Rewriting and termination in lambda calculus

Silvia Ghilezan
University of Novi Sad

Mathematical Institute SASA
Serbia

Lecture 3

Oregon Programming Language Summer School
Eugene, June 2022

15



Roadmap

>

| 2

Rewriting basics

Lambda calculus

Confluence: Church-Rosser property, local confluence
Normalisation: strong normalisation, normalisation

Strategies: leftmost-outermost strategy, perpetual
strategies

Simple types in lambda calculus: strong normalization

Intersection types in lambda calculus: complete
characterisations of normalisations

15



Intersection types

3/15



There is no perfect world

In A\ —
Ax.xx : NO

/15



Intersection types

» The abstract grammar that generates the language

o= alo—olono|w

Subtyping is a pre-order on types

© N A~

c<o

c<t,7T<p,theno <p

oc<w

cNt<o,cNT<T

o < o No (idempotent)
c<coandr <7, thenonr <o N7
o <cand7t <7, thenoc - 7<o — 7
(c=p)N(c—71)<oc—pnNT

15



Type system

> Axiom
(Ax)
MNx:obx:0
> Rules
r-M:o—r r-N:o Mx:cFM:7
(elim —) —(intr =)
F-MN:+ Fr’EXM:o— 7
r’EM:ont FrEM:ont rEM:o TEM: T
(elimN)———— (elimnN) (intrn)
r-m:o r-M:r r-=M:onr

NM:o o<

(<)
r=M:r



Intersection types

Introduced in the 1980s, to overcome the limitations of simple
types

» Coppo, Dezani

» Pottinger

> Sallé

> Intersection types do not correspond to inuitionistic
conjunction
o—T—0NT

intuitionistically provable, but not inhabited in AN



Ax.xx is typable, finally!

xX:(c—=7)Nokx:(c—=7)N0o Xx:(c—=71)Nokx:(c=>T1)N0o
(elimn)
X:(c—>71)NokXx:0—>T7 X:(c—=>71)Nokx:0

(elin
X:(c—>T)Nokxx:7

FXxxx:((c—71)No)—>T



Intersection types - SN

Complete characterization of strong normalization

Theorem

M is typable <— M is SN

Proof.

Typability = SN
> reducibility method
> arithmetic proof

> non-idempotent intersection types
SN = Typability
> typability of normal forms
> head subject expansion, perpetual strategies

» Typability is undecidable

/15



Intersection types - normalisation properties

Complete characterization of: normalizing, head normalizing,
and unsovable terms.

Theorem
» M is normalising < M is typable, T -+ M : o, w is notinT
and o
» M head normalising <= M is typable,T - M : 0, 0 # w
» M is unsovable < M is typable, T+ M : 0,0 ~w

Proof.

Typability = (normalization property)
» reducibility method
> other proofs?

(normalization property) = Typability
> head subject expansion, leftmost strategies, perpetual strategies

10/15



Union types

» The abstract grammar that generates the language

o= alo—ogloNo|loUo
> Rules
r=M:o . Fr=M:r ]
— (introl) ——————— (introv)
Fr-=M:oUrt FrEM:ocUT

rN-P:ouUr Ix:ocbM:p T)x:7EM:p
F=M[x:=P]:p

(elimu)

Theorem

M is typable <— M is SN

Problems with SR!

11/15



Intersection types - more

vy

vvyyy

Curry version - implicit typing

intersection as a proof theoretical connective (vs logical
connectives)

several proposals for the Church version - explicit typing
bounded polymorphism

filter models

Béhm trees

12/15



References

[

B

H.P. Barendregt, W. Dekkers, R. Statman
Lambda Calculus with Types
Cambridge University Press 2013

H.P. Barendregt, M. Coppo, M. Dezani-Ciancaglini
A filter lambda model and the completeness of type assignment
Journal of Symbolic Logic 48(4):931-940, 1983

V. Bono, M. Dezani-Ciancaglini
A tale of intersection types
LICS 2020: 7-20, 2020

P. Downen, Z. M. Ariola, S. Ghilezan
The Duality of Classical Intersection and Union Types
Fundam. Informaticae 170(1-3): 39-92, 2019

J.-L. Krivine.
Lambda-calcul, types et models, Masson 1990
Lambda calculus types and models, English translation

Claude Stolze
Union, intersection and dependent types in an explicitely typed lambda-calculus
PhD thesis, INRIA Sophia Antipolis, UNS 2019 13/15



Wrap up

vVvVvyVvVvVvVvyYyy

Rewrite systems

Lambda calculus as a rewrite system
Combintory logic as a rewrite system
Confluence, normalisation, strong normalisation
Standardisation, reduction strategies

Simple types and strong normalisation
Intersection types and normalisation properties

14/15



In lieu of conclusion

% revisit
3= rethink

3~ rewrite

15/15



