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In this lecture, we introduce additional recursive patterns, all of which generalize catamorphisms (and even-
tually anamorphisms) in some way.

1 Paramorphisms

We start by recalling the definition of cata:

cata :: Bifunctor f =>

(f a b -> b) -> Mu f a -> b

cata phi (In x) = phi (bimap id (cata phi) x)

All of the catamorphisms we’ve seen (such as sum = cata add) follow the same general structure: each
invocation may use the current element of the data structure, as well as the result of the recursive call on
the child data.

However, not all functions obey this structure. Here is an example of a function that is not a catamorphism:

-- Returns the suffix of the list, beginning with the first element that does NOT

-- satisfy the given predicate.

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] = []

dropWhile p (x:xs) = if p x then dropWhile p xs

else x:xs

dropWhile even [2, 4, 5, 6, 8] = [5, 6, 8]

Observe that dropWhile is not a catamorphism because it is not enough to know the result of recurring on
the tail xs — we also need to return xs itself, if we enter the else branch. This property (“needing the
whole list”) indicates that dropWhile is a paramorphism, or a generalization of a catamorphism that adds
more information to the accumulator type.

para :: Bifunctor f =>

(f a (b, Mu f a) -> b) -> Mu f a -> b

para phi (In x) = phi (bimap id ((para phi) `fork` id) x)

We can compare the type signatures of para and cata:

cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b

para :: Bifunctor f => (f a (b, Mu f a) -> b) -> Mu f a -> b

In cata phi, we only keep track of the result type b. But in para phi, we keep track of (b, Mu f a) — not
only b but also the entire substructure Mu f a upon which the recursive call is performed. For dropWhile,
this substructure is the tail of the list.

The implementation changes similarly. Instead of mapping cata phi directly over the data structure, a
paramorphism uses fork to lift para phi into the newly-introduced tuple layer.

cata phi (In x) = phi (bimap id (cata phi) x)

para phi (In x) = phi (bimap id ((para phi) `fork` id) x)
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Paramorphisms can be said to provide a categorical representation of primitive recursion, while catamor-
phisms represent primitive iteration. Just as we can write a program using iteration or recursion, paramor-
phisms are not inherently more expressive than catamorphisms in any formal sense. However, paramorphisms
can be more efficient than catamorphisms, by accumulating results that would otherwise need to be recom-
puted for each successive iteration.

In this sense, we say that para generalizes cata. More specifically, we can make the following observations:

Remark 1. Every catamorphism is a paramorphism.

Intuitively, this is because you “don’t have to use the tail.” A paramorphism keeps track of more information
than a catamorphism – the remaining substructure, in addition to the result of the computation over the
substructure. A catamorphism is just a paramorphism that ignores this additional information.

cata phi = para psi

where phi = ... psi ... -- Exercise: Define phi in terms of psi.

Remark 2. Every paramorphism is a catamorphism with additional post-processing.

As we have seen with dropWhile, not every paramorphism is a catamorphism. However, we can define a
paramorphism in terms of a catamorphism by post-processing the result of the catamorphism, often using
tuple projections to extract the definitive result.

para phi = post . cata phi

where phi = ... psi ...

post = fst -- For example

In order to motivate the next concept, think of a paramorphism as “forking” phi with the identity function.
The logical next question to ask is: what happens if we fork phi with something other than the identity?

1.1 Zygomorphisms

The Greek root zygo- apparently refers to two oxen yoked together. Accordingly, zygomorphisms describe
paramorphisms in which the “main” function h depends on some auxiliary function h′:

h (x:xs) = ... x ... h xs ... h' xs ...

Under this interpretation, paramorphisms are simply zygomorphisms with h′ = id.

The intuition for zygo is that we extend para in two ways:

1. First, we generalize the accumulator from (b, Mu f a) to (b, c) where the second field c can be
anything (including c = Mu f a if we are nostalgic for paramorphisms)

2. Second, we pass zygo another function psi to transform this new field c, just as phi transforms b in
para.

We can observe the progression of generality from cata to para to zygo in the type signatures for each
function:

cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b

para :: Bifunctor f => (f a (b, Mu f a) -> b) -> Mu f a -> b

zygo :: Bifunctor f => (f a (b, c) -> b) -> (f a c -> c) -> Mu f a -> b

To implement zygo efficiently, we use a helper zygo’:

zygo :: Bifunctor f => (f a (b, c) -> b) -> (f a c -> c) -> Mu f a -> b

zygo phi psi = fst . zygo' phi psi

zygo' :: Bifunctor f =>
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(f a (b, c) -> b) -> (f a c -> c) -> Mu f a -> (b, c)

zygo' phi psi (In x) =

let x' = bimap id (zygo' phi psi) x -- (zygo' phi psi) is what we need for phi

in (phi x', psi (bimap id snd x'))

Zygomorphisms are useful whenever our paramorphism calls some auxiliary function. For example, suppose
we are writing a function to test whether a binary tree is perfect, meaning all tips have the same heights. In
this case, the function height is auxiliary:

data Tree a = Tip a | Bin (Tree a) (Tree a)

perfect :: Tree a -> Bool

perfect (Tip x) = True

perfect (Bin t u) = perfect t and perfect u and (height t == height u)

The above implementation of perfect recomputes height t and height u during each iteration. Instead,
we can rewrite perfect as a zygomorphism, using a catamorphism ph:

ph :: Tree a -> (Bool, Int)

ph (Tip x) = (True, 1)

ph (Bin t u) = let (b, m) = ph t

(c, n) = ph u

in (b and c and m == n, 1 + max m n)

Then we can rewrite perfect’ = fst . ph, which is more efficient than our original implementation of
perfect.

By extension of the reasoning in the previous section,

Remark 3. Every paramorphism is a zygomorphism.

Remark 4. Every zygomorphism is a post-processed catamorphism.

1.2 Mutumorphisms

Zygomorphisms have two oxen, but they are not evenly yoked. In the previous example, the primary
function perfect depends on the auxiliary function height, but not vice-versa. Another way to see the
uneven relationship is from the type signature, where the main function takes (b, c) but the auxiliary
function only takes c:

zygo :: Bifunctor f

=> (f a (b, c) -> b) -- (b, c) -> b

-> (f a c -> c) -- c -> c

-> Mu f a -> b

Mutumorphisms extend zygomorphisms to mutually-recursive functions. (The rootmutu- (as in “mutual”)
describes morphisms that depends on each other.) We can see that mutu extends zygo by giving the second
function the same information as the first:

cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b

para :: Bifunctor f => (f a (b, Mu f a) -> b) -> Mu f a -> b

zygo :: Bifunctor f => (f a (b, c) -> b) -> (f a c -> c) -> Mu f a -> b

mutu :: Bifunctor f => (f a (b, c) -> b) -> (f a (b, c) -> c) -> Mu f a -> b

One example of a mutumorphism is the minimax algorithm, in which players take turns, and each turn
depends on the opponent’s previous move.
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2 Histomorphisms

All of the previous recursive patterns were progressive generalizations of cata in the same direction. Histo-
morphisms also extend cata, but in an orthogonal direction. Histomorphisms keep track of the history of
the computation so far, which is useful for dynamic programming (building a bottom-up memoization table
of results) or any time we need to accumulate the result of h xs for all previous values of xs.

We define the type of histo using the cofree comonad on the functor f a:

cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b

histo :: Bifunctor f => (f a (Cofree (f a) b) -> b) -> Mu f a -> b

The definitions of “cofree” and “comonad” are beyond the scope of this lecture. We can think of Cofree (f

a) b as the type of a labeled data structure representing the “whole table” of results on predecessors. The
type is defined as follows (note the similarity to Mu):

data Cofree f b = Node b (f (Cofree f b))

data Mu f = In (f (Mu f ))

The added type parameter b represents the label Cofree adds to each level of the comonad, compared to
Mu.

Here are a few more ways to think about the cofree comonad:

• Given a shape functor f, Cofree f is the easiest way to make a comonad of that shape.

• Cofree f b represents destruction on the label b.

We can define the following operations on Cofree f b, then use those to implement histo:

-- Note duality to monadic `return`.

root :: Cofree f b -> b

root (Node x t) = x

-- Note duality to monadic `join`.

subs :: Cofree f b -> f (Cofree f b)

subs (Node x t) = t

histo :: Bifunctor f =>

(f a (Cofree (f a) b) -> b) -> Mu f a -> b

histo phi = root . cata (\x -> Node (phi x) x)

The “labelling” action can be illustrated through a concrete example:

data L a b = Nil | Cons a b

-- What is Cofree (L a) c? Effectively, a list with a label at each node.

data LabeledList a c = LabeledNil c | LabeledCons c a (LabeledList a c)

For a list of length n, Cofree (L a) c contains n+ 1 labels of type c in total, because Nil is also labeled.

3 Duality

Here are all of the recursion patterns introduced today:

cata :: Bifunctor f => (f a b -> b) -> Mu f a -> b

para :: Bifunctor f => (f a (b, Mu f a) -> b) -> Mu f a -> b
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zygo :: Bifunctor f => (f a (b, c) -> b) -> (f a c -> c) -> Mu f a -> b

mutu :: Bifunctor f => (f a (b, c) -> b) -> (f a (b, c) -> c) -> Mu f a -> b

histo :: Bifunctor f => (f a (Cofree (f a) b) -> b) -> Mu f a -> b

What about anamorphisms, which we discussed in the previous lecture? Just as ana is the categorical dual
of cata, we can define duals for each of the new patterns introduced today:

cata ana
para apo
zygo co-zygo
muto co-mutu
histo futu

The first row, which relates paramorphisms to apomorphisms, is particularly interesting to consider. Notice
the duality between the bifunctors under consideration:

cata para f a (b×Mu f a)
ana apo f a (b+Nu f a)

Insertion sort is an example of this row.
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