Recap

We start by reviewing catamorphisms and the initial algebras on which they are based.

Recall these polynomial functors:

- \(NX = 1 + X. \)
- \(L_A X = 1 + A \times X. \)
 (This is a generalization of yesterday’s \(L \) where \(L_A \) is the shape of lists whose elements are of type \(A \).)
- \(T_A X = A + X \times X \)
 (This is the shape of a tree which has either an element or a pair of children.)

A special property of these functors is that they have least fixed points.

The least fixed point (also called the “initial algebra”) of a functor \(F \) is \((X, \text{in} : FX \to X)\) such that for all \((A, f : FA \to A)\), there exists a unique \(h : X \to A \) such that \(h \circ \text{in} = f \circ Fh \).

We can visualize this definition with the following diagram:

\[
\begin{array}{ccc}
FX & \xrightarrow{Fh} & F(A) \\
\downarrow{\text{in}} & & \downarrow{f} \\
X & \xrightarrow{h} & A \\
\end{array}
\]

We write \(\mu F \) for \(X \) and \(\text{cata} f \) for \(h \).

For example, \(\text{List} A = \mu(L_A) \). The justification for saying this is a fixed point is that there is an isomorphism between \(F(\mu F) \) and \(\mu F \). The leastness comes from the universal property, \(h \circ \text{in} = f \circ Fh \).

In Haskell, we have

```haskell
data L a b = Nil | Cons a b
data Mu f a = In (f a (Mu f a))
type List a = Mu L a
```

In the second line, for example, we are defining \(\text{Mu} \) at the type-level and \(\text{In} \) as a constructor at the term-level.

Bifunctors

One way to think of a functor is as a container of some kind of thing — for example, lists are containers of elements. A bifunctor is a container of two different kinds of things. Hence in Haskell we also have the following typeclasses:

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b

class Bifunctor f where
  bimap :: (a -> c) -> (b -> d) -> f a b -> f c d
```

```haskell
-- Example for lists.
instance Bifunctor L where
```
bimap f g Nil = Nil
bimap f g (Cons x y) = Cons (f x) (g y)

The definition of *cata* can be rewritten in terms of bifunctors:

\[
\text{cata} :: \text{Bifunctor } f \Rightarrow (f a b \to b) \to \text{Mu } f a \to b
\]

\[
\text{cata } \phi \text{ (In } x \text{)} = \phi \text{ (bimap id (cata } \phi \text{) } x\text{)}
\]

Said in words, we use *bimap* and a recursive call to *cata* to turn the children (of type *Mu f a*) into terms of type *b*, and then we apply *phi* to the result.

Observe that we can also construct the following instance:

\[
\text{instance } \text{Bifunctor } f \Rightarrow \text{Functor } (\text{Mu } f) \text{ where}
\]

\[
\text{fmap } f \text{ (In } x \text{)} = \text{In } \text{ (bimap } f \text{ (fmap } f \text{) } x\text{)}
\]

The argument *f* to *bimap* maps the elements, and the argument *fmap f* recursively maps the child structures. We could alternatively define this in terms of a catamorphism — this is left as an exercise.

Anamorphisms

We can dualize the definition of the least fixed point by “turning the arrows around.”

In particular, we have that the **greatest fixed point** (also called the “final coalgebra”) is \((X, \text{out} : X \to FX)\) such that for all \((A, \phi : A \to FA)\), there exists a unique \(h : A \to X\) such that \(\text{out} \circ h = Fh \circ \phi\).

This is depicted in the following diagram:

\[
\begin{array}{ccc}
FX & \xleftarrow{Fh} & F(A) \\
\downarrow{\text{out}} & & \downarrow{\phi} \\
X & \xleftarrow{h} & A
\end{array}
\]

Before, we wrote \(\mu F\) for *X* and *cata phi* for *h*. Here, we instead write \(\nu F\) for *X* and *ana phi* for *h*.

Whereas the least fixed point of \(L_A\) is finite lists of type *A*, the greatest fixed point also includes infinite lists.

Next, we can see what this looks like in Haskell, using the previously defined bifunctors.

\[
data Nu f a = \text{Out } (f a \ (\text{Nu } f a))
\]

\[
\text{out } :: \text{Nu } f a \to f a \ (\text{Nu } f a)
\]

\[
\text{out } (\text{Out } x) = x
\]

--- **An idiomatic alternative:**

\[
data Nu f a = \text{UnOut } \{\text{out } :: f a \ (\text{Nu } f a)\}
\]

--- *cf. cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b*

\[
\text{ana } :: \text{Bifunctor } f \Rightarrow (b \to f a b) \to b \to \text{Nu } f a
\]

\[
\text{ana } \phi z = \text{UnOut } \text{ (bimap id (ana } \phi \text{) (phi } z\text{))}
\]

Here is an example of an anamorphism for lists.

\[
data L a b = \text{Nil | Cons } a b
\]

\[
\text{type Colist } a = \text{Nu } L a
\]

--- *range (0, 3) = [0, 1, 2]*

--- *range (0, 0) = []*

--- *range (3, 2) = [3, 4, 5, ...]*

\[
\text{range } :: (\text{Int}, \text{Int}) \to \text{Colist } \text{Int}
\]

\[
\text{range } = \text{ana } \text{next } \text{where}
\]

\[
\text{next } :: (\text{Int}, \text{Int}) \to L \ \text{Int} \ (\text{Int}, \text{Int})
\]
next (m, n)
 | m == n = Nil
 | otherwise = Cons m (m + 1, n)
-- This allows for infinite lists in the case where m > n.

Another example with a different tree shape is given below.

-- This is an externally labeled tree instead of internally labeled as seen before.
data U a b = Empty | Fork b a b
type Cotree a = Nu U a

-- Build a binary search tree using anamorphisms.
build :: [a] -> Cotree a
build = ana next where
 next :: [a] -> U a [a]
 next [] = Empty
 next (x:xs) = fork ys x zs where
 ys = [y | y <- xs, y < x]
 zs = [z | z <- xs, z >= x]

Consider one final example. We redefine Nu' and ana' since Maybe is only parameterized on one type variable but the previous definitions using bifunctors expect two.
data Nu' f = UnOut {out' :: f (Nu' f)}
type Concat = Nu' Maybe

-- Anamorphism for functors rather than bifunctors:
-- ana' :: Functor f => (b -> f b) -> b -> N u' f

-- When specialized,
ana' :: (b -> Maybe b) -> b -> Concat
ana' phi z = UnOut (fmap (ana' phi) (phi z))

unfoldConcat :: (b -> Maybe b) -> b -> Concat
unfoldConcat phi z = case phi z of
 Nothing -> 0
 Just z' -> 1 + unfoldConcat z'