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In this lecture, we revisit catamorphisms and least fixed points from the previous lecture, and implement
them in Haskell. We dualize these constructions into anamorphisms and greatest fixed points, which represent
unfolding into codata.

1 Catamorphisms

All polynomial functors in Set have least fixed points. Recall these shape functors from last time:

N(X) = 1 +X µN = N (Maybe)

LA(X) = 1 +A×X µL = finite lists of A (List)

TA(X) = A+X ×X µTA = finite trees of A (Tree)

Remark 1. The least fixed point µF of a functor F is also known as an initial algebra for F .

Recall that the least fixed point of a functor F is a pair (X, in : FX → X) such that for all other fixed points
(A, f : FA → A), there exists a unique h : X → A satisfying the universal property

h ◦ in = f ◦ Fh

that makes (A, f) factor through (µF, in) in the commutative diagram below:

FX FA

X A

in

Fh

f

h

We write µF for X, and cata f for h. The function cata f is a catamorphism and represents a fold of the
function f over the structure µF .

Remark 2. The isomorphism in : F (µF ) → µF is what makes µF a fixed point. The universal property
h ◦ in = f ◦ Fh is what makes µF a least fixed point.

Example 1 (Least fixed point of LA). Consider the shape functor LA(X) = 1 + A ×X, corresponding to
the coproduct of unit and a pair (A,X) for fixed A.

Then the least fixed point µL corresponds to finite lists of type A, which we will write as List A.

We can write the type LA(X) in Haskell as a coproduct parameterized by type variables a and x.

data L a x = Nil | Cons a x

-- 1 + A*X

How can we turn this generic shape functor into a monomorphized list type? If we were writing the type
directly, we could say

data ListInt = Nil | Cons Int ListInt

but if we want to use our L a x functor (NB: no relation to lax functors), we have a problem: we cannot
have a cyclical type synonym.
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type ListInt = L Int ListInt -- Doesn't work.

-- = L Int (L Int (L Int ...))

The solution is to use the least fixed point µLA(X). We define µ in Haskell as follows:

data Mu f = In (f (Mu f))

On the left, we are defining a type Mu parameterized by a type variable f. On the right, our type Mu defines
a single term-level constructor called In, which is a function of type f (Mu f) -> Mu f.

We can now use this Mu f to take the least fixed point of our functor L a x:

data Mu f = In (f (Mu f))

data ListInt = In (L ListInt)

In the second line, for example, we are defining Mu at the type-level and In as a constructor at the term-level.

1.1 Bifunctors

One way to think of a functor is as a container of some kind of thing — for example, lists are containers
of elements. A bifunctor is a container of two different kinds of things. Hence in Haskell we also have the
following typeclasses:

class Functor f where

fmap :: (a -> b) -> f a -> f b

class Bifunctor f where

bimap :: (a -> c) -> (b -> d) -> f a b -> f c d

-- Example for lists.

instance Bifunctor L where

bimap f g Nil = Nil

bimap f g (Cons x y) = Cons (f x) (g y)

The definition of cata can be rewritten in terms of bifunctors:

cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b

cata phi (In x) = phi (bimap id (cata phi) x)

Said in words, we use bimap and a recursive call to cata to turn the children (of type Mu f a) into terms of
type b, and then we apply phi to the result.

Observe that we can also construct the following instance:

instance Bifunctor f => Functor (Mu f) where

fmap f (In x) = In (bimap f (fmap f) x)

The argument f to bimap maps the elements, and the argument fmap f recursively maps the child structures.
We could alternatively define this in terms of a catamorphism — this is left as an exercise.

1.2 Anamorphisms

We can dualize the definition of the least fixed point by “turning the arrows around.”

In particular, we have that the greatest fixed point (also called the “final coalgebra”) is (X, out : X →
FX) such that for all (A, phi : A → FA), there exists a unique h : A → X such that out ◦ h = Fh ◦ phi.
This is depicted in the following diagram:
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FX F (A)

X A

Fh

out

h

phi

Before, we wrote µF for X and cata phi for h. Here, we instead write νF for X and ana phi for h.

Whereas the least fixed point of LA is finite lists of type A, the greatest fixed point also includes infinite
lists.

Next, we can see what this looks like in Haskell, using the previously defined bifunctors.

data Nu f a = Out (f a (Nu f a))

out :: Nu f a -> f a (Nu f a)

out (Out x) = x

-- An idiomatic alternative:

data Nu f a = UnOut {out :: f a (Nu f a)}

-- cf. cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b

ana :: Bifunctor f => (b -> f a b) -> b -> Nu f a

ana phi z = UnOut (bimap id (ana phi) (phi z))

1.3 Colists

Here is an example of an anamorphism for lists.

data L a b = Nil | Cons a b

type Colist a = Nu L a

-- range (0, 3) = [0, 1, 2]

-- range (0, 0) = []

-- range (3, 2) = [3, 4, 5, ...]

range :: (Int, Int) -> Colist Int

range = ana next where

next :: (Int, Int) -> L Int (Int, Int)

next (m, n)

| m == n = Nil

| otherwise = Cons m (m + 1, n)

-- This allows for infinite lists in the case where m > n.

1.4 Cotrees

Another example with a different tree shape is given below.

-- This is an externally labeled tree instead of internally labeled as seen before.

data U a b = Empty | Fork b a b

type Cotree a = Nu U a

-- Build a binary search tree using anamorphisms.

build :: [a] -> Cotree a

build = ana next where

next :: [a] -> U a [a]
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next [] = Empty

next (x:xs) = fork ys x zs where

ys = [y | y <- xs, y < x]

zs = [z | z <- xs, z >= x]

1.5 Conaturals

Consider one final example. We redefine Nu’ and ana’ since Maybe is only parameterized on one type variable
but the previous definitions using bifunctors expect two.

data Nu' f = UnOut {out' :: f (Nu' f)}

type Conat = Nu' Maybe

-- Anamorphism for functors rather than bifunctors:

-- ana' :: Functor f => (b -> f b) -> b -> N u' f

-- When specialized,

ana' :: (b -> Maybe b) -> b -> Conat

ana' phi z = UnOut (fmap (ana' phi) (phi z))

unfoldConat :: (b -> Maybe b) -> b -> Conat

unfoldConat phi z = case phi z of

Nothing -> 0

Just z' -> 1 + unfoldConat z'
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