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1 Outline

1. Rewriting Basics

2. Lambda Calculus

3. Confluence: Church-Rosser property, local confluence

4. Normalization: strong normalization, normalization

5. Strategies: Left-outermost strategy, perpetual strategies

6. Simple types in lambda calculus: strong normalization

7. Intersection types in lambda calculus: complete characterizations of nor-
malizations

2 Cleaning Up Yesterday

2.1 Free Variables

An important notion in lambda calculus is the notion of a free variable. Infor-
mally, we can say that a free variable is a variable not bound by an abstraction.
Formally, we can define it inductively as follows:

FV (x) = {x}
FV (MN) = FV (M) ∪ FV (N)

FV ((λx.M)) = FV (M) \ {x}

We say that a term M is closed if FV (M) = ∅. Finally, we define
∧◦

as the set
of all closed terms.
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2.2 Substitution

Substitution is defined inductively over the language as follows

x[x := M ] ≜ M

y[x := M ] ≜ y

N1N2[x := M ] ≜ N1[x := M ]N2[x := M ]

(λx.N)[x := M ] ≜ (λx.N)

(λy.N)[x := M ] ≜ (λy.N [x := M ]) if x ̸∈ FV (N)

(λy.N)[x := M ] ≜ ((λz.N [y := z]))[x := M ] if x ∈ FV (N), z ̸∈ FV (M,N)

Note that while the language uses substitution to actually perform compu-
tation, substitution is actually a meta notion rather than something explicitly
specified by the syntax. There are variants of the lambda calculus with explicit
substitution that avoid the hassle of dealing with variables in the metatheory,
but those are outside the scope of this lecture.

2.3 Rewrite Rules

Lambda calculus has three rules. In the last lecture we have seen the first rule
which is α− conversion. The other two two are defined as follows:

(λx.M)N →β M [x := N ] (1)

(λx.Mx) →η M (2)

Where rule (1) is usually called β-reduction and rule (2) η-reduction.

3 Higher Order Rewriting Systems - Lambda
Calculus

α-equivalence To capture the notion of α-conversion given yesterday, we can
define the following relation:

Definition 1. The relation →α is defined as

(λx.M) →α (λy.M)[x := y], y ̸∈ FV (M) (3)

We can again take multiple steps at a time in this relation, which we will
denote as ↠α. This relation actually characterizes an equivalence relation,
which we’ll denote as =α.

Proposition 1. =α is an equivalence relation

Proof. This proof is left as an exercise to the reader. Symmetry is the interesting
case.
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β-reduction The driving force behind function evaluation is β-reduction,
which we define as follows:

Definition 2. The relation →β is defined as

(λx.M)N →β M [x := N ] (4)

We can also extend →β to an equivalence relation by completing ↠β with
=α and a symmetric closure. We call this relation ≡β .

For notational completeness, we call lambda terms of the form (λx.M)N
redexes and M [x := N ] contractum.

Finally, we want to avoid variable capture. We do this by α-converting the
offending abstraction to bind a different variable using substitution as defined
in 2.2.

η-conversion We want to formalize extensionality. To do this, we define the
following rewrite rule:

Definition 3. The relation →η is defined as

(λx.Mx) →η M

3.1 Combinatory Logic

Combinatory logic is a rewrite system equivalent to the lambda calculus. We
define the grammar of combinatory logic as follows:

M,N := x |K |S | I |MN

Each of these combinators are defined by a single rewrite rule each:

KMN → M

SMNP → MP (NP )

IM → M

I, which is the identity function, can be defined in terms of the other two
combinators. In fact, I = SKK

Interestingly, each of these operators can be defined as lambda terms.

K = (λx.(λy.x))

S = (λx.(λy.(λz.xz(yz))))

I = (λx.x)

Over the course of the 1930’s,

• Curry proved the equivalence of lambda calculus and combinatory logic,

• Kleene proved the equivalence of lambda calculus and recursive functions,
and

• Turing proved the equivalence of lambda calculus and Turing machines.
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3.2 Examples

We use a shorthand notation for the combination of α-conversion and many
steps of β-reduction to model the evaluation of a lambda calculus term to its
normal form:

↠≜↠β ∪ →α

xyzx normal form NF
I = λx.x normal form NF
K = λxy.x normal form NF
S = λxyz.xz(yz) normal form NF
KI(KII) strongly normalizing SN
KIΩ normalizing N
Y = λf.(λx.f(xx))(λx.f(xx)) head normalizing HN (solvable)
Ω = ∆∆ = (λx.xx)(λx.xx) unsolvable

In KIΩ, we get to observe an interesting property that was hinted at yester-
day - a non-terminating term with a normal form. This is because it depends
on which order the arguments are evaluated in.

3.3 Confluence

We begin with an important theorem:

Theorem 1. If M ↠ N and M ↠ P , then there exists some S such that both
N ↠ S and P ↠ S.

This is hard to prove and beyond the scope of this lecture. Try to prove it
yourself or study existing proofs at your own risk.

This theorem has a litany of corollaries, which we can list here:

Corollary 1. The following are directly implied by Theorem 1:

1. If M ↠ N and M ↠ P , then P ≡β Q

2. Normal forms are unique

3. The order of reductions is arbitrary

4. Reductions can be executed in parallel

3.4 Forms of Lambda Terms

(λx1...xn.(((λy.P ))Q)Q1...Qk), n ≥ 0, k ≥ 0 (5)

(λx1...xn.xQ1...Qk), n ≥ 0, k ≥ 0 (6)

The former is called the head redex form, and the latter is called the head
normal form. If, in the head normal form, Qi are normal for all i, then it is also
in normal form.
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4 Reduction Strategies

While it technically doesn’t matter what order we do reductions in due to
Church-Rosser, we do want to have some standard way of evaluating terms.
This is the idea behind standardization, which fixes a reduction strategy. The
main intuition is to perform head reduction while the term is in head redex form,
then move through the Q terms in increasing index and recursively repeat. We
call the relation characterized by this strategy ↠s. This strategy has a nice
theorem:

Theorem 2. If P ↠ S then P ↠h M ↠i S, and if P ↠ S then P ↠s S.

where ↠h is defined as head reduction and ↠i is defined as internal reduc-
tion.

However, there are alternative reduction strategies, some of which we will
now detail.

4.1 Perpetual Strategies

In some sense, these are adversarial strategies - if there exists a reduction strat-
egy which will lead to non-termination, these strategies will find at least one of
them.

Definition 4. A strategy →e⊆→ is perpetual if for every M ∈
∧

which is
not strongly normalizing, there exists an infinite reduction path M1 →e M2 →e

M3 →e M4...

One such perpetual strategy is the following:

F∞(M) =



M if N is a normal form

Otherwise if M ≡ C[R], R ≡ ((λx.P )Q)the leftmost redex
C[P [x := Q]] R is I-redex

Otherwise R is K-redex{
C[P ] Q normal

C[((λx.P ))F∞(Q)] otherwise

This strategy can be characterized neatly in a theorem.

Theorem 3. 1. If M is not strongly normalizing, then M = M0 →p M1 →p

M2 →e ... where Mi+1 = F∞(Mi), i = 0, 1...

2. If M is strongly normlaizing then M = M0 →p M1 →p M2...Mk, where
Mi+1 = F∞(Mi), i = 0, 1...k − 1 is the longest reduction starting from n
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