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1 Introduction

The algebra of programming broadly refers to the notion that the structure of the data dictates the
structure of the program. Several books have explored this correspondence in depth, including Structured
Programming by Hoare et al.; The Algebra of Programming by Bird and de Moor; and How to Design
Programs by Felleisen et al.

These lectures will cover the following topics:
e Folds and unfolds (catamorphisms and anamorphisms), which establish a basis for structured recursion
e Generalizations of folds and unfolds (paramorphisms, histomorphisms, etc.)

e Metamorphisms, a new research area by Gibbons that provides useful abstractions for streaming and
data compression algorithms

e Effectful traversals of data structures.

Much of the literature on the algebra of programming takes a category-theoretic approach, but we will
sidestep this overhead by primarily expressing our ideas in Haskell, a lazy functional programming language.
Moreover, we restrict our mental framework to describing total functions between sets, sidestepping the
complexity of cpos and nontermination.

In this lecture, we introduce the algebraic primitives necessary for our discussion.

2 Products

If A and B are sets, then we can think of A x B as their product:

Ax B={(a,b) |ac Abe B}

The Cartesian product is a particular explicit construction of a product, but the essence of the algebra of
programming is identifying useful abstractions that generalize meaningfully across different types. For this
reason, we prefer to deal with the implicit construction given by some universal property: a particular set
of requirements that yield a unique solution.

Remark 1 (Universal property). A universal property defines objects uniquely up to isomorphism.

In other words, two solutions that satisfy the same universal property are isomorphic. We can therefore
define concepts entirely by specifying a universal property.

Remark 2 (Structure of a product). A product A X B is a triple (X, fst,snd) consisting of:
e g set X,
e functionsfst: X - A andsnd: X — B

which together satisfy the universal property, which we will discuss in a moment.

So far, we have only established the shape of a valid solution, not anything about how X, fst, and snd
should behave. There are many possible solutions that satisfy Remark [2] but we are interested in finding an
extremal solution which is “least” or “greatest” in some way.



Intuitively, an extremal solution (X, fst,snd) is more expressive than any competing solution (X', fst’,snd’).
We can formalize this notion of expressivity through the universal property:

Definition 1 (Universal Property for Products). Consider two products satisfying the structure defined in
Remark [2:

(X, fst,snd) X s a set fst: X - A snd: X - B
(C, f,9) C is a set f:C— A g:C— B

We say that (X, fst,snd) satisfies the universal property if for any choice of (C, f,g) there exists a unique
h: C — X between the two sets, such that the following equations hold:

f=fstoh
g=-sndoh

We can represent these equations with the following commutative diagram. The dashed arrow for h indicates
that h is the unique function between C' and A x B.
Ax B

fst snd

h

A - C ; B
In other words, if Alice has a triple satisfying the structure in Remark [2) but Bob provides a competing
triple, then Alice must somehow prove that her solution is somehow richer than Bob’s. She does this by
showing there is a unique function h which, precomposed with her solution, produces the same result as
Bob’s. (In category theory we might say that Bob’s solution factors through Alice’s.)

A triple satisfying the universal property is an extremal solution, and these solutions are unique up to
ismorphism. Going forward, we will refer to this unique solution as “the” product, and write it as

(A x B, fst,snd).

Definition 2 (Categorical Product). Consider the product (X, fst,snd), where
X =AxB, fst = mq, snd = 7.

Then (A x B,fst,snd) is an extremal solution, given by the function

which satisfies the universal property[1] and is unique up to isomorphism.

2.1 Fork

How should we interpret h? Given two generators f and g, the function h “forks” a single input into two
results. As a notational convenience, we will define the notation A (pronounced “fork”) for h.

Definition 3 (Fork). Given some f:C — A and g : C — B, the following notations are equivalent:

h=fAg
< h(c) =(f(c),9(c))



We can restate the universal property using A as follows:

h=fAg < fstoh=f A sndoh=g
< fsto(fAag)=f A sndo(fAg)=g substitute h:= fAg
<= h=(fstoh)A(sndoh) conversely

Remark 3. The definition of f A g creates a pair from two arbitrary generators f and g. Therefore,

fst Asnd = id.

3 Coproducts

The dual of a product is a coproduct, also known as a sum or discriminated union. An explicit definition
of the coproduct of sets A and B might look like this:

A+B=1{(0,a)]|ac Ay U{(L,b)|be B}

where each term is a pair consisting of a tag or discriminant describing which set we are drawing from, along
with a value from that set.

Once again, however, we prefer to define coproducts using the implicit construction given by their universal
property. We can dualize our construction for products by turning each arrow around, which gives us a new
set of functions:

fst:AxB— A becomes inl: A— A+ B
snd: Ax B— B becomes infr:B— A+ B

Likewise, we dualize the commutative diagram for products by turning each arrow around:

A+ B AxB
inl h% inr fst i h snd
A 7 C 5 B A 7 C 5 B
(a) Coproduct (b) Product

Dualizing gives us a new extremal solution which satisfies the new universal property:

Definition 4 (Coproduct). A coproduct is a triple (X,inl inr) where X is a set and inl : A — X and
inr: B — X are functions. The extremal solution is defined as follows:

X =A+B, inla = (0,a), inrb = (1,b).
The uniqueness of our solution (A + B,inlinr) is given by the function

inla — f(a)

h(¢c) = match ¢ {inrb = o(b)

which satisfies the universal property for coproducts.




3.1 Join

Intuitively, the function A now dispatches on ¢ and applies the correct f or g corresponding to ¢’s tag. In
this manner, h performs a join on data that could potentially belong to one of two sets.

As with products, we define notation V (pronounced “join”) for h in the coproduct.

Definition 5 (Join). Given some f:C — A and g : C — B, the following notations are equivalent:

h=fVvg
inla — f(a)

<= h(c) = match
(c) = matc c{inrbeg(b)

We can restate the universal property using V as follows:

h=fVvVg < hoinl=f A hoinr=g.

4 Functors

The product x and coproduct + are examples of functors, which map between categories. For our purposes,
it suffices to think of a functor as a higher-order function:

Definition 6 (Functor). In the context of this lecture, a functor F defines a mapping:
e Between sets A FA, for all A
e Between functions (f : A— B) — (Ff: FA— FB), for all sets A, B
f:A— B
Ff:FA— FB

Note: In general, we denote functor application without parentheses, but F'X and F(X) are equivalent
notations.

We are specifically interested in polynomial functors on types, which correspond to the algebraic data
types used in programming.

Definition 7 (Polynomial functor). A polynomial functor F can be written using only the following
types and operations:
1] X |+ x

where 1 is the unit type with sole inhabitant (), X is the type we are mapping, and + and X are the
product and sum as defined above.

Here are a few examples of polynomial functors, and their corresponding Haskell implementations:

NX)=14X data N x = Nothing | Just x (Maybe)
L(X)=1+NxX data L x = Nil | Comns Nat x (List)
TA(X)=A4+X x X data T a x = Leaf a | Branch x x (Tree)

Each of these functors defines the shape of a type:
Example 1 (Maybe). N(X) =1+ X is the shape functor representing the presence or absence of some X.
o 1 represents the absence of a result.

o X represents a result of the given type.



Example 2 (Linked list cell). L(X) =1+ N xX is the shape functor for a linked list of natural numbers.
o 1 represents an empty cell.
o N xX represents a non-empty cell with some n € N consed onto a value of type X.

Example 3 (Tree node). Ty (X) = A+ X x X is the shape functor for a binary tree with values of type A.
o A represents a value at a leaf.

e X x X represents a branch with a left and right child.

4.1 Fixed points
The fixed points of a polynomial functor F are the types X for which

X=FX.

In other words, a fixed point is a type that remains unchanged by the shape functor F'.

Remark 4. In general, functors are not guaranteed to have a unique fized point, or even any fized points at
all. However, all polynomial functors in the category Set have fixed points.

As with before, we are interested in the extremal solutions to our fixed point equation. Specifically, we are
looking for the least fixed point of a given shape functor F.

Definition 8 (Least fixed point). Let F be a polynomial shape functor in Set.
A fized point of F is a pair (uF,in), where in: F(uF) — pF is an isomorphism; that is,

uF ~ F(uF).

We say that (uF,in) is a least fized point if, for all other pairs (A, f) with f : F(A) — A, there ezists a
unique h : uF — A satisfying the universal property

hoin= fo Fh.

Here is the commutative diagram illustrating the universal property for some nonspecific (X, in):

FxX I . FpaA
n .f
X oo >y A

We can set X = pF' and interpret the diagram as follows:
e [ describes a general shape,
e 1 F is a datatype, the least fixed point of the shape functor F,
e F(uF) is a collection of fragments of information for the datatype,
e in: F(uF) — uF takes these fragments of information and turns them into a usable datatype uF'.

Here are the aforementioned polynomial functors with descriptions of their least fixed points:

NX)=14+X uN =N (Maybe)
L(X)=1+NxX pL = finite lists of N (List)
Ta(X)=A+ X xX uT'4 = finite trees of A (Tree)



Example 4 (Sum of a list). Consider the shape functor L(X) = 1+ N x X, and suppose we have the algebra
(N, add), with add defined as follows:

add: LN - N
:1+NxN—=N

add (inlz) =0

add (inr (x,y)) =z +y

Notice that when we instantiate L with the type N, the case inr(z,y) is a pair of two natural numbers, rather
than a natural number and the tail of a list as we might expect from a function using explicit recursion.
Think of add as a function being folded over the list, where the non-empty case includes the current element
z and an accumulator y representing the sum over elements in the tail.

(\w/,\y/)

head sum of tail

The commutative diagram describes two different paths to transform our least fixed point L(uL) into a N
via add:

bits of data structure L(uL) —="—+ LN
in add
complete data structure —pL -------—-—----- » N

h=sum

We start with L(uL), which corresponds to the pieces of the data structure pL. First, we can use in to
transform the pieces of our shape into a uL, then use h, which we call sum, to combine the results into a N.
Alternatively, we can transform the pieces L(pL) into an optional pair of natural numbers, then add them
together to get the sum of the list.

5 Folds

We will learn more about folds in the next lecture, but we call h the fold or cata of add in the above
commutative diagram. More generally, for some least fixed point (uL,in) and another algebra (A, f), we
define

h=cataf <= hoin= foFh.

The Haskell exercise can be found here.


http://www.cs.ox.ac.uk/people/jeremy.gibbons/oplss2022/lecture1.lhs
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