
Rewriting and Termination in Lambda Calculus

OPLSS June 2022

1 Outline

1. Rewriting Basics

2. Lambda Calculus

3. Confluence: Church-Rosser property, local confluence

4. Normalization: strong normalization, normalization

5. Strategies: Left-outermost strategy, perpetual strategies

6. Simple types in lambda calculus: strong normalization

7. Intersection types in lambda calculus: complete characterizations of nor-
malizations

2 Strategies and Combinators Continued - Clean-
ing up the Morning

In the early explorations of combinators the question was asked whether the S
combinator by itself could give rise to infinite reductions. The following example
was constructed to resolve this question:

Example 1. Let A ≡ SSS. Then AAA has an infinite head reduction.

A related combinator, which is much more useful in practice and perhaps
the most famous of them all is the Y combinator:

Y ≡ λf.(λx.f(xx))(λx.f(xx)) (1)

This has the property of being a fixpoint combinator, which we’ve seen before
in Gibbon’s lectures earlier this week.

1

2.1 Normalization strategies

A strategy →n⊆→ is normalizing if for every M ∈
∧

which has a normal form
Mn, we have that M ↠n Mn.

We know that there exists a normalization strategy by the following con-
struction:

Theorem 1. If M has a normal form Mnf, then M ↠l Mnf.

Proof.

M has NF Mnf =⇒ M ↠ Mnf

=⇒ M ↠s Mnf

=⇒ M ↠h P ↠i Mnf

Head reductions are always leftmost and the internal reductions are performed
from left to right.

2.2 Simply Typed Lambda Calculus

The simply typed lambda calculus is motivated mainly by two features of un-
typed lambda calculus that makes writing programs in it quite difficult. The
first is that the untyped lambda calculus has terms without a normal form, such
as Ω. Second, it has no rules to enforce your constructions. For example, there
are no guarantees that your nice Church numerals won’t be fed something ter-
rible like AAA. We want to restrict what kind of computations we can perform
to some “safe” subset of them.

There are generally two approaches to equipping lambda calculus with type
systems: Curry’s approach, which implicitly assigns types to terms, and Church’s
approach, which does so explicitly instead.

The type system can be defined over the signature (T,→), where T is some
countable set of variables:

τ, σ ::= x ∈ T | τ → σ (2)

where → is right associative.
We can define the typing rules of the type system inductively over the terms

as well:

Ax
Γ, x : σ ⊢ x : σ

Γ ⊢ M : σ → τ Γ ⊢ N : σ →elim
Γ ⊢ MN : τ

Γ, x : σ ⊢ M : τ →intro
Γ ⊢ λx.M : σ → τ

2

This type system is both sound and has both progress and preservation.
Additionally, ifM is typable in the type system, thenM is strongly normalizing.

The simply typed lambda calculus is at the bottom of the “lambda cube” -
it can be extended with recursion, dependent types, and more, which preserve
type systems and maintain the property that M being typable implies that M
is strongly normalizing.

3 Intersection Types

We now add two more constructs to our simple type grammar:

τ, σ ::= τ ∈ T | τ → σ |σ ∩ τ |ω (3)

Additionally, we to impose a pre-order over the types in order to support a
notion of subtyping. The ordering is defined by the following eight axioms:

1. σ ≤ σ

2. σ ≤ τ, τ ≤ ρ =⇒ σ ≤ ρ

3. σ ≤ ω

4. σ ∩ τ ≤ σ and σ ∩ τ ≤ τ

5. σ ≤ σ ∩ σ

6. If σ ≤ σ′ and τ ≤ τ ′, then σ ∩ τ ≤ σ′ ∩ τ ′

7. If σ ≤ σ′ and τ ≤ τ ′, then σ → τ ≤ σ′ → τ ′

8. (σ → ρ) ∩ (σ → τ) ≤ (σ → τ ∩ ρ)

For notational purposes, we say that σ ∼ τ if σ ≤ τ and τ ≤ σ. This is just
the symmetric closure of ≤.

The typing rules for this system extends the rules for the simply typed
lambda calculus from earlier:

Ax
Γ, x : σ ⊢ x : σ

Γ ⊢ M : σ → τ Γ ⊢ N : σ →elim
Γ ⊢ MN : τ

Γ, x : σ ⊢ M : τ →intro
Γ ⊢ λx.M : σ → τ

Γ ⊢ M : τ ∩ σ ∩elim2
Γ ⊢ M : σ

Γ ⊢ M : τ ∩ σ ∩elim1
Γ ⊢ M : τ

3

Γ ⊢ M : τ Γ ⊢ M : σ τintro
Γ ⊢ M : σ ∩ τ

Γ ⊢ M : σ σ ≤ τ τintro
Γ ⊢ M : τ

Intersection types were developed in the 1980’s by Coppo, Dezani, Pottinger,
and Sallé. While the ∩ construct may resemble intuitionistic conjunction, the
type σ → τ → σ∩ τ is not inhabited in lambda calculus with intersection types,
whereas the corresponding proposition in intuitionistic logic is provable.

However, in spite of this limitation, we do get something exciting: λx.xx is
finally typable!

x : (σ → τ) ∩ σ ⊢ x : (σ → τ) ∩ σ ∩elim
x : (σ → τ) ∩ σ ⊢ x : σ → τ

x : (σ → τ) ∩ σ ⊢ x : (σ → τ) ∩ σ ∩elim
x : (σ → τ) ∩ σ ⊢ x : σ →elim

x : (σ → τ) ∩ σ ⊢ xx : τ →intro
⊢ λx.xx : ((σ → τ) ∩ σ) → τ

In fact, we finally get the other direction of an earlier implication:

Theorem 2. A term M is typable if and only if M is strongly normalizing.

Proof. Typability =⇒ SN

• reducibility method

• arithmetic proof

• non-idempotent intersection types

SN =⇒ Typability

• typability of normal forms

• head subject expansion, perpetual strategies

Note that the halting problem implies that now typability is undecidable for
this simply typed lambda calculus with intersection types.

While this extension to the type system does cause typing to be equivalent
to strong normalization and thus undecidable, we do get the following nice
theorems

Theorem 3. M is normalizing if and only if M is typable, and in the judgement
Γ ⊢ M : σ, ω ̸∈ σ, ω ̸∈ Γ

Theorem 4. M is head normalizing if and only if M is typable, and in the
judgement Γ ⊢ M : σ, we have that σ ̸∼ ω

4

Theorem 5. M is unsolvable if and only if M is typable, and in the judgement
Γ ⊢ M : σ, we have that σ ∼ ω.

Proof. The proof of all three of these theorems are very similar. The forward
direction relies on the reducibility method from previous lectures, and the back-
wards direction relies on reasoning about the various reduction and expansion
strategies that we have introduced.

Unfortunately, we do not have proofs of the forward direction for uninter-
preted types. This is an open problem!

3.1 Union Types

We can again extend the type system, this time with union types!

τ, σ ::= τ ∈ T | τ → σ |σ ∩ τ |σ ∪ τ (4)

We once again need to corresponding introduction and elimination rules from
this new construct:

Γ ⊢ M : τ ∪intro1
Γ ⊢ M : τ ∪ σ

Γ ⊢ M : σ ∪intro2
Γ ⊢ M : τ ∪ σ

Γ ⊢ P : σ ∪ τ Γ, x : σ ⊢ M : ρ Γ, x : τ ⊢ M : ρ ∪elim
Γ ⊢ M [x := P] : ρ

5

