Algebra of Programming OPLSS 2022

Lecture 4: Hylomorphisms and Metamorphisms
Lecturer: Jeremy Gibbons Scribes: Ke Du, Jessica Li, Slim Lim, Cody Rivera, Michelle Thalakottur

Recall that we are interested in two broad classes of programming patterns: catamorphisms, which generalize
folds, and anamorphisms, which generalize unfolds. These patterns are categorical duals:

cata :: Bifunctor £ => (f ab ->b) -> Mu f a > b
ana :: Bifunctor f => (b -> f ab) -> b -> Nu f a

Today, we consider how to compose catamorphisms and anamorphisms in both directions. While the basis is
intuitive (many problems require us to construct and then destruct some intermediate data, or vice-versa),
the details are surprisingly subtle. We begin with the first direction: unfolding, then folding.

1 Hylomorphisms

A hylomorphism describes an anamorphism followed by a catamorphism: first we unfold the input into an
intermediate structure, then we fold that structure back into our final result.

Crucially, it is not always necessary to actually materialize the intermediate data structure. By fusing ana
and cata together, hylomorphisms can operate over the idea of an intermediate data structure without
actually performing allocations.

Hylo- means “dust” in Greek, because hylomorphisms can be thought of as dealing with the “spirit” of a
data structure that is not physically present.

Example: Tree sort

A tree sorting algorithm takes a list of numbers, inserts all of the elements into a binary search tree, then
traverses the BST to emit the results in order.

We can implement both steps in Haskell:

build :: Ord a => [a] -> Tree a
build [] = Empty
build (x:xs) = Fork (build ys) x (build zs)
where (ys, zs) = filter (< x) xs, filter (>= x) xs)

flatten :: Tree a —> [a]
flatten Empty = []
flatten (Fork t x u) = flatten t ++ [x] ++ flatten u

Note that build is an anamorphism, while flatten is a catamorphism. It is extremely tempting to define
sort as their composition

sort = flatten . build

Unfortunately, this does not typecheck for a subtle reason not obvious in the above definition: as a cata-
morphism, flatten expects a Tree defined using Mu, but the anamorphism build produces a cotree based
on Nu. Although these types coincide in Haskell, they are morally different: Mu computes the greatest fixed
point of a functor, and Nu computes the least.

There are two ways to reconcile our types:

1. Translate our work to a new category that, like Haskell, does not distinguish between initial and final
(co)algebras.

2. Modify build to show that given a finite list of type [a], the resulting Cotree is also finite.

1.1 Unified Fix

The first option is to move to a different category that better matches our computational model. So far we
have been working in Set, where objects are finite sets and morphisms are total functions between objects.
Instead we will consider the category where objects are complete partial orders (cpos) and morphisms are
continuous functions between cpos. Since our cpos all include |, they are pointed cpos. We will call this
category cpo | .

In cpo |, the least and greatest fixed points coincide. This means that instead of having separate definitions
for Mu and Nu, we can define a single type called Fix:

data Fix f a = In { out :: f a (Fix f a)}

-- 0ld definitions, for reference.
data Mu f a = In {unIn :: f a Mu f a) }
data Nu f a = UnOut { out :: f a (Nu f a) }

We can redefine cata and ana by replacing Mu (resp. Nu) with Fix:

cata :: Bifunctor f => (f ab ->b) -> Fix f a > b
ana :: Bifunctor f => (b -> f a b) -> b -> Fix f a

Now that cata and ana operate over the same fixed point, we can define hylo as the composition of cata
and ana:

hylo :: Bifunctor f =>
(fbc->c) >(@->fba —>a->c
hylo phi psi = cata phi . ana psi

What happens if we expand the definitions of cata phi and ana psi?

hylo :: Bifunctor £ => (£ bc > c¢c) > (a > f ba) > a ->c

hylo phi psi = cata phi . ana psi
= phi . bimap id (cata phi) . out . In . bimap id (ana phi) . psi
- Tonmmmrr out and In cancel
= phi . bimap id (cata phi) . bimap id (ana phi) . psi

-— Functors respect compostition, according to the functor laws, 1.e.
-— bimap f g . bimap h k = bimap (f . h) (g . k)

= phi . bimap (id . id) (cata phi . ana psi) . psi

= phi . bimap id (cata phi . ana psi) . psi

- Tooooonommmmmmnnns original definition of hylo

= phi . bimap id (hylo phi psi) . psi

Note that our final definition of hylo is recursive, and can be understood as follows:

hylo(¢, 1) = ﬁ/ o bimap(id, hylo(¢, 1)) o \1/:/

extract result recursive part handle seed

1.1.1 Deforestation

Recall that tree sort works by constructing a binary search tree from the input list, then deconstructing
the tree to produce the output list. The binary search tree is never observed outside of the function, so it
represents potential cost savings if we can avoid allocating the tree at all.

By rewriting tree sort as a hylomorphism, we perform deforestation on the intermediate tree. This is most
clearly visible at the cancellation of In and out in the derivation of hylo above.

While hylomorphic tree sort does not actually build a tree, it still recursively sorts on the structure of the
tree. In this sense, the “spirit” of the tree remains, hence the name “hylo”.

Remark 1. Hylomorphisms are well-suited to divide-and-conquer algorithms.
Examples of divide-and-conquer algorithms include:

e mergesort, which recursively splits the input list and sorts each sublist, then merges the pieces back
together,

e any problem that can be expressed as a recurrence relation (e.g. naive solutions to dynamic program-
ming problems)

Remark 2. A hylomorphism is the composition of a catamorphism and anamorphism, and therefore gener-
alizes both.

Recall the implementation of hylo:

hylo :: Bifunctor £ => (f bc ->c) -> (a > f ba) ->a->c
hylo phi psi = phi . bimap id (hylo phi psi) . psi

We can understand cata as the special case where psi is out, which decomposes the seed. Likewise, ana is
the special case where psi is In, which puts together the seeds.

1.1.2 TUniqueness of solutions

The main drawback of moving to cpo is that we must impose a strictness condition in order to guarantee
that our fixed point admits a unique solution.

Remark 3 (Fokkinga and Meijer 1991). In a pointed cpo, if F' is a polynomial functor, then there exists a
fized point uF and algebra (resp. coalgebra) constructors in (resp. out). In this setting, anamorphisms are
guaranteed to be unique, but catamorphisms are only unique under strict evaluation.

This idea is discussed further in Fokkinga and Meijer’s paper ‘Program Calculation Properties of Continuous
Algebras.” In the diagram below, morphisms requiring strictness to preserve uniqueness have been labeled
with a superscript *:

F(C) Fleata ¢) F(T) JFanay) F(A)
o out in P
(cata ¢)* T ana v A

1.2 Recursive coalgebras

Instead of moving our constructions to cpo |, we could stay in Set and define tree sort hylomorphically by
proving that when xs : [a] is a finite list, then build xs is guaranteed to produce a finite cotree. We build
upon recursive coalgebras as defined by Uustalu, Vene, and Capretta.

https://ris.utwente.nl/ws/portalfiles/portal/264344813/Fokkinga1991program.pdf
https://ris.utwente.nl/ws/portalfiles/portal/264344813/Fokkinga1991program.pdf

The idea hinges on what we call the hylo equation:

h = ¢ obimap id ho ¢ (1)

In general, the hylo equation is not guaranteed to have a unique solution. There are a few special cases
where we do get uniqueness, though:

e When ¢ = in°
e When ¢ = out® (which is just ana)
e When 1% is a recursive coalgebra

Tree sorting by partition is an example of a recursive coalgebra, since we can show that our list grows
structurally smaller each time we recur. More formally,

Remark 4. i is a recursive coalgebra if the hylo equation has a unique solution for each ¢.

If v is a recursive coalgebra, then we are guaranteed to have a unique solution to the hylo equation which
satisfies the universal property:

h =hylo ¢ ¥ <= h is a solution to the hylo equation

Remark 5. In Set, a finitary functor coalgebra on a carrier with a strictly decreasing measure is always a
recursive coalgebra.

D k C h A

o’ @ P

Now that we have discussed hylomorphisms, which compose a catamorphism after an anamorphism, we will
consider the dual construction achieved by reversing the order of composition.

2 Metamorphisms

Metamorphisms, developed by Jeremy Gibbons, represent the composition of an anamorphism after a
catamorphism. They are so named because they metamorphize representations of data.

Informally, metamorphisms work by reading a small part of the stream, processing that data, and writing
an output stream. They are partially motivated by work done by Michael Jackson with Jackson Structured
Programming, which is intended to work with programs that work on a large stream of input data/punch
cards using very little memory.

Here are some other examples of tasks well-suited to metamorphisms:
e Reformatting lines of text in a paragraph
e Heapsort, which takes an unsorted list to a sorted list by constructing an intermediate heap
e Numeric base conversion on infinite sequences of digits

One caveat is that metamorphisms are still relatively new, and do not (yet?) satisfy the categorical semantics
for arbitrary F-algebras. As a result, we will only consider operations on lists, as opposed to generic functors.

2.1 Folds and unfolds

Metamorphizing tasks can be viewed as first combining input data and then re-expanding parts of data. The
combination of data is done by the foldl and foldr functions, and the expansion of data is done by the
unfoldr function.

foldr :: (a ->b ->b) > b -> [a] > b
foldr f e [] = e
foldr f r (x:xs) = f x (foldr f e xs)

One source of awkwardness is that we actually need the fold to be tail-recursive, so we use foldl instead,
which accumulates brackets to the left of the expression.

foldl :: (b ->a ->b) -—>b > [a] > b
foldl f e [] = e
foldl f e (x:xs) = foldl f (f e x) xs

Now we can define unfoldr. It’s not as obvious from the type signature that it is the dual of foldr, but this
is a limitation of the Haskell standard library as opposed to a fundamental problem with the construction.

unfoldr :: (b -> Maybe (a, b)) -> b -> [al
unfoldr f z = case f z of Nothing -> []
Just (x, z') -> x : unfoldr f z'

2.2 Streams

The idea is to perform a foldl followed by unfoldr. This composition is captured by the notion of a stream.
We can define a specification stream as follows:

stream0 :: (b -> a -> b) -> b -> (b -> Maybe (c, b)) -> [a] -> [c]
stream0 £ y g = unfoldr g . foldl f y

- consume p’l"Od’U.CE

The above definition of stream0 has a problem: it will not produce on infinite input. To remedy this, we
define a better version that behaves as follows:

1. If there is data in the buffer, produce that data.
2. Otherwise, try to consume data into the buffer.

We will model these concepts with three variables: y is a buffer that stores intermediate data processed by
the function, f is a consumer function that inputs data into the buffer y, and g is a producer function that
takes data from y if possible.

stream :: (b -> a -> b) -> b -> (b -> Maybe (c, b)) -> [a] -> [c]
stream f y g xs = case g y of

Just (z, y') -> z:(stream f y' g xs) -- Produce z.

Nothing -> case xs of
x:xs' -> stream f (f y x) g xs' -- Consume z.
a0 ->10

2.2.1 Streaming condition

Intuitively, in order for an algorithm to be a streaming algorithm, no set of input data can overwhelm
the output stream. Furthermore, on an infinite data stream, some data should eventually be outputted (a
stronger condition than what is shown here).

The streaming condition for finite inputs is represented in the following commutative diagram, relating
consuming states to producing states. Effectively, it says that the order of consuming and producing should
not affect the behavior of the program.

More specifically, if the stream can produce and chooses not to, the resulting state must:
e also be productive
e produce the same result
e end in the same state

as if the stream had chosen to produce.

produce z ,

Yy ————————— Y

consume x consume

fyx fve

produce z

Figure 1: Streaming Condition

If the streaming condition holds, then the implementation stream is equivalent to stream0O on finite inputs.

2.2.2 Flushable streams

Sometimes it is not safe for a stream to produce, as the production result might depend on input we have
yet to consume. We can add a safety check to the production function f to confirm that no additional input
can change the result of the next production. (Consumption carries no such risks, so we typically do not
need to change g.)

However, in some circumstances the input stream is depleted before the entire buffer is flushed, so our safety
check might hold up production forever. In order to use this buffered data in computation, we can flush the
buffer to force the final production.

We call this flushable stream an fstream, and extend the definition of stream by passing an additional
function h : b -> [c], the “flusher”. Every recursive call to fstream must additionally pass h.

fstream :: (b -> a -> b) -> b -> (b -> Maybe (c, b)) -> (b -> [c]) -> [a] -> [c]
fstream f y g h xs = case g y of
Just (z, y') -> z:(fstream f y' g h xs)
Nothing -> case xs of
x:xs' -> fstream f (f y x) g h xs'
(] ->hy -- This is the only real difference from stream.

Note that the implementation of fstream only differs substantively from stream in the final case when the
stream can neither produce nor consume data. In this case, fstream calls h y to flush the buffer with the
provided flusher function.

Remark 6. If the streaming condition holds, then for finite input, we can describe fstream using an apo-
morphism:

fstreamfygh=apo|:|g|:|h|:|.foldlfy

As an exercise, define the apomorphism in question.

2.3 Example: Converting from base 3 to base 7

As another application of metamorphisms, consider the process of converting a number from base 3 to base
7. The input number may have an arbitrarily many digits.

Consider a number z < 1 with a fractional expansion of the form
0.d1dadsdyds . . .

where z = >._, d,,b™", and b is the base of this number. (Note that since the number is not base 10, we call
it a fractional expansion rather than a decimal expansion.)

Our goal is to convert such a number from base 3 to base 7. Below are two functions to do this. We take
in a base 3 fraction as a list of integers, convert the fraction to a rational number, and then convert that
number to a base 7 fraction.

-— Input: a finite list of digits of a decimal in base 3
fromBase3 :: [Int] -> Rat
fromBase3 = foldr stepr O

where stepr d x = (d + x) / 3

fromBase3 [0, 1, 2] = 5/27 -- because 0/3' +1/3%+2/3% =5/27

toBase7 :: Rat -> [Int]
toBase7 = unfoldr split
where split x = let y = 7 * x in
Just (floor y, y - floor y)

The problem is that our definition of fromBase3 uses foldr rather than the tail-recursive foldl, which is
necessary for the metamorphism to work. Unfortunately there is not a clear way to redefine fromBase3 using
both foldl and the same concise formulation. Instead, we can write it as follows:

fromBase3' = extract . foldl stepl (0 1)
where stepl (u, v d = (d+u * 3, v / 3)

This definition uses (u,v) as a defunctionalized representation of (v *) (u +). In other words, extract
(u, v) = v * u

Our second definition of fromBase3’ using foldl is correct. Further means of modifying this radix conversion
in order for it to meet the streaming condition (at least for finite input) are detailed in the exercises.

Note that this radix conversion algorithm will only work correctly on finite lists. It is an exercise to see
which inputs do not produce data.

The homework assignment for this lecture can be found |here.

http://www.cs.ox.ac.uk/people/jeremy.gibbons/oplss2022/lecture4.lhs

	Hylomorphisms
	Unified Fix
	Deforestation
	Uniqueness of solutions

	Recursive coalgebras

	Metamorphisms
	Folds and unfolds
	Streams
	Streaming condition
	Flushable streams

	Example: Converting from base 3 to base 7

