Raymond Smullyan on self reference,
Springer, 2017

2Written an a wall in Barendregt’s house in the 1970s
16 / 34

Y combinator - Fixed point theorems

Y ≡ λf .(λx .f (xx))(λx .f (xx))
→ λf .f ((λx .f (xx))(λx .f (xx))) HNF
→ λf .ff ((λx .f (xx))(λx .f (xx))) HNF

◮ Fixedpoint theorem: Y is a fixed point combinator such
that for all F ∈ Λ

F (YF) = YF ,

◮ These properties enable the representation of the
recursive functions in λ-calculus.

17 / 34

Normalization strategies

A strategy −→n⊆−→ is normalizing if for every M ∈ Λ which is
normalizing (has a NF Mnf) M −→n M1 −→n . . . −→n Mnf

Definition
◮ A lambda term is in the normal form if it does not contain

any redex:

λx1x2...xm.yN1...Nk , Ni ∈ NF m, k ≥ 0

An effective normalising strategy is the leftmost reduction

C[(λx .P)Q] −→l C[P[x := Q]], where(λx .P)Q is the most left redex in C

18 / 34

Normalization theorem

Theorem
M is normalizing (has a NF Mnf), then M −→−→l Mnf

Proof.
M has NF Mnf ⇒ M −→−→ Mnf

⇒ M −→−→s Mnf by the Standardization theorem

⇒ M −→−→h P −→−→i Mnf

Head reductions are leftmost reductions, and the internal
reductions of the standard reduction are ordered from left to
right.

19 / 34

References

H.P. Barendregt
Lambda Calculus: Its syntax and Semantics.
North Holland, 1984.

F. Cardone, J. R. Hindley
History of Lambda-calculus and Combinatory Logic
Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp.
723-817 (online 2006)

R. Smullyan.
To Mock a Mockingbird.
Alfred A. Knopf, New York, 1985.

S. Wolfram
Combinators: A Centennial View
2021

20 / 34

Higher-order rewriting systems - Lambda calculus

Simply lambda calculus

21 / 34

Motivation

◮ “Disadvantages" of the untyped λ-calculus:
◮ infinite computation - there exist λ-terms without a normal form
◮ meaningless applications - it is allowed to create terms like sin log

◮ Types are syntactical objects that can be assigned to
λ-terms.

◮ Reasoning with types present in the early work of Church on untyped
lambda calculus.

◮ two typing paradigms:
◮ à la Curry - implicit type assignment

(lambda calculus with types);
◮ à la Church - explicit type assignment

(typed lambda calculus).

22 / 34

Simply typed λ-calculus - syntax of types

Definition
◮ The alphabet consists of

◮ V = {α,β, γ,α1, . . .}, a countable set of type variables
◮ →, a type forming operator
◮), (auxiliary symbols

◮ The language is the set of types T defined as follows
◮ If α ∈ V then α ∈ T
◮ If σ, τ ∈ T then (σ → τ) ∈ T.

◮ The abstract grammar that generates the language

σ ::= α | σ → σ

Conventions for minimizing the number of the parentheses:
◮ σ1 → σ2 → σ3 stands for (σ1 → (σ2 → σ3))

23 / 34

λ → - the language

M : σ
Definition
◮ Type assignment is an expression of the form M : σ,

where M is a λ-term and σ is a type
◮ Declaration x : σ is a type assignment in which the term is

a variable
◮ Basis (environment) Γ = {x1 : σ1, . . . , xn : σn} is a set of

declarations in which all term variables are different

24 / 34

λ → - the type system

◮ Axiom

(Ax)
Γ, x : σ ⊢ x : σ

◮ Rules

(→elim)
Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ MN : τ

(→intr)
Γ, x : σ ⊢ M : τ

Γ ⊢ λx .M : σ → τ

25 / 34

Running example: 3. types

M Type

xyz x : σ → τ → ρ, y : σ, z : τ ⊢ xyz : ρ

λx .zx z : σ → ρ ⊢ λx .zx : σ → ρ

I = λx .x σ → σ

K = λxy .x σ → ρ → σ

S = λxyz.xz(yz) σ → ρ → τ → (σ → τ) → (σ → ρ)

∆ = λx .xx NO

Y = λf .(λx .f (xx))(λx .f (xx)) NO

Ω = ∆∆ = (λx .xx)(λx .xx) NO

26 / 34

Typability (type inference): given M

M :?

Inhabitation: given σ

? : σ

Type checking: given M and σ

(M : σ)?

27 / 34

The logical meaning of →

Intuitionistic logic - Natural deduction, Gentzen 1930s
◮ Axiom

(Ax)
Γ,σ ⊢ σ

◮ Rules

(→elim)
Γ ⊢ σ → τ Γ ⊢ σ

Γ ⊢ τ

(→intr)
Γ,σ ⊢ τ

Γ ⊢ σ → τ

28 / 34

Inhabitation

Intuitionistic logic - Natural deduction, Gentzen 1930s
◮ Axiom

(Ax)
Γ, x :σ ⊢ x :σ

◮ Rules

(→elim)
Γ ⊢ M :σ → τ Γ ⊢ N :σ

Γ ⊢ MN :τ

(→intr)
Γ, x :σ ⊢ M :τ

Γ ⊢ λx .M :σ → τ

29 / 34

Curry-Howard correspondence
Intuitionistic logic vs computation

⊢ σ ⇔ ⊢ M : σ

A formula is provable in LI if and only if it is inhabited in λ →.

◮ 1950s Curry
◮ 1968 (1980) Howard formulae-as-types
◮ 1970s Lambek - CCC Cartesian Closed Categories

◮ 1970s de Bruijn AUTOMATH

formulae –as– types
proofs – as – terms
proofs –as– programs

proof normalisation –as– term reduction

◮ BHK - Brouwer, Heyting, Kolmogorov interpretation of logical connectives is

formalized by the Curry-Howard correspondence

30 / 34

◮ Subject reduction, type preservation under reduction
If M −→ P and M : σ, then P : σ.

◮ Broader context: evaluation of terms (expressions,
programs, processes) does not cause the type change.

◮ type soundness
◮ type safety = progress and preservation

◮ Strong normalization
If M : σ, then M is strongly normalizing.

◮ Tait 1967
◮ reducibility method (reducibility candidates, logical

relations)
◮ arithmetic proofs

31 / 34

Lambda cube

Theorem
M is typable =⇒ M strongly normalizing.

◮ More type systems: intersection types, recursive types

32 / 34

References

H.P. Barendregt, W. Dekkers, R. Statman.
Lambda Calculus with Types.
Cambridge University Press 2013.

B. C. Pierece.
Types and programming languages.
MIT Press 2002.

33 / 34

There is no perfect world

In λ →

λx .xx : NO

34 / 34

